Selected Topics in Advanced Optics

Week 3 – part 1

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

Module 2: Material properties and optical constants

- B.E.A. Saleh & M.C. Teich, <u>Fundamental of photonics</u> 2nd Ed. (Wiley, Hoboken, 2007), Chapters 5 & 6.
- C.F. Bohren & D.R. Huffman, <u>Absorption and scattering of light by small particles</u> (Wiley, New York, 1983).
- Optical Society of America, <u>Handbook of optics</u>, 2nd Ed. (Mc Grawn Hill, New York, 1995), Vol. II, Chapter 33.

Maxwell's equations without sources

This is the form generally used in optics

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t} \qquad \nabla \cdot \mathbf{D}(\mathbf{r}, t) = 0$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t} \qquad \nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0$$

 The electric and magnetic properties of the medium are described by the constitutive relations:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} + \varepsilon_0 \chi \mathbf{E} = \varepsilon_0 (1 + \chi) \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M} = \mu_0 \mu_r \mathbf{H}$$
 P: polarization density

M: magnetization density

- P and M depend on the applied fields E and H. This dependence describes the response of the medium
- Although the matter is neutral, it does not mean that charges cannot respond to the applied fields!

Classical theories of optical constants

- Two sets of quantities are used to describe the optical properties: the complex refractive index $N = \tilde{n} = n + jk$ and the complex dielectric function (or relative permittivity) $\mathcal{E}_r = \mathcal{E}' + j\mathcal{E}''$
- We assume non-magnetic materials $(\mu_r = 1)$
- Both quantities are related:

$$\varepsilon' = n^2 - k^2$$
$$\varepsilon'' = 2nk$$

$$n = \sqrt{\frac{\sqrt{\varepsilon'^2 + \varepsilon''^2} + \varepsilon'}{2}}$$

$$k = \sqrt{\frac{\sqrt{\varepsilon'^2 + \varepsilon''^2} - \varepsilon'}{2}}$$

Selected Topics in Advanced Optics

Week 3 – part 2

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

Electromagnetic waves in dielectric media

 Most phenomena relevant to optics concern dielectric materials (i.e. magnetic effects can be neglected)

 In response to an applied electric field E, a dielectric medium creates a polarization density P:

 $\mathcal{E}(\mathbf{r},t)$

- This response characterizes the medium:
 - Linear (linear relation between E and P)
 - Nondispersive: instantaneous response
 - Homogeneous: relation between E and P independent of the position
 - Isotropic: relation between E and P independent of the direction of E, the vectors E and P must be parallel
 - Spatially nondispersive: the relation between E and P is local; i.e. P is only influenced by
 E at the same point (optically active materials are spatially dispersive).

 $\mathcal{P}(\mathbf{r},t)$

Medium

Linear, nondispersive, homogeneous, isotropic media

P and E are parallel and proportional:

$$\mathbf{P}(\mathbf{r},t) = \varepsilon_0 \chi \mathbf{E}(\mathbf{r},t)$$

 $\mathbf{P}(\mathbf{r},t) = \varepsilon_0 \chi \mathbf{E}(\mathbf{r},t)$ χ : electric susceptibility

Maxwell's equations become:

$$\mathbf{D}(\mathbf{r},t) = \varepsilon_0 (1+\chi) \mathbf{E}(\mathbf{r},t) = \varepsilon_0 \varepsilon_r \mathbf{E}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$$

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} \qquad \nabla \cdot \mathbf{E}(\mathbf{r},t) = 0$$

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

$$\nabla \times \mathbf{H}(\mathbf{r},t) = \varepsilon \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} \qquad \nabla \cdot \mathbf{H}(\mathbf{r},t) = 0$$

$$\mu = \mu_0 \mu_r$$

Wave equation for each field component:

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 \qquad \text{with } c = \frac{1}{\sqrt{\varepsilon \mu}} \quad \text{and} \quad n = \frac{c_0}{c} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}}$$

