
Laser: Theory and Modern Applications

Homework 5: Relaxation oscillations, Wiener Khinchine Theorem, Allan Deviation

Fall 2023

Solutions

1. Relaxation Oscillations:

a) Relaxation Oscillations The nonlinear differential equation system is derived in
chapter 7.2.2 of the script. It is a simplification for a lasing system with strong pop-
ulation inversion (N2 ≫ N1) where N2 and N1 are populations per unit volume (unit
m−3. Thus also the lower pumping rate is negligible and only the upper level pumping
rate K (unit m−3 s−1 ) remains. The cavity loss coefficient α = cgt (unit s

−1 ) accounts
mainly for the mirror losses and σ(v) (unit m2 ) is the absorption cross section.

As there is no analytical solution to this nonlinear equation system, it is analyzed by
linearization around a working point that is a solution of the steady state equations(

d
dt
. . . = 0

)
:

0 = −σ(v)N̄2
Ī0
hv

− Γ21N̄2 +K2

0 = +cσ(v)N̄2Ī0 − αĪ0

From (2) the steady state upper level population N̄2 can be derived, which plugged
into (1) yields the steady state intensity I0 :

N̄2 =
α

cσ

Ī0 =
−Γ21hv

σ
+

cK2hv

α

Next the differential equation for the upper level population density is rewritten for
small deviations η about the stable, steady state working point just calculated:
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d

dt
N2 =

d

dt

(
N̄2 + η

)
=

d

dt
(η)

=
−σ(v)

hv

(
N̄2 + η

) (
Ī0 + ε

)
− Γ21

(
N̄2 + η

)
+K2

=
−σ(v)

hv

(
N̄2Ī0 + ηĪ0 + εN̄2 + . . .

)
− Γ21

(
N̄2 + η

)
+K2

= −σ(v)

hv

((
Ī0 + Γ21

)
η − N̄2ε

)
=⇒ d

dt
(η) = −σcK2

α
η − α

chv
ε

In the upper calculation we have used (1) to cancel −σ(v)
hv

N̄2Ī0 and −Γ21N̄2 +K2 and
substituted N̄2 and Ī0 with (3) and (4). For the intra cavity intensity the differential
equation changes to:

d

dt
I =

d

dt

(
Ī0 + ε

)
=

d

dt
(ε)

= σ(v)N2I − αI

= cσ(v)
(
N̄2Ī0 + δNĪ0 + εN̄0 + . . .

)
− α

(
Ī0 + ε

)
=

(
cσ(v)N̄2 − α

)
ε+

(
cσ(v)Ī0

)
η

=⇒ d

dt
(ε) =

(
cσĪ0

)
η ⇔ η =

1

cσĪ0

d

dt
(ε)

As can be seen neglecting of higher order term effectively turns the nonlinear differential
equation system into a linear differential equation system.

b) In order to show that the small signal behavior of the laser is essentially the same
as a damped harmonic oscillator the last expression of (6) is plugged into (5):

d

dt

(
1

cσĪ0

d

dt
(ε)

)
= −

(
σcK2

α

)(
1

cσĪ0

d

dt
(ε)

)
−

( α

chv

)
ε

=⇒ d2

dt2
(ε) + γ

d

dt
(ε) + ω2

0ε = 0

with: γ =
σcK2

α
and ω2

0 =
ασI0
hv

The same result can be obtained for the small deviations of the population density η
with the same values for γ and ω2

0.

c,d) In order to introduce the small signal - a harmonic pumping term with frequency
Ω-, one realizes that the pumping term K2 in the formulae above was just a constant
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Figure 1: Figure 1: Normalized intensity and photon number versus frequency for an intrinsic
frequency of ω0 = 1MHz and bandwidth of γ = 300kHz

pump. Adding a small pump modulation term is the same as turning the damped oscil-
lator equations we found before into harmonically driven, damped oscillator equations.
We can therefore write (using the same γ and ω0) :

d2ε

dt2
+ γ

dε

dt
+ ω2

0ε = κ0e
iΩt =⇒ eiΩt

(
−Ω2ι0 + iΩγι0 + ω2

0ι0
)
= κ0e

iΩt

e) Substituting η(t) = η0e
iΩt and ε(t) = ι0e

iΩt into their according now driven,
damped harmonic oscillator equations, and after executing the simple temporal deriva-
tives, the equations have been transformed into the Fourier domain and read:

η0(Ω) =
1

cσĪ0

iΩκ0

(ω2
0 − Ω2) + iγΩ

ι0(Ω) =
κ0

(ω2
0 − Ω2) + iγΩ

Looking at Fig. 1 the response of the laser system to fast pump modulation can be
understood. The laser system can only respond to low frequencies (frequencies lower
than ω0 ) and the response drops down dramatically for modulation frequencies (Ω)
higher than ω0. This is due to the intrinsic ”relaxation oscillation frequency” of the
laser (ω0), which depends on the intrinsic time constants of the laser system. If the
frequency of the pump modulation is higher than ω0, the laser can not follow it and
the laser output power remains constant (I0) even with modulated pump power.

Note: the relationship between the relaxation frequency of a laser and the physical
dimensions can be easily seen from Eq. 9.: ω2

0 = ασI0
hv

, where α is the loss rate (i.e. the
loss in one round trip of the light bouncing in the cavity). This can be approximated
by α = c1−r1r2

2L
where r1, r2 are the reflectivity of the mirrors and L is the length of the

cavity. It is clear that the smaller the cavity, the faster the response is. For example,
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small diode lasers can be used for GHz range communications, while the relaxation
oscillation for a He-Ne laser in the order of kHz

f) ...

