Laser: Theory and Modern Applications

Homework 5: Relaxation oscillations, Wiener Khinchine Theorem, Allan Deviation

Fall 2023

Solutions

1. Relaxation Oscillations:

a) Relaxation Oscillations The nonlinear differential equation system is derived in
chapter 7.2.2 of the script. It is a simplification for a lasing system with strong pop-
ulation inversion (N > Nj) where Ny and N; are populations per unit volume (unit
m 3. Thus also the lower pumping rate is negligible and only the upper level pumping
rate K (unit m™3 s7' ) remains. The cavity loss coefficient o = cg; (unit s™! ) accounts
mainly for the mirror losses and o(v) (unit m? ) is the absorption cross section.

As there is no analytical solution to this nonlinear equation system, it is analyzed by
linearization around a working point that is a solution of the steady state equations
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From (2) the steady state upper level population Ny can be derived, which plugged
into (1) yields the steady state intensity I :
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Next the differential equation for the upper level population density is rewritten for
small deviations 1 about the stable, steady state working point just calculated:
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In the upper calculation we have used (1) to cancel %S’)NJO and —T'9; Ny + Ko and
substituted Ny and I, with (3) and (4). For the intra cavity intensity the differential

equation changes to:
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As can be seen neglecting of higher order term effectively turns the nonlinear differential
equation system into a linear differential equation system.

b) In order to show that the small signal behavior of the laser is essentially the same
as a damped harmonic oscillator the last expression of (6) is plugged into (5):
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with: v = 7¢

The same result can be obtained for the small deviations of the population density n
with the same values for v and w?.

c,d) Inorder to introduce the small signal - a harmonic pumping term with frequency
()-, one realizes that the pumping term K5 in the formulae above was just a constant
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Figure 1: Figure 1: Normalized intensity and photon number versus frequency for an intrinsic
frequency of wy = 1IMHz and bandwidth of v = 300kHz

pump. Adding a small pump modulation term is the same as turning the damped oscil-
lator equations we found before into harmonically driven, damped oscillator equations.
We can therefore write (using the same v and wy) :

d?e de , , ;
¥l + Y + wie = ke = € (=19 + Q71 + witg) = Koe

e) Substituting n(t) = e and e(t) = e into their according now driven,
damped harmonic oscillator equations, and after executing the simple temporal deriva-
tives, the equations have been transformed into the Fourier domain and read:
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Looking at Fig. 1 the response of the laser system to fast pump modulation can be
understood. The laser system can only respond to low frequencies (frequencies lower
than wp ) and the response drops down dramatically for modulation frequencies (€2)
higher than wy. This is due to the intrinsic "relaxation oscillation frequency” of the
laser (wp), which depends on the intrinsic time constants of the laser system. If the
frequency of the pump modulation is higher than wy, the laser can not follow it and
the laser output power remains constant (/y) even with modulated pump power.

Note: the relationship between the relaxation frequency of a laser and the physical

dimensions can be easily seen from Eq. 9.: w? = %1, where « is the loss rate (i.e. the

loss in one round trip of the light bouncing in the cavity). This can be approximated

by a = 01*27"—57"2 where 71, r9 are the reflectivity of the mirrors and L is the length of the

cavity. It is clear that the smaller the cavity, the faster the response is. For example,
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small diode lasers can be used for GHz range communications, while the relaxation
oscillation for a He-Ne laser in the order of kHz

f)
2. Modulation bandwidth of a GaAs/GaAlAs Laser diode:
According to the result of the previous question first we will calculate the intensity of

the laser. For simplification we assume that the power is uniformly distributed in the
cavity aperture, then we would have:

P 5x 1072 W W
Iy =— = =1.66 x 10—
7 A 3x106.1x10"7 m2 m2
Next the total intensity loss rate « is calculated which is equal to the loss in the
material and at the mirrors. Therefore the total loss rate would be:

1—
QO = Qimaterial T Qmirror = C/TL : lossmaterial +C<T/’:1T2)
3% 10%ms™! 3% 10%ms~'(1 — 0.3)
= 3000 =591 x 10" s
3 T 120mm - 3 i