Olivier J.F. Martin

Inhomogeneous media

 $\mathcal{E}(\mathbf{r})$ $\chi(\mathbf{r})$ $\mathcal{P}(\mathbf{r})$

Inhomogeneous wave equations:

$$\frac{\varepsilon_0}{\varepsilon(\mathbf{r})} \nabla \times (\nabla \times \mathbf{E}(\mathbf{r}, t)) = -\frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}(\mathbf{r}, t)}{\partial t^2}$$
$$\nabla \times \left(\frac{\varepsilon_0}{\varepsilon(\mathbf{r})} \nabla \times \mathbf{H}(\mathbf{r}, t)\right) = -\frac{1}{c_0^2} \frac{\partial^2 \mathbf{H}(\mathbf{r}, t)}{\partial t^2}$$

Often the equation for the electric field is written:

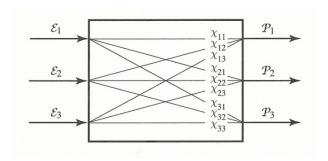
$$\nabla^{2}\mathbf{E}(\mathbf{r},t) + \nabla\left(\frac{1}{\varepsilon(\mathbf{r})}\nabla\varepsilon(\mathbf{r})\cdot\mathbf{E}(\mathbf{r},t)\right) - \mu_{0}\varepsilon(\mathbf{r})\frac{\partial^{2}\mathbf{E}(\mathbf{r},t)}{\partial t^{2}} = 0$$

For a medium varying slowly in space:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \mu_0 \varepsilon(\mathbf{r}) \frac{\partial^2 \mathbf{E}(\mathbf{r}, t)}{\partial t^2} \simeq 0$$

Anisotropic media

Tensorial susceptibility and permittivity:



$$P_{i} = \sum_{j} \varepsilon_{0} \chi_{ij} E_{j} \qquad D_{i} = \sum_{j} \varepsilon_{ij} E_{j}$$

$$\begin{pmatrix} D_{x} \\ D_{y} \\ D_{z} \end{pmatrix} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix} \cdot \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix}$$

- E and D are not parallel!
- Most crystals (including semiconductors) are anisotropic

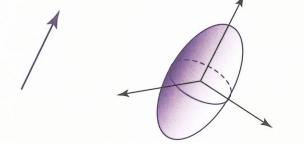
Anisotropic media – Refractive indices

Permittivity tensor

$$D_i = \sum_j \varepsilon_{ij} E_j$$

Can be represented by an ellipsoid (because it is a symmetric tensor of second

rank)



$$\sum_{ij} \varepsilon_{ij} x_i x_j = 1$$

quadratic representation

$$\varepsilon_1 x_1^2 + \varepsilon_2 x_2^2 + \varepsilon_3 x_3^2 = 1$$
 in the principal coordinate system (ε_{ii} is diagonal)

$$D_1 = \varepsilon_{11} E_1 = \varepsilon_1 E_1$$
 $D_2 = \varepsilon_{22} E_2 = \varepsilon_2 E_2$ $D_3 = \varepsilon_{33} E_3 = \varepsilon_3 E_3$

$$n_1 = \sqrt{\varepsilon_1 / \varepsilon_0}$$
 $n_2 = \sqrt{\varepsilon_2 / \varepsilon_0}$ $n_3 = \sqrt{\varepsilon_3 / \varepsilon_0}$ principal refractive indexes

