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Some references

« W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications

(Springer, Heidelberg, 2009).

« S.A. Ramakrishna, and T.M. Grzegorczyk, Physics and Applications of Negative

refractive Index Materials (SPIE Press, Bellingham, 2009).
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Metamaterials

« When it interacts with electromagnetic radiation, any material behaves in a different
way depending on the relationship between the illumination wavelength and the
features size:

N~ d

« Only materials where 4 >> ) can be described in terms of homogeneous ¢, u or n, k.
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Metamaterials

A material made from natural « A metamaterial made from
atoms/molecules: nanostructures or «artificial atoms»
(meta-atoms)

« To behave as a homogeneous material described by macroscopic quantities such as
¢ and p, the wavelength must be much larger than the dimensions of the «atoms»
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Metamaterials vs. Photonic crystals

* Photonic crystals * Metamaterials
— Structures ~ A — Structures << A
— Very precise fabrication — Fabrication should not matter
— Interference-driven (homogeneization)

— Driven by the response of the
individual atoms
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Metamaterials vs. Photonic crystals

« Photonic crystals  Metamaterials
— Scaling law: — No real scaling law
a wa
Energy .u=—= _ i
gy 2 e Operation at the frequency where

the «atoms» are resonant
~  ka
Wave vector :k =—

a :period 27

— As long as materials parameters
are the same
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Electromagnetic properties and refractive index

SOVIET PHYSICS USPEKHI VOLUME 10, NUMBER 4 JANUARY-FEBRUARY 1968
338.30
THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOQUSLY NEGATIVE
VALUES OF € AND .

V. G. VESELAGO
P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.
Usp. Fiz. Nauk 92, 517—526 (July, 1964)

Crystals

e<0
p>0

Electrical Plasma
(Metals at optical

Semiconductors

Kk Evanescent waves
Negative Index H Magnetic Plasma
. (Not naturally occurring at
Materials optical wavelengths)
<0 >0
n<0 <0
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Negative refraction

* Snell law 7, sin(6,)=n,sin(6,) is reversed !

* Negative refraction:




Negative refraction metamaterials

Experimental Verification of a

Negative Index of Refraction
R. A. Shelby, D. R. Smith, S. Schultz

We present experimental scattering data at microwave frequencies on a struc-
tured metamaterial that exhibits a frequency band where the effective index
of refraction (n) is negative. The material consists of a two-dimensional array
of repeated unit cells of copper strips and split ring resenators on interlocking
strips of standard circuit board material. By measuring the scattering angle of
the transmitted beam through a prism fabricated from this material, we de-
termine the effective n, appropriate to Snell’s law. These experiments directly
confirm the predictions of Maxwell's equations that n is given by the negative
square root of £+ for the frequencies where both the permittivity (¢) and the
permeability (1) are nagative. Configurations of geometrical optical designs are
now possible that could not be realized by positive index materials.

www.sciencemagorg SCIENCE VOL 292 6 APRIL 2001




Negative refraction metamaterials

e<0 and u<0 in this range

* The refractive index n = \/E \/; is negative !



Engineering the magnetic permeability — Split-ring resonator

« 5 um thick Al foll
* Rohacell substrate (¢=1.07)

* SRRs in R9 waveguide, TE,, excitation:
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From an individual structure to a metamaterial

It is essential that the individual components produce a cooperative effect
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Split-ring resonator

 Parallel polarization:

= L

* Perpendicular polarization:

]

The magnetic field induces loop currents

 Measured transmission:

The electric field can also induce such currents through capacitor effects
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From an individual structure to a metamaterial

« A metamaterial should be isotropic (like a piece of glass)

This is rarely the case, often the building blocs are anisotropic

 Parallel polarization:
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» Perpendicular polarization:
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From an individual structure to a metamaterial

« Several attempts have been made to produce isotropic structures

Optics Express vol. 12, p. 12348 (20 tyier J.F. Martin



Engineeering the negative permittivity — Plasma material
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e<0 and u<0 in this range

* The optical index n = \/;\/; is negative !
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Engineeering the negative permittivity — Plasma material

Microwire array

r: radius
theoN2 c’
//(fp ) _277a21n(a/7")

J.B. Pendry et al. J. Phys. C vol 10, p. 4785 (1998)
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Engineeering the negative permittivity — Plasma material

20 x 20 cm? Rohacell plate

r=10 — 30 um copper wires

Olivier J.F. Martin



Engineeering the negative permittivity — Plasma material
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Engineeering the negative permittivity — Plasma material
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Engineeering the negative permittivity — Plasma material
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* A sample 4. thick already behaves as an effective medium
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Negative refraction metamaterials

* Snell law 7, sin(6,)=n,sin(6,) is reversed !

