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Module 2: Material properties and optical constants

« B.E.A. Saleh & M.C. Teich, Fundamental of photonics 2" Ed. (Wiley, Hoboken,
2007), Chapters 5 & 6.

e C.F.Bohren & D.R. Huffman, Absorption and scattering of light by small particles
(Wiley, New York, 1983).

« Optical Society of America, Handbook of optics,2" Ed. (Mc Grawn Hill, New York,
1995), Vol. Il, Chapter 33.
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Maxwell’s equations without sources

« This is the form generally used in optics

VxE(r,t):—aB(g:’t) V-D(r,t)=0
VxH(r,t)zaDg’t) V-B(r,t)=0

* The electric and magnetic properties of the medium are
described by the constitutive relations:

D=¢E+P=¢E+e,yE=¢,(1+ y)E=¢,6.E
B=puH+puM=pypuH P polarization density
M : magnetization density

« P and M depend on the applied fields E and H. This dependence describes the
response of the medium

» Although the matter is neutral, it does not mean that charges cannot respond to the
applied fields !
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Classical theories of optical constants

Two sets of quantities are used to describe the optical properties: the complex

refractive index N=n=n+ jk

and the complex dielectric function (or relative permittivity) &, =& + j&"

We assume non-magnetic materials (4, =1)

Both quantities are related:

g'=n" -k’

" =2nk
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Electromagnetic waves In dielectric media

Most phenomena relevant to optics concern dielectric materials (i.e. magnetic
effects can be neglected)

In response to an applied electric field E, a dielectric medium creates a polarization

density P:

This response characterizes the medium:

&0 P(r,0)
st S Medium ——

Linear (linear relation between E and P)
Nondispersive: instantaneous response
Homogeneous: relation between E and P independent of the position

|sotropic: relation between E and P independent of the direction of E, the vectors E and P
must be parallel

Spatially nondispersive: the relation between E and P is local; i.e. P is only influenced by
E at the same point (optically active materials are spatially dispersive).
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Linear, nondispersive, homogeneous, isotropic media

« P and E are parallel and proportional: L LA
P(r,t)=¢,yE(r,?) v - electric susceptibility

 Maxwell's equations become:
D(r,t)=¢,(1+ y)E(r,t)=¢,6,E(r,t) = €¢E(r,1)

OH(r,?)
VxE(r,t)=—pu > V-E(r)=0 ._,.
VxH(r,t):géEg’t) V-H(r,t)=0 HT R
« Wave equation for each field component:
1 0u . 1 c gl
Viu-—-—=0 the=—— d|n=So_
u 02 8t2 WITN ¢ \/a an n ) goluo
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Inhomogeneous media

E(r) P(r)
—_— x(r) .

* Inhomogeneous wave equations:

&, 1 82E(r,t)
Vx(VXE = —
o (VER)) == 5

1 O°H(r,¢)

Vx( al VxH(r,t)j:— :

g(r) c, ot

« Often the equation for the electric field is written:

] O'E(r,t)
(1) Vg(r)-E(r,t)j—/,tog(r) P 0

* For a medium varying slowly in space:

VZE(r,t)+V[

O"E(r,¢)
ot’

~

VE(r,t)— p,e (1)
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Anisotropic media T g
» Tensorial susceptibility and permittivity: R w2
P=>&x,E, D => ¢
J J
‘D [ e ) (E)
X XX Xy Xz X
Dy - gyx gyy gyZ . Ey
KDZ ) \ gzx gzy gzz ) \ Ez )

« E and D are not parallel !

* Most crystals (including semiconductors) are anisotropic
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Anisotropic media — Refractive indices

+ Permittivity tensor D =) ¢E,
j

« Can be represented by an ellipsoid (because it is a symmetric tensor of second

rank) /

D exx, =1 quadratic representation

&x; +&x; +&x, =1 inthe principal coordinate system
(¢, is diagonal)
Dl — ‘911E1 — ‘91E1 Dz — 822E2 — ‘92E2 D3 — ‘933E3 — ‘93E3

n =.&/¢&, n, =4/&,/&, n, =./&/&,

principal refractive indexes
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Anisotropic media — Refractive indices

 Biaxial crystal: n, %n,#n,

Uniaxial crystal: n=n,#n, |n =n,=n ordinaryindex
n, =n, extraordinary index

positive uniaxial: n, > n,
negative uniaxial:n, <n_
z-axis (n, for propagation along z) = optical axis

* |sotropic crystal: n, =n, =n,

. . 1
. Impermeability tensor: E=g¢'-D=—n-D
. . &
* |ndex ellipsoid: . %3}
Z XX, =1 ellipsoid of
- B revolution for a
2 2 - x2
X X, X ' iaxi
12 n 22 n :; ~1 < uniaxial crystal
noon o ' Olivier J.F. Martin




Anisotropic media — Propagation/polarization along the principal axes

 Linear polarized plane wave traveling along one of the principal axes (x, y,z) and
polarized parallel to another principal axis:

@ ® L x ©)  4xs
AK A_H AE
H K k
> > > > > >
E X2 E X2 i X2
X1 X] X]
Co / T Co / 9 Co / 13
A = N A?(j} !1 — 12 k(} A — N3 k()

« The polarization direction of the electric field determines the phase velocity

 These 3 waves keep their velocities and polarizations:
normal modes of the crystal
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Nonlinear media

* The relation between P and E is nonlinear.
« The superposition principle is not valid anymore !

« For a nonlinear, but homogeneous isotropic medium, one can derive the following
wave equation:

1 O’E(r,¢) 0P (r,t)

VZE(r, =
(r t) cg ot* Ho ot*

« For nondispersive, nonmagnetic media, the polarization
density can be written as a nonlinear function of E ;

for example:
P P=y(E)=aE+q,E’

1 0E(r,t)  0y(E)

c; ot e or’

VE(r,?)
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Nonlinear media

g \
=
Y
\\
+
+1
-~

« A nonlinear medium is characterized by a nonlinear relation between P and E

 The relation between P and E is linear when the field E is small, but becomes
nonlinear when E becomes comparable with the interatomic electric field
(E ~10°-108 V/m)

« Macroscopic description: P=Np (p: individual dipole moment induced by the applied
field); either N or p can be nonlinear

P=g)(yE+yPE +yVE +...)

* |n principle the higher order susceptibilities are tensors!
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Dispersive media

&)

The relation between P and E is

x(1)

P(r)

not instantaneous, it is dynamic and depends on the history of the system. The

polarization density can be expressed as a convolution:

+00

P(t)=¢, | x(t—t)E()dr

—00

The function gO;((t) represents the impulse response function

of the system.

Alternatively, one can go to Fourier space andlook at the transfer

function of the system: g,y (v).

A dispersive medium has a frequency - dependent susceptibility.

Every material is dispersive!
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Dispersive media

Waves of different wavelengths are refracted differently:

i

Refractive index

Ili {I.I'. R
The frequency-dependent speed of light produces different time delays for the
different spectral components (e.g. low frequency components travel faster than

high frequency ones):

Delayed & broadened

Original
pulse

pulse

R B

> Dispersive Medium ‘ J >
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Kramers-Kronig relations

Absorption and dispersion are related

A material with a frequency-dependent refractive index must be absorptive (and
conversely)... every material is dispersive!

Kramers-Kronig relate the real and imaginary parts of the susceptibility:

V

I -
Z(V)=z’(V)+JZ”(V) 2%%

2

S
SZ ds

Hilbert transform pair: 7'(v)and y"(v) are analytic in the upper complex plane
(related to causality)

The real part can be computed from the imaginary one and vice-versa
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Absorption
 Complex dielectric susceptibility: y=x'+jx"

Complex permittivity: & =¢,(1+ y)

VU + k*U =0 is still valid, but with a complex wavenumber:

k=w\lgu, =k,\1+y =k0\/1+)('+j7(”

1 ' .- on
k:ﬂ—]za:ko\/l+;( +Jjy

S . propagation constant of the wave (phase change rate)

a ;. absorption coefficient (if o < 0, then y= -« : gain)

The sign depends on the convention chosen for exp(+ jwt) L
a forward propagating wave: exp(+ jwt — jkr) will decay if > 0
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Transmission window

CaimUm fluonde CaFl

C  BuwwmfundeBa
e Quartz SiO2 3
I I — T— s e e b T 1
£ Il.quSﬂd silica Si02 __) %
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Gallium ammud: GaAs

e . —— — —
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0.1 02 03 04 05 07 1 2 I 4 5 7 10 20
Wavelength (um)

Olivier J.F. Martin



A very useful reference
http://refractiveindex.info

Optical constants of BK7

N-BKT (SCHOTT)

Wavelength: 0.5878 pm (0.3 —2.5) [ line select ] [ unit converter

. 1.56

Refractive index [il RefractiveIndex INFO
BT

N-BKT (SCHOTT)

n=15168 =

Extinction coefficient [il 154

k=9.7525e-9

Other optical constants c 1.52

Relative parmittivity (dielectric constants) [i] [i]
€'=2.3007
€" =2 9585e-8

1.51

Absorption coefficient [il1 [il

o= 0.0020857 cm™!
1.4%

Abbe number [il
Va=64.17 1.48

Abbe diagram 0.5 1 15 2

Wavelength, pm

ra
W

Chromatic dispersion [il
dn/dA = -0.041792 pm-! n k [Diogt [iogy [ ev

Group index [i1 [i]
ng=1.5414

Group velocity dispersion [i1 [i] [i]
GVD = T0.372 fs2/mm
0 =-383.92 ps/(nm km)

Dispersion formula [i]

2 1.03061212A7 0231792344 N 1.01046945*
n"—1=
A2 — 0.00600069867  A* — 0.0200179144  A* — 103.560653
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Lorentz model
(book by Bohren and Huffman)

%

2O~/

Now we assume the following time-dependence: exp(—jwt) /
The electrons and ions in matter are treated as simple harmonic oscnlators (springs)
The applied force is given by the local electric field

Equation of motion:
mX + bx + Kx = eE

Solution (oscillatory part): ( | )E
e/rm
X=—"—5"— w,=K/m y=blm
W, —W" — jyw

If »£0, the proportionality factor between x and E is complex
— the displacement and field are usually not in phase

z(e/m)EAeJ@ with 4= 12 @zarctanL 270) 2]
\/(wg_wz) +7/2(02 w, —
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Lorentz model

AMPLITUDE

PHASE

(b)

DIELECTRIC
FUNCTION

(a) OSCILLATOR

DISPLACEMENT

FREQUENCY

The amplitude is maximum for @ = @,and the width inversely proportional to ¥

At low frequency the oscillator is in-phase(@ = 0) and at high frequency it is out of
phase by 180°. The change occurs at @ = ®,

The induced dipole moment of a single oscillator is p =ex

For a collection of » oscillators per volume unit, the polarization is P = nex

2
@

p .2 2
P=—————¢E plasmafrequency: o, =ne” / me,
Wy — @O — Jyw

2

@,

2 2 .
Wy — O — jyw

Since P=¢,yE —>|¢. =1+y=1+
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Lorentz model

(d) REFLECTANCE

(c) REFRACTIVE
n
n=

w, FREQUENCY

The real part and the imaginary part of the permittivity are then

2 2 2 2
0} (0} -0

=1+ =1
ST T o) rre (@) + 70

A region of anomalous dispersion exists around the resonance

2 2
High f ency limits: (0
I frequency imi (0> 0, &=1-—- 5”:7/;7
@ 0,
a)2 g" 7/0)2
n=+g =1- 5 k=—=—
20 2 2w
2 JOXD,
Low frequency limits: (0)<<a)o) g=1+—=5 &'=—F
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Multiple oscillator model

« The Lorentz model can be extended for a broad range of materials by considering
several resonances (i.e. several oscillators):

« & represents the effect of all oscillators at high frequency, if
all oscillators are included in the summation, then ¢_=1
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Multiple oscillator model

« MgO crystal: reflectance data are well fitted using two oscillators (in this spectral
region)

100

M
|l
gh
+
S,
3

(2]
o

O t i 1 i 3 . . n
200 400 600 800 1000 1200

WAVENUMBER  {cm™)

'y

g, =3.01
w, =40lcm™ y,=7.62cm” @ /@] =6.6

w,=640cm” y,=1024cm™ @),/ w, =0.045
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Multiple oscillator model

« The permittivity of hemoglobin depends on the oxygen level

(a)
1.82
= 1.8
2%}
[ =
1.78 L J
500 600 700 800 200
A (nm)
b
o 0.04
_ 003
E 002
0.01F
300 &00 700 a0 200
A I:I'II'I‘I}
FIGi. 2. (a) Keal and (b) imag inary parts of the dieglectric function of Hb at a
concentration of 23 mbM. in the oxyvgenated (f,=1) and deoxvgenated
(f; = ) states.