Anisotropic media – Refractive indices

• Biaxial crystal: $n_1 \neq n_2 \neq n_3$

• Uniaxial crystal:
$$n_1 = n_2 \neq n_3$$

 $n_1 = n_2 \neq n_3$ $n_1 = n_2 = n_o$ ordinary index $n_3 = n_e$ extraordinary index

positive uniaxial: $n_e > n_o$

negative uniaxial: $n_e < n_o$

z - axis $(n_o$ for propagation along z) = optical axis

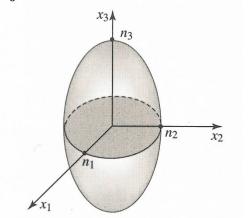
• Isotropic crystal: $n_1 = n_2 = n_3$

• Impermeability tensor:
$$\mathbf{E} = \boldsymbol{\varepsilon}^{-1} \cdot \mathbf{D} = \frac{1}{\varepsilon_0} \boldsymbol{\eta} \cdot \mathbf{D}$$

Index ellipsoid:

$$\sum_{ij} \eta_{ij} x_i x_j = 1$$

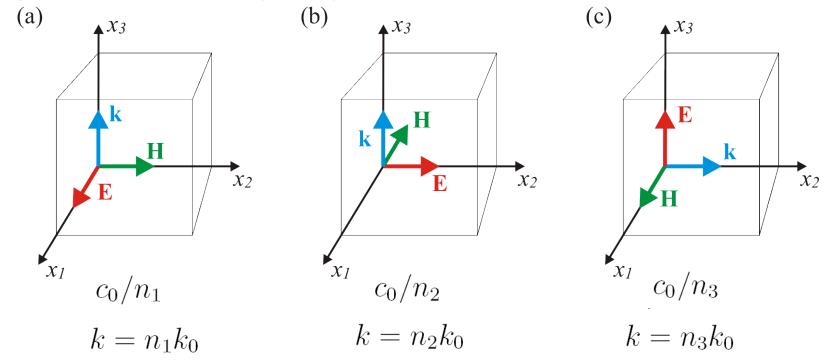
$$\frac{x_1^2}{n_1^2} + \frac{x_2^2}{n_2^2} + \frac{x_3^2}{n_3^2} = 1$$



ellipsoid of revolution for a uniaxial crystal

Anisotropic media – Propagation/polarization along the principal axes

• Linear polarized plane wave traveling along one of the principal axes (x, y, z) and polarized parallel to another principal axis:



- The polarization direction of the electric field determines the phase velocity
- These 3 waves keep their velocities and polarizations:
 normal modes of the crystal

Nonlinear media

- The relation between P and E is nonlinear.
- The superposition principle is not valid anymore!
- For a nonlinear, but homogeneous isotropic medium, one can derive the following wave equation:

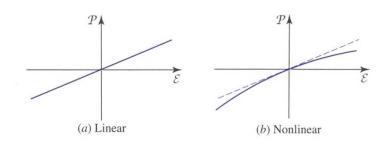
$$\nabla^2 \mathbf{E}(\mathbf{r},t) - \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}(\mathbf{r},t)}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}(\mathbf{r},t)}{\partial t^2}$$

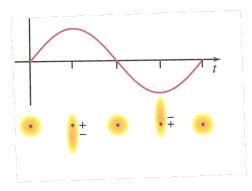
• For nondispersive, nonmagnetic media, the polarization density can be written as a nonlinear function of **E**; for example:

$$\mathbf{P} = \mathbf{\psi}(\mathbf{E}) = a_1 \mathbf{E} + a_2 \mathbf{E}^2$$

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}(\mathbf{r}, t)}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{\psi}(\mathbf{E})}{\partial t^2}$$

Nonlinear media





- A nonlinear medium is characterized by a nonlinear relation between P and E
- The relation between **P** and **E** is linear when the field **E** is small, but becomes nonlinear when **E** becomes comparable with the interatomic electric field $(\mathbf{E} \sim 10^5 10^8 \, \mathrm{V/m})$
- Macroscopic description: P=Np (p: individual dipole moment induced by the applied field); either N or p can be nonlinear

$$P = \varepsilon_0 \left(\chi E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \ldots \right)$$

In principle the higher order susceptibilities are tensors!