* Negative refraction:




Refractive index measurement

Microwave absorber

D.R. Smith et al.
University of California in San Diego (UCSD)



Refractive index measurement

— Teflon (n=+1.4)
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Refractive index measurement

— Teflon (n=+1.4)
— LHM (n=-2.7)
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Electromagnetic properties and refractive index
e>0, p>0 X e<0, u<0
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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Electromagnetic properties and refractive index
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Perfect lens

VOLUME 85, NUMBER 18 PHYSICAL REVIEW LETTERS 30 OCTOBER 2000

Negative Refraction Makes a Perfect Lens

I.B. Pendry

Condensed Matter Theary Group, The Blackett Labaratary, Imperial College, Loadan SW7 2EZ, United Kingdom
(Received 25 April 2000)

With a conventional lens sharpness of the image is always limited by the wavelength of light. An
unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus
all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such
“superlenses’ can be realized in the microwave band with current technology. Our simulations show that
a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab
of silver. This optical version resolves objects only a few nanometers across.

point source point image

FIG. 1. A negative refractive index medium bends light to a
negative angle with the surface normal. Light formerly diverging
from a point source is set in reverse and converges back to a
point. Released from the medium the light reaches a focus for
a second time.



Negative refraction

* Snell law 7, sin(6,)=n,sin(6,) is reversed !

* Negative refraction:




Perfect lens

 How can we utilize this effect at optical frequencies ?
« u<0 is very difficult to obtain

* however, €<0 might be sufficient:

d<<)
point SOWCW’[ image
e<0

Olivier J.F. Martin



Near-field perfect lens

Every material is characterized by its permittivity € and its permeability p

3OVIET PHYSICS USPEKHI VOLUME 10, NUMBER 4 JANUARY-FEBRUARY 1968
338.30

THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOQOUSLY NEGATIVE
VALUES OF € AND .

V. G. VESELAGO
P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.
Usp. Fiz. Nauk 92, 517-526 (July, 1964)

Solutions of the wave equation:
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Near-field perfect lens

How can we utilize this effect at optical frequencies ?

Is ¢<0 sufficient?

Silver (Johnson & Christy)

g’+ig”?

Permittivity €

300 400 500
Wavelength [nm]

point source

<0

point image
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Near-field perfect lens

 How can we utilize this effect at optical frequencies ?

« Absorption Kills the perfect lens effect !
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Near-field perfect lens

« Experimental realization: a silver
superlens increases the resolution
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N. Fang et al., Science vol. 308, p. 534 (2005). olivier J.F. Martin



Near-field perfect lens in the infrared

» Using phonon polaritons, at A=10.85um
« 500 nm hole (A/20) can be resolved
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T. Taubner et al., Science vol. 313, p. 1595 (2006).
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Scaling up to higher frequencies
* As long as one remains in the microwave regime, one can simply scale the

dimensions down:
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Scaling up to higher frequencies

However, this simple geometrical
scaling has limits when one wishes
to go to optical frequencies

In particular, intrinsic losses in the
metal limit the electron motion at
very high frequencies (plasmonic
effects)

Transmission, Reflection
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Scaling up to higher frequencies

It is also extremely difficult to produce a true 3D material for optical frequencies
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Scaling up to higher frequencies

« ltis also extremely difficult to produce a true 3D material for optical frequencies
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C.-C. Chu, Advanced Optical Materials vol. 3, p. 44 (2015) oiiier J.F. Martin



Scaling up to higher frequencies

« ltis also extremely difficult to produce a true 3D material for optical frequencies
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Scaling up to higher frequencies

« ltis also extremely difficult to produce a true 3D material for optical frequencies
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Scaling up to higher frequencies

« Overall, moving to optical frequencies requires a completely new approach for
producing "magnetic resonances"

Magnetic resonance frequency (THz)
Wavelength
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