2. Modulation bandwidth of a GaAs/GaAlAs Laser diode:

According to the result of the previous question first we will calculate the intensity of
the laser. For simplification we assume that the power is uniformly distributed in the
cavity aperture, then we would have:

I0 =
P

A
=

5× 10−3 W

3× 10−6 · 1× 10−7 m2
= 1.66× 1010

W

m2

Next the total intensity loss rate α is calculated which is equal to the loss in the
material and at the mirrors. Therefore the total loss rate would be:

α = αmaterial + αmirror = c/n · lossmaterial +
c (1− r1r2)

2Ln

=
3× 108ms−1

3
· 3000 + 3× 108ms−1(1− 0.3)

2 · 120 µm · 3
= 5.91× 1011 s−1

The third step is to calculate the absorption cross section in the material. According
to the first lecture the cross section in the lasing frequency (v0) would be:

σ (v0) =
(λ/n)2

4π
=

(850× 10−9/3)
2

4π
= 6.38× 10−15 m2

Now we can calculate the relocation oscillation frequency of Ga/As diode laser:

ω0 =

√
ασI0
hν

=

√
ασI0λ

hcn
= 9.44× 1012rad · s−1

=⇒ v0 =
ω0

2π
= 1.5THz

3. 1st order autocorrelation measurements and the Wiener Khinchine Theo-
rem:

In the first step we will show the relation between I(τ) and C(τ) :

|E(t) + E(t− τ)|2 = E(t) · E∗(t) + E(t− τ) · E∗(t− τ) + E(t) · E∗(t− τ) + E(t− τ) · E∗(t)
(1)

= 2|E|2 + E(t) · E∗(t− τ) + E(t− τ) · E∗(t) (E is a real signal)
(2)

= 2|E|2 + 2E(t) · E∗(t− τ) (3)
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Therefore :

I(τ) = 2
〈
|E|2

〉
+ 2 ⟨E(t) · E∗(t− τ)⟩ = 2P̄avr + 2C(τ)

However we should note that the E used in Eq. (13) is the electric field in each arm
which is Earm = 1√

2
Elaser because in the beam splitter you divide the power equally

between two arm.
(
Parm = 1

2
Plaser

)
. Therefore the modified equation of (13) for laser

itself would be:

I(τ) = P̄avr + C(τ)

The Eq. (14) simply means that I(τ) is the sum of ”Auto Correlation Function of
Laser” and ”Laser Average Power” (Which is constant). As a result If one measure
the the laser average power separately, he can reduce it from Eq. (14) and calculate the
Auto Correlation Function of laser light by varying one of the arm lengths respect to the
other (Which represents varying τ ) The next step is to prove the Wiener-Khintchine
and show how one can find spectral density out of Auto Correlation Function:

∫
C(τ)e−iωτdτ =

∫
⟨E(t) · E∗(t− τ)⟩ e−iωτdτ (4)

=

∫∫
E(t) · E∗(t− τ)dte−iωτdτ (5)

(6)

Introduce a variable change u = t− τ :

=

∫∫
E(t) · E∗(u)e−iωue−iωtdtdu (7)

=

∫
E∗(u)e−iωudu ·

∫
E(t)e−iωtdt (8)

= E∗(ω) · E(ω) = |E(ω)|2 = S(ω) (9)

The meaning of Eq. (15) is that one can simply calculate the spectral density from
Auto Correlation Function with simply taking a ”Fourier Transform” from C(τ). The
next step is to compute a multimode laser auto correlation function (for simplification
one can imagine a laser with two modes ω1 and ω2 ) then the phasor of electrical field
would be: E(t) = E1e

−iω1t + E2e
−iω2t. Therefore we would have:

C(τ) =
〈(
E1e

−iω1t + E2e
−iω2t

) (
E∗

1e
+iω1(t−τ) + E∗

2e
+iω2(t−τ)

)〉
t

=
〈
|E1|2 e−iω1τ + |E2|2 e−iω2τ + E1E

∗
2e

−i(ω2−ω1)te−iω2τ + E2E
∗
1e

+i(ω2−ω1)te−iω1τ
〉
t

= |E1|2 e−iω1τ + |E2|2 e−iω2τ
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and the spectral density would be:

S(ω) = |E1|2 δ (ω − ω1) + |E2|2 δ (ω − ω2)

which means two peaks one in ω1 and one in ω2 And in the very last step we calculate
the spectral density of this signal: C(τ) = E2

0 cos (ω0τ) e
−τ/τc Recall that the Fourier

Transform of e−a|τ | is:

F
{
e−a|τ |} =

a

a2 + ω2

Then for calculating the spectral density we should keep in mind that the cos (ω0τ) in
C(τ) will only cause a frequency shift in Fourier Domain and would centralize the Eq.
(18) around ω0 instead of 0 . Therefore the spectral density of C(τ) would be:

S(ω) = F{C(τ)} = |E0|2
1/τc

(1/τc)
2 + (ω − ω0)

2

which is Lorenzian line shape with linewidth of δω = 1/τc

4. Allan Deviation:

In the first step we calculate the average frequency in the nth time interval (v̄n) In the
first step we calculate the average frequency in the nth time interval (v̄n)

v̄n = ⟨v(t)⟩t = v0 +
1

τ

∫ (n+1)τ

nτ

at dt = v0 + aτ

(
n+

1

2

)
Therefore the variation between to time interval would be:

v̄n+1 − v̄n = aτ

As a result, the Allan Deviation of this clock would be:

σv(τ) =

√
1

2

〈
(v̄n+1 − v̄n)

2〉
n
=

a√
2
τ
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