Selected Topics in Advanced Optics

Week 3 – part 3

Dispersive media

 $\mathcal{E}(t)$ $\mathcal{T}(t)$

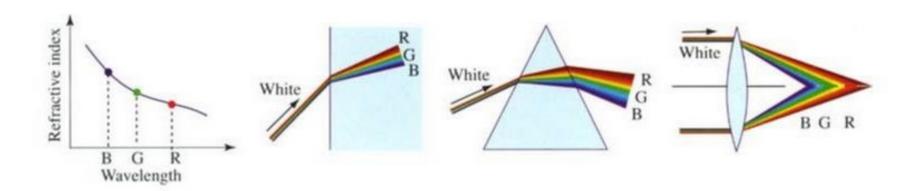
• The relation between **P** and **E** is not instantaneous, it is dynamic and depends on the history of the system. The polarization density can be expressed as a convolution:

$$\mathbf{P}(t) = \varepsilon_0 \int_{-\infty}^{+\infty} \chi(t - t') \mathbf{E}(t') dt'$$

- The function $\varepsilon_0 \chi(t)$ represents the impulse response function of the system.
- Alternatively, one can go to Fourier space and look at the transfer function of the system: $\varepsilon_0 \chi(\nu)$.
- A dispersive medium has a frequency dependent susceptibility.
- Every material is dispersive!

Dispersive media

Waves of different wavelengths are refracted differently:



 The frequency-dependent speed of light produces different time delays for the different spectral components (e.g. low frequency components travel faster than high frequency ones):

Kramers-Kronig relations

- Absorption and dispersion are related
- A material with a frequency-dependent refractive index must be absorptive (and conversely)... every material is dispersive!
- Kramers-Kronig relate the real and imaginary parts of the susceptibility:

$$\chi(v) = \chi'(v) + j\chi''(v)$$

$$\chi''(v) = \frac{2}{\pi} \int_0^\infty \frac{s\chi''(s)}{s^2 - v^2} ds$$

$$\chi''(v) = \frac{2}{\pi} \int_0^\infty \frac{v\chi'(s)}{v^2 - s^2} ds$$

- Hilbert transform pair: $\chi'(\nu)$ and $\chi''(\nu)$ are analytic in the upper complex plane (related to causality)
- The real part can be computed from the imaginary one and vice-versa

Absorption

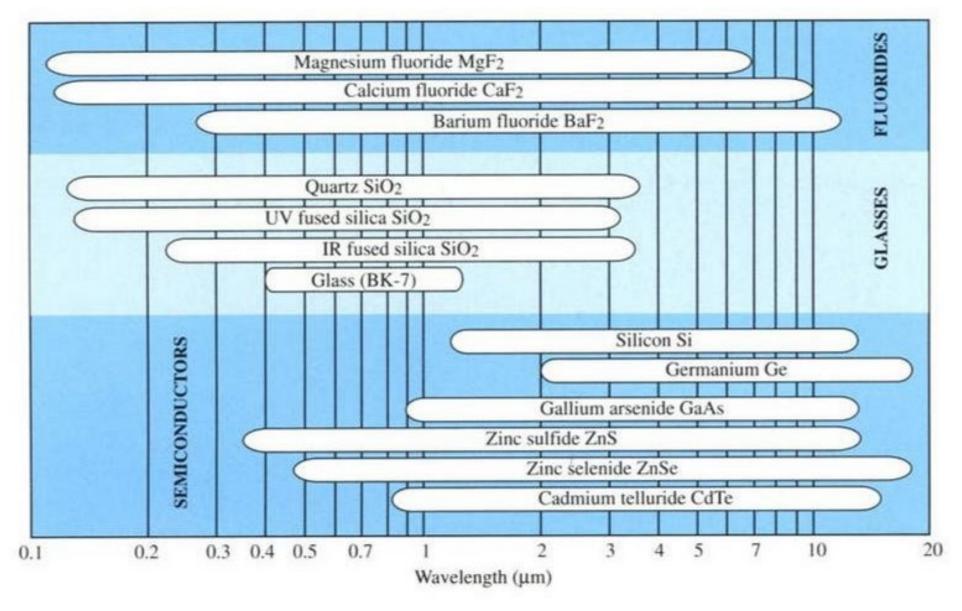
- Complex dielectric susceptibility: $\chi = \chi' + j\chi''$
- Complex permittivity: $\varepsilon = \varepsilon_0 (1 + \chi)$
- $\nabla^2 U + k^2 U = 0$ is still valid, but with a complex wavenumber:

$$k = \omega \sqrt{\varepsilon \mu_0} = k_0 \sqrt{1 + \chi} = k_0 \sqrt{1 + \chi' + j \chi''}$$

$$k = \beta - j\frac{1}{2}\alpha = k_0\sqrt{1 + \chi' + j\chi''}$$

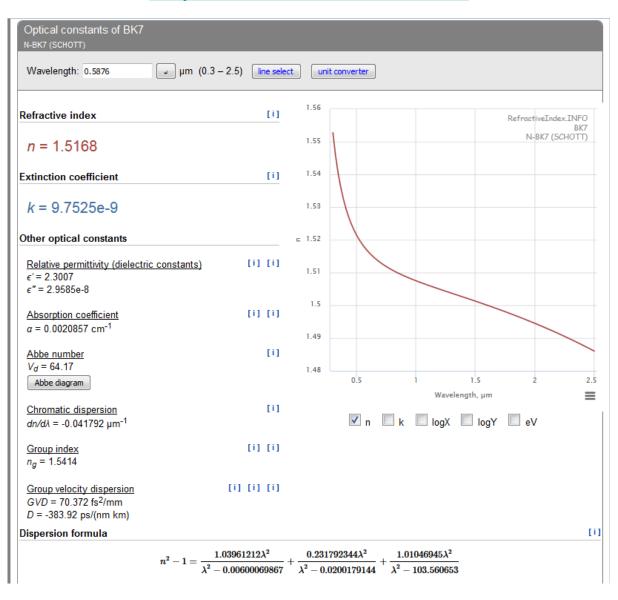
- eta: propagation constant of the wave (phase change rate)
- α : absorption coefficient (if α < 0, then γ = - α : gain)
- The sign depends on the convention chosen for $\exp(+j\omega t)$. a forward propagating wave: $\exp(+j\omega t - jkr)$ will decay if $\alpha > 0$

Transmission window



A very useful reference

http://refractiveindex.info



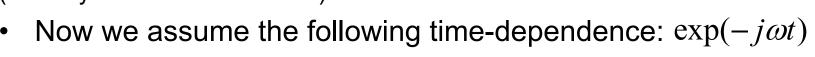
Selected Topics in Advanced Optics

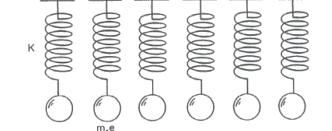
Week 3 – part 4

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

Lorentz model

(book by Bohren and Huffman)





- The electrons and ions in matter are treated as simple harmonic oscillators (springs)
- The applied force is given by the local electric field
- Equation of motion:

$$m\ddot{\mathbf{x}} + b\dot{\mathbf{x}} + K\mathbf{x} = e\mathbf{E}$$

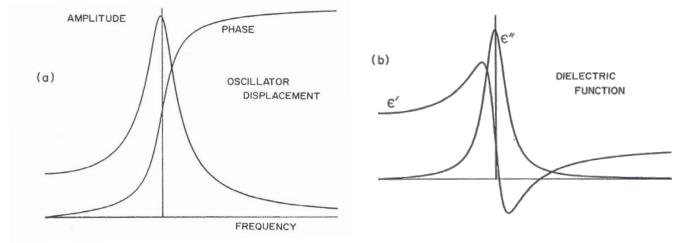
Solution (oscillatory part):

$$\mathbf{x} = \frac{(e/m)\mathbf{E}}{\omega_0^2 - \omega^2 - j\gamma\omega} \qquad \omega_0^2 = K/m \quad \gamma = b/m$$

