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Module 1: Summary of fundamental optics

• Ray optics – Saleh & Teich Chapter 1
• Wave optics – Saleh & Teich Chapter 2
• Maxwell's optics – Saleh & Teich Chapter 5
• Polarization optics – Saleh & Teich Chapter 6

Different perspectives on optics:
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The postulates of ray optics

• Light travels in the form of rays
• A medium is characterized by a quantity           (in general…) called the refractive 

index
• The refractive index is defined by the ratio of the speed of light in vacuum      over 

the speed of light      in the medium:

• The time taken by light to travel a distance      is
• is the optical pathlength
• In an inhomogoneous medium                is a function of the position and the 

pathlength is defined as an integral:
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The postulates of ray optics

• Fermat principle: Optical rays travelling between two points follow a path such that 
the time of travel (or the optical pathlength) is an extremum (in most cases a 
minimum):

• Refraction:
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N. Yu, Nature Materials vol. 13, p. 139 (2014)
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• Snell law:

Refraction – Geometrical construction

• Total internal reflection (no refraction) for:

• Requires                 (e.g. waveguides)1 2n n
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Refraction – Snell law

• Our eye assumes that light transmission is
along straight lines → the object must be 
broken under the water

physicsclassroom.com
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• In principle, the refractive index is positive… there are however exotic situations 
where it can be negative

• In that case, the refracted angle becomes also negative!

Negative refraction
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Perfect lens

• A source point becomes a point image (which is impossible with conventional 
lenses)

point source point image
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Negative phase velocity
• what happens if            ?0 /c c n 0n 
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Negative refraction
• what happens if            ?0 /c c n 0n 
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Wave optics

• Scalar theory for the optical wave (one field component):
• Wave equation:
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Wave equation in different coordinate systems

• Cartesian

• Spherical

• Cylindrical

For a very good reference: G. B. Arfken and H.J. Weber, 
Mathematical Methods for Physicists, 5th Ed. (Academic 
Press, New York, 2001).
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Wave optics

• The wave equation is linear (linear optics, as opposed to nonlinear optics):
– The optical properties of materials do not depend on light intensity
– The principle of superposition is valid
– The frequency of light does not change when it passes through a medium
– Two beams of light cannot interact (light cannot be used to control light)

1 2( , ) ( , ) ( , )u t u t u t r r r
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Monochromatic harmonic waves

• Scalar wave (real function, representing one field component)
• Harmonic time dependence: ( , ) ( ) cos[ ( )]u t a t  r r r
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Complex representation

• To take advantage of complex calculus one introduces the complex wave function
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Complex representation (cont.)

• The complex wave function also fulfills the wave equation:

• Leading to Helmholtz equation:

• With the wave number
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Monochromatic plane wave

• From the generic form:
• We assume also a “harmonic” form in space:

• Wave vector:

• Plane wave travelling in the direction z:
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Monochromatic plane wave (cont.)

• The wave fronts are planes with a distance between consecutive planes:

• Through a medium n:

All the wave parameters vary when the wave changes from one medium to another 
one, except the frequency (= energy)

• A plane wave has constant intensity in the entire space and hence carries an infinite 
energy, which is not physical!
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Isotropic medium: Anisotropic medium:

Dispersion diagram

• For any wave, there is a relation between momentum (k) and energy ()
• This relation can be represented in a dispersion diagram, which depends on the 

medium in which the wave propagates
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Direction of propagation

• Assuming a time dependence
– Forward propagating wave:
– Backward propagating wave:

exp( )j t

exp( )j t jkr 

exp( )j t jkr 

• Assuming a time dependence
– Forward propagating wave:
– Backward propagating wave:

• The choice of the sign for the temporal dependence is arbitrary… but can be 
very confusing!

• Usually, engineering books (like Saleh & Teich) use                  ; 
many physics textbooks use                  . In this lecture we will use both! 

exp( )j t

exp( )j t jkr 

exp( )j t jkr 

exp( )j t
exp( )j t



Olivier J.F. Martin

Evanescent wave

• Wave propagating along direction
• Complex wave vector

• Careful: the sign condition on      depends on the choice for the temporal 
dependence!
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Evanescent wave in one direction

• A wave can propagate in different directions, let’s assume

• This wave can propagate along the x-direction and be evanescent along the z-
direction if      is real and     is purely imaginary

• This situation occurs under total internal
reflection at an interface: the wave 
transmitted above the interface is 
evanescent in the direction normal to 
the interface (and propagates along the
interface)
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Evanescent wave caused by a large wave vector component

• Let’s consider again

• We have  

• The choice for the ± sign is complicated and usually determined by considerations 
on energy conservation and causality (the signal cannot arrive before it is emitted) 
we will discuss this in detail when we discuss negative refraction
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• When                       is real and the 

wave propagates in z-direction
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