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Some references

• W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications
(Springer, Heidelberg, 2009).

• S.A. Ramakrishna, and T.M. Grzegorczyk, Physics and Applications of Negative 
refractive Index Materials (SPIE Press, Bellingham, 2009).

Science vol. 328, p. 440 (2010)



Olivier J.F. Martin

Metamaterials

• When it interacts with electromagnetic radiation, any material behaves in a different 
way depending on the relationship between the illumination wavelength and the 
features size:

• Only materials where d  >> λ can be described in terms of homogeneous ε, µ or n, k.

d  >> λ λ ~ d
λ’ ~  d
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Metamaterials

• A material made from natural 
atoms/molecules:

• A metamaterial made from 
nanostructures or «artificial atoms» 
(meta-atoms) 

• To behave as a homogeneous material described by macroscopic quantities such as 
ε and µ, the wavelength must be much larger than the dimensions of the «atoms»
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Metamaterials vs. Photonic crystals

• Photonic crystals
– Structures ~ λ
– Very precise fabrication
– Interference-driven

• Metamaterials
– Structures << λ
– Fabrication should not matter

(homogeneization)
– Driven by the response of the 

individual atoms
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Metamaterials vs. Photonic crystals

• Photonic crystals
– Scaling law:

– As long as materials parameters 
are the same

• Metamaterials
– No real scaling law
– Operation at the frequency where 

the «atoms» are resonant
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Electromagnetic properties and refractive index



Negative refraction

• Snell law is reversed !( ) ( )1 1 2 2sin sinn nθ θ=

1 1n = 2 0n > 2 0n <

1θ

2θ

1 1n =

1θ 2θ

• Negative refraction:



Negative refraction metamaterials



µ

ε

Frequency, ω

ε<0 and µ<0 in this range

• The refractive index is negative !n ε µ=

Negative refraction metamaterials
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Engineering the magnetic permeability – Split-ring resonator

• SRRs in R9 waveguide, TE10 excitation:

30 mm

1 mm

2 mm

• 5 µm thick Al foil
• Rohacell substrate (ε=1.07)
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From an individual structure to a metamaterial

• It is essential that the individual components produce a cooperative effect 

1 SRR
2 SRRs
3 SRRs
4 SRRs
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Split-ring resonator

• The magnetic field induces loop currents
• The electric field can also induce such currents through capacitor effects

E

Hk

• Perpendicular polarization:

• Measured transmission:

E

Hk

• Parallel polarization:
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From an individual structure to a metamaterial

• A metamaterial should be isotropic (like a piece of glass)
• This is rarely the case, often the building blocs are anisotropic

E

Hk

• Perpendicular polarization:

E

Hk

• Parallel polarization:
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From an individual structure to a metamaterial

• Several attempts have been made to produce isotropic structures

Optics Express vol. 12, p. 12348 (2010)
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Engineeering the negative permittivity – Plasma material

µ

ε

Frequency, ω

ε<0 and µ<0 in this range

• The optical index is negative !n ε µ=
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Engineeering the negative permittivity – Plasma material

2
theo 2

p 2( )
2 ln( / )

cf
a a rπ

=

J.B. Pendry et al. J. Phys. C vol 10, p. 4785 (1998)

Microwire array

r: radius

a: spacing
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Engineeering the negative permittivity – Plasma material

20 x 20 cm2 Rohacell plate
r=10 – 30 µm copper wires
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Engineeering the negative permittivity – Plasma material

a=5mm

fp=9.8

a

r=10µm
a=5mma=6mm

fp=8.2 fp=9.8

a=5mm a=4mma=6mm

fp=8.2 fp=9.8 fp=12.4
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Engineeering the negative permittivity – Plasma material

2
theo 2

p 2( )
2 ln( / )

cf
a a rπ

=

a

r=10µm

fp
t=9.6 fp

t=12.2fp
t=7.9

a=5mm a=4mma=6mm

fp=8.2 fp=9.8 fp=12.4
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Engineeering the negative permittivity – Plasma material

5 plates
10 plates
15 plates
20 plates

• A sample 4λ thick already behaves as an effective medium



Negative refraction metamaterials

• Snell law is reversed !( ) ( )1 1 2 2sin sinn nθ θ=

1 1n = 2 0n > 2 0n <

1θ

2θ

1 1n =

1θ 2θ

• Negative refraction:



Refractive index measurement

D.R. Smith et al.
University of California in San Diego (UCSD)



Refractive index measurement

D.R. Smith et al.
University of California in San Diego (UCSD)



Refractive index measurement

D.R. Smith et al.
University of California in San Diego (UCSD)
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Electromagnetic properties and refractive index
ε>0, µ>0 ε<0, µ<0
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Electromagnetic properties and refractive index
2
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Electromagnetic properties and refractive index

2Re[ ]zk

2Im[ ]zk
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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point source point image

Perfect lens



• Snell law is reversed !( ) ( )1 1 2 2sin sinn nθ θ=

1 1n = 2 0n > 2 0n <

1θ

2θ

1 1n =

1θ

• Negative refraction:

Negative refraction



Olivier J.F. Martin

Perfect lens

• How can we utilize this effect at optical frequencies ?
• µ<0 is very difficult to obtain
• however, ε<0 might be sufficient:

point source point image

d<<λ

ε<0
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Near-field perfect lens

• Every material is characterized by its permittivity ε and its permeability µ

2
2

2t
εµ ∂

∇ =
∂

EE

(+,+)(-,+)

(-,-) (+,-)

µ

ε

• Solutions of the wave equation:
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Near-field perfect lens

• How can we utilize this effect at optical frequencies ?
• Is ε<0 sufficient?

Silver (Johnson & Christy)

point source

point image
ε<0
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Near-field perfect lens

• Experimental realization: a silver 
superlens increases the resolution

N. Fang et al., Science vol. 308, p. 534 (2005).
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Near-field perfect lens in the infrared

• Using phonon polaritons, at λ=10.85µm
• 500 nm hole (λ/20) can be resolved

T. Taubner et al., Science vol. 313, p. 1595 (2006).



Olivier J.F. Martin
Nanophotonics and Metrology Laboratory

Week 11 – part 4

Selected Topics in Advanced Optics



Olivier J.F. Martin

Scaling up to higher frequencies

• As long as one remains in the microwave regime, one can simply scale the 
dimensions down:
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Scaling up to higher frequencies

• However, this simple geometrical 
scaling has limits when one wishes 
to go to optical frequencies

• In particular, intrinsic losses in the 
metal limit the electron motion at 
very high frequencies (plasmonic 
effects)
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Scaling up to higher frequencies

• It is also extremely difficult to produce a true 3D material for optical frequencies

N. Liu, Nature Materials vol. 7, 31 - 37 (2008)
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Scaling up to higher frequencies

• It is also extremely difficult to produce a true 3D material for optical frequencies

C.-C. Chu, Advanced Optical Materials vol. 3, p. 44 (2015)
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Scaling up to higher frequencies

• It is also extremely difficult to produce a true 3D material for optical frequencies

P.C. Wu, Scientific Report vol. 5, p. 9726 (2015)
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Scaling up to higher frequencies

• It is also extremely difficult to produce a true 3D material for optical frequencies

J. Valentine, Nature vol. 455, p. 376 (2008)
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Scaling up to higher frequencies

• Overall, moving to optical frequencies requires a completely new approach for 
producing "magnetic resonances"
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