JOURNAL OF APPLIED PHYSICS 110, 044701 (2011)

Strongly coupled bio-plasmonic system: Application to oxygen sensing

Shourya Dutta-Gupta and Olivier J. F. Martin®
Nanophotonics and Metrology Laboratory (NAM), EPFL, Lausanne (CH - 1015), Switzerland Olivier J.F. Martin



Multiple oscillator model

« A simple model with three oscillators reproduces this permittivity very well, but the
oscillators are different for the oxygenated and de-oxygenated states:

i~ ~
e — !Fl !II"_'
Gy — g T ] ] : T ¥ ] :
Wy — ¥ = fm¥ Vp — 1 = pl

!’F?.

—a—

- -

Vs — = — Ifpal/

TABLE L. Valuesof the various parameters used to fit the permittivity of Hb.

Vor e Ea3 Hor Yoz Yoz Aor Ao Ao

(THz) (THz) (THz) (THz) (THz) (" THz) (nm) {nm (nm)
Oxyeenated Hb 235 15.4 =87.0 325 15.0 0.0 5341.0 377.0 415.0
Deoxygenated Hb 355 3.0 64,5 6l 10.0 20.0 5560 SR6.0 4340

' — y ' e i j— y lll '
Ceff T .-ir-.l Loy l I _-ir- rJedeaxy -

JOURNAL OF APPLIED PHYSICS 110, 044701 (2011)

Strongly coupled bio-plasmonic system: Application to oxygen sensing

Shourya Dutta-Gupta and Olivier J. F. Martin®
Nanophotonics and Metrology Laboratory (NAM), EPFL, Lausanne (CH - 1013), Switzerland Olivier J.F. Martin



Drude model (for metals)

« The spring constant is setto zero K =0

As aresult: o, =0

2

0,

g, =1-— £

w + jyw
2 2
/ wp " Cf)p}/

g =1- > : g = , >
W +y a)(a) + v )

* The real part of the permittivity is negative !

« The following website gathers parameters for the Drude model for many metals:
http://www.wave-scattering.com/drudefit.nhtml

« For one metal, there are often different possible fits, depending on the wavelength
range of interest !
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Plasmonic metals

« Coinage metals (noble metals, group 11): Cu, Ag, Au

« The plasma frequency determines the optical range where plasmonic effects can be
excited

* Further plasmonic metals include Al, W, Pt

Im( &) by Johnson, Christie and Drude

Re(e) by Johnson, Christie and Drude 6

.

Au
Ag
Dd
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Spectral line shapes

 Itis often useful to fit a function on the spectral response of a system

* There are three such main functions

 Lorentzian: .

L(X): 1 > x:p_po
1+ x

—— Gaussian
—— Lorentzian

w=FWHM

N[N

Intensity
=

PN

wikipedia w/2

Gaussian:

G(.X) _ e—(ln 2)x°

030 ——

0.25

0.00

V(x;a,y)z_[

—00

o0

L 1 " L "

* Voigt:

G(x5o)L(x—x%y)dx'

i 1 " L 1 i 1 1 L L

0.20
0.15 -
0.10

0.05 -

o,y = half-widths

——o0=153 y=0.00
——o0=130 y=0.50

c=1.00 y=1.00
——0=0.00 y=1.80

-10

0 5
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Spectral line shapes

* In most cases, on can safely use a Lorentzian curve

« A complex spectrum can be decomposed into a collection of simple lines

o =

The spectrum is the sum of two Lorentzians

Intensity
o

b=

L

wikipedia

[a)
1.82

500 G600 F00 800 S00

300 a0 FO00 200 200

FIG. 2. (a) Real and (b) imag inary parts of the diglectric function of Hb at a
concentration of 25 mM, m the oxygenated (f,=1) and deoxygenated
(f; = () states.
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