- If $\gamma \neq 0$, the proportionality factor between x and E is complex
 - → the displacement and field are usually not in phase

$$\mathbf{x} = (e/m)\mathbf{E}Ae^{j\Theta} \text{ with } A = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}} \quad \Theta = \arctan\left(\frac{\gamma\omega}{\omega_0^2 - \omega^2}\right)$$

Lorentz model

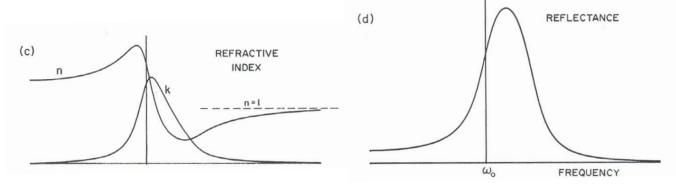


- The amplitude is maximum for $\omega = \omega_0$ and the width inversely proportional to γ
- At low frequency the oscillator is in-phase $(\Theta = 0)$ and at high frequency it is out of phase by 180°. The change occurs at $\omega \simeq \omega_0$
- The induced dipole moment of a single oscillator is $\mathbf{p} = e\mathbf{x}$
- For a collection of n oscillators per volume unit, the polarization is P = nex

$$\mathbf{P} = \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\gamma\omega} \varepsilon_0 \mathbf{E} \quad \text{plasma frequency : } \omega_p^2 = ne^2 / m\varepsilon_0$$

• Since
$$\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$$
 \rightarrow $\varepsilon_r = 1 + \chi = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\gamma\omega}$

Lorentz model



The real part and the imaginary part of the permittivity are then

$$\varepsilon' = 1 + \chi' = 1 + \frac{\omega_p^2 \left(\omega_0^2 - \omega^2\right)}{\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2 \omega^2} \qquad \varepsilon'' = \chi'' = \frac{\omega_p^2 \gamma \omega}{\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2 \omega^2}$$

- A region of anomalous dispersion exists around the resonance
- High frequency limits:

$$(\omega \gg \omega_0)$$
 $\varepsilon' \simeq 1 - \frac{\omega_p^2}{\omega^2}$ $\varepsilon'' \simeq \frac{\gamma \omega_p^2}{\omega^3}$

$$n \simeq \sqrt{\varepsilon'} \simeq 1 - \frac{\omega_p^2}{2\omega^2}$$
 $k \simeq \frac{\varepsilon''}{2} \simeq \frac{\gamma \omega_p^2}{2\omega^3}$

• Low frequency limits:

$$(\omega \ll \omega_0)$$
 $\varepsilon' \simeq 1 + \frac{\omega_p^2}{\omega_0^2}$ $\varepsilon'' \simeq \frac{\gamma \omega_p^2 \omega}{\omega_0^4}$

 The Lorentz model can be extended for a broad range of materials by considering several resonances (i.e. several oscillators):

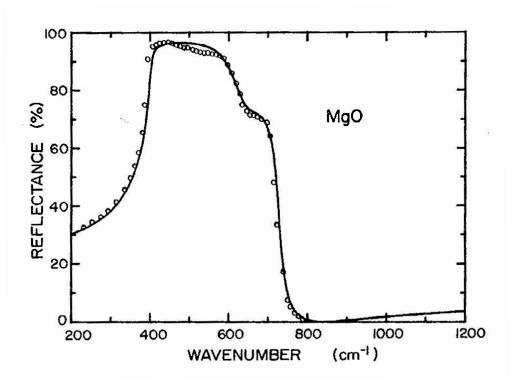
$$\varepsilon_r = \varepsilon_{\infty} + \sum_j \frac{\omega_{pj}^2}{\omega_j^2 - \omega^