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1 Context

When we image 3D objects with 2D sensors we are inevitably forced to lose part of the infor-
mation. We should therefore introduce new degrees of freedom to compensate this mismatch.
Tomography (from the ancient greek tomos "slice") is a technique to recover slice by slice the
3D morphology of the sample under observation. However, in presence of diffraction, the
common algorithm used in computer tomography, as Radon transform which are based on
geometrical optics, fail and a more accurate treatment is required.

Fig. 1 presents the problem we want to study in a 2D word for the sake of simplicity.
Usually when we image an object 𝑛(r), we illuminate it with a beam 𝑢0 from an emission plane
(the dashed line on the left, in this case one-dimensional) and we measure its response on a
detection plane (the dashed line on the right). The quantity that we measure with a camera is
typically the intensity of the total field |𝑢0 + 𝑢𝑠 | where 𝑢𝑠 is the scattered field from the object.
With a single illumination we will record on the detector the 1D projection of our 2D object.
However, to retrieve its full distribution we could introduce as an additional degree of freedom
the illumination angle 𝜃0. If we turn around the object to illuminate it from different 𝜃0 and
collect for each of them the complex valued scattered field in all the directions 𝜃 (meaning
having a detector along the solid circular line) we could fully reconstruct 𝑛(r). Starting from
the wave equation we will show here below the principles of optical diffraction tomography.

2 Wave equation

The optical scattering problem in Fig. 1 is described by Helmoltz equation:
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Figure 1: Optical system for optical diffraction tomography

(
∇2 + 𝑘20𝑛

2(r)
)
𝑢𝑡(r) = 0 (1)

where 𝑘0 = 𝜔/𝑐 = 2𝜋/𝜆 is the vacuum wavenumber and 𝑢𝑡 = 𝑢0 + 𝑢𝑠 . Similarly, if we
remove the object, we can write a similar equation for the incident field 𝑢0:(

∇2 + 𝑘20𝑛
2
0

)
𝑢0(r) = 0 (2)

By subtracting the two we have the equation for the scattered field:(
∇2 + 𝑘20𝑛

2
0

)
𝑢𝑠(r) = −4𝜋𝐹(r)𝑢𝑡(r) (3)

where 𝐹(r) = 𝑘20
4𝜋 (𝑛2(r)−𝑛2

0) is called the scattering potential and contains all the information
on the refractive index of the object. Instead of having a source at infinity and a localized object,
solving (3) equals to computing the electromagnetic field 𝑢𝑠 in a uniform medium 𝑛0 in the
presence of an equivalent localized source −4𝜋𝐹(r)𝑢𝑡(r). In turn, the solution can be found
resorting to the Green function of the Helmoltz operator in the background medium where
𝑘 = 𝑘0𝑛0

(∇2 + 𝑘2)𝐺(r − r′) = −4𝜋𝛿(r − r′) (4)

and in turn find the scattered field

𝑢𝑠(r) =
∫
Ω

𝐹(r′)𝐺(r − r′)𝑢𝑡(r′)𝑑r′ (5)

where Ω is a domain enclosing the scattering object. Equation (5) is called the Lippmann-
Schwinger formulation of the scattering problem. Also notice that although Ω is in general a
domain enclosing the object, 𝐹(r) differs from zero only inside the object volume.

3 Fourier diffraction theorem

The inversion of (5) is not a trivial task and requires some consideration and approximation.
We show hereafter the inversion for the 2D case presented in Fig. 1 but the same conclusion
can be straightforwardly extended to the 3D case.

As a first step let’s introduce the Green function in a homogeneous medium which in 2D is:
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𝐺(r − r′) = 𝑖

𝜋
𝐻

(1)
0 (𝑘 |r − r′ |) (6)

where 𝐻
(1)
0 is the zero-order Hankel function of the first kind (pay attention, in 3D the

solution of (4) is different). As it will be clear in few steps, it is more convenient to use the Weyl
expansion of the Green function:

𝐺(r − r′) = 𝑖

4𝜋

∫
𝑑𝑠𝑥

1

𝑠𝑧
exp {𝑖𝑘 [𝑠𝑥(𝑥 − 𝑥′) + 𝑠𝑧(𝑧 − 𝑧′)]} (7)

Where for the sake of notation we wrote the transverse wavevector 𝑘𝑥 = 𝑘𝑠𝑥 and the
longitudinal one 𝑘𝑧 = 𝑘𝑠𝑧 , so that s = (𝑠𝑥 , 𝑠𝑧) is a unitary vector. If we now plug (7) in (5) we
get:

𝑢𝑠(r) =
𝑖

4𝜋𝑠𝑧

∫
Ω

𝑑r′
∫

𝑑𝑠𝑥 𝐹(r′)𝑢𝑡(r′) exp {𝑖𝑘 [𝑠𝑥(𝑥 − 𝑥′) + 𝑠𝑧(𝑧 − 𝑧′)]} =

=
𝑖𝑒 𝑖𝑘𝑠𝑧𝑧

4𝜋𝑠𝑧

∫
𝑑𝑠𝑥

∫
Ω

𝑑r′ 𝐹(r′)𝑢𝑡(r′)𝑒−𝑖𝑘s·r
′
𝑒 𝑖𝑘𝑠𝑥𝑥

(8)

If now we take the angular spectrum formulation of 𝑢𝑠 :

𝑢𝑠(r) =
𝑘

2𝜋

∫
𝑑𝑠𝑥 𝑢̃𝑠(𝑘𝑠𝑥 , 𝑧)𝑒 𝑖𝑘𝑠𝑥𝑥 (9)

we can extract from (8):

𝑢̃𝑠(𝑘𝑠𝑥 , 𝑧) =
𝑖𝑒 𝑖𝑘𝑠𝑧𝑧

2𝑘𝑠𝑧

∫
Ω

𝑑r′ 𝐹(r′)𝑢𝑡(r′)𝑒−𝑖𝑘s·r
′ (10)

3.1 Born approximation

Equation (10) provided an implicit formula to compute the scattered field. However, this
requires to know the total field, which is itself related to scattered one, and it is not easy
to invert (remember in our hypotetical experiment we would measure 𝑢𝑠 and we want to
extract 𝐹). To further simplify this formula we have to introduce some approximations. For
weakly scattering objects, we can say that the total field is very similar to the incident one
𝑢𝑡 = 𝑢0 + 𝑢𝑠 ≈ 𝑢0. This assumption is called Born approximation. If we consider a plane wave
excitation 𝑢0 = exp 𝑖𝑘s0 · r = exp 𝑖𝑘(𝑠0𝑥𝑥 + 𝑠0𝑧𝑧) and to measure the scattered field on a detector
placed at a distance 𝑧0 from the rotation axis, (10) becomes

𝑢̃𝑠(𝑘𝑠𝑥 , 𝑧0) =
𝑖𝑒 𝑖𝑘𝑠𝑧𝑧0

2𝑘𝑠𝑧

∫
Ω

𝑑r′ 𝐹(r′)𝑒−𝑖𝑘(s−s0)·r′ (11)

The right-hand-side now is nothing but the shifted Fourier transform of the scattering
potential, which finally leads to:

𝐹̃[𝑘(s − s0)] = −2𝑖𝑒 𝑖𝑘𝑠𝑧𝑧0 𝑘𝑠𝑧 𝑢̃𝑠(𝑘𝑠𝑥 , 𝑧0) (12)

This final equation, commonly referred to as Wolf Transform or Fourier Diffraction Theorem,
states that the 1D Fourier transform of the scattered field measured by the detector at a distance
𝑧0 from the rotation axis provides information about a 1D path in the 2D Fourier transform of
the scattering potential. Or equivalently, when the object is illuminated in a direction s0 and
the scattered field measured at all the possible directions s gives information on the Fourier
components 𝐹̃(K) whose points lie on a sphere of radius 𝑘 centered in −𝑘s0 (cfr. Principles of
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Figure 2: Working principle of optical diffraction tomography. For illumination each angle
(colors on the left panel), we fill a portion of the Fourier transform of the object (right panel).

Optics Chapter XIII by E.Wolf and M.Born), see Fig. 2. We commonly refer to this sphere as
Ewald’s sphere.

Practically, the Fourier diffraction theorem provides us an efficient algorithm to reconstruct
the refractive distribution 𝑛(r)

Algorithm 1: Wolf Transform
Set incident illumination direction s0
Measure 𝑢𝑡 and 𝑢𝑖 at 𝑧 = 𝑧0
Compute scattered field 𝑢𝑠 = 𝑢𝑡 − 𝑢𝑖 and its FT 𝑢̃𝑠
Use (12) and fill 𝐹̃ along the arc 𝑘(s − s0)
Repeat for different directions Take the inverse FT of 𝐹̃

It is finally worth noticing the similarity of (12) with the Fourier slice theorem. In Radon
transform every projection give information about a slice in the Fourier plane of the object.
Here in a similar way, every projection of the scattered field gives information on an arc in the
Fourier domain.
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