The third step is to calculate the absorption cross section in the material. According
to the first lecture the cross section in the lasing frequency (vy) would be:

A/n)? (850 x 1072/3)?
a(vo):(in) _ | X4 /3" _ 638 x 1015 m?
78 T

Now we can calculate the relocation oscillation frequency of Ga/As diode laser:

Wo = 4/ aolo = acloh =9.44 x 10*%rad - 7!
hv hen

sy = ;"—; — 1.5THz

3. 1st order autocorrelation measurements and the Wiener Khinchine Theo-
rem:

In the first step we will show the relation between I(7) and C(7) :

EQ)+E(t—7)?=E{t)-E*t)+E(t—71)-E*(t—7)+ E(t)- E*(t —7) + E(t — 7) - E*(t)
(1)
=2|E*+ E(t)-E*(t—7)+ E(t —7)- E*(t) (E is a real signal)
(2)
=2|E|* +2E(t) - E*(t — 1) (3)

4
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Therefore :

I(1) =2(|E|*) + 2(E(t) - E*(t — 7)) = 2P, +2C(7)

However we should note that the E used in Eq. (13) is the electric field in each arm
which is Fym = \%Elaser because in the beam splitter you divide the power equally

between two arm. (Parm = %Plaser ) Therefore the modified equation of (13) for laser
itself would be:

I(1) = Par + C(7)

The Eq. (14) simply means that I(7) is the sum of ”"Auto Correlation Function of
Laser” and ”Laser Average Power” (Which is constant). As a result If one measure
the the laser average power separately, he can reduce it from Eq. (14) and calculate the
Auto Correlation Function of laser light by varying one of the arm lengths respect to the
other (Which represents varying 7 ) The next step is to prove the Wiener-Khintchine
and show how one can find spectral density out of Auto Correlation Function:

/ Clr)e—mdr — / (E(t) - B*(t — 7)) e dr (4)
= / / E(t) - E*(t — 7)dte”“"dr (5)

Introduce a variable change u =t — 7:

_ / / E(t) - E*(w)e~“" e~ dtdu (7)
/ E*(w)e ™" du - / E(t)e~“tdt (8)

= E'(w) - E(w) = |[E(w)]* = S(w) (9)

The meaning of Eq. (15) is that one can simply calculate the spectral density from
Auto Correlation Function with simply taking a ”Fourier Transform” from C(7). The
next step is to compute a multimode laser auto correlation function (for simplification
one can imagine a laser with two modes w; and wy ) then the phasor of electrical field
would be: E(t) = Eje~™“' 4+ Fye~™2!. Therefore we would have:

O( ) = <(E e_iwlt +E e—iw2t) (E* +iw (t—7) E* +iw2(t—7'))>t
= (|Fy Ze T 4 FEs 2 gmiwaT + E E* —i(w2— wl)te*WQT_i_E E* Fi(wz—w)t g —iwiT
t
‘E ’2 —zw17'_|_ ’EQ‘ e —iwaT
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and the spectral density would be:

S(w) = |B1]* 6 (w = wi) + | By|* 6 (w — ws)

which means two peaks one in w; and one in wy And in the very last step we calculate
the spectral density of this signal: C(7) = E2 cos (woT) e”™/™ Recall that the Fourier
Transform of e~ is:

a

a? 4+ w?

F e} =

Then for calculating the spectral density we should keep in mind that the cos (wo7) in
C'(7) will only cause a frequency shift in Fourier Domain and would centralize the Eq.
(18) around wy instead of 0 . Therefore the spectral density of C'(7) would be:

1/7.

5() = FIOW) = 1Bl o s

which is Lorenzian line shape with linewidth of dw = 1/7,

4. Allan Deviation:

In the first step we calculate the average frequency in the n'® time interval (7,) In the
first step we calculate the average frequency in the n'® time interval (4, )

(TL+1)T 1
?7n=<U(t)>t=Uo+—/ atdt:vo+a7(n+—)

T Jor 2

Therefore the variation between to time interval would be:

Upq1 — Up = QT

As a result, the Allan Deviation of this clock would be:

ou(T) = \/% <(T)n+1 — @n)2>n _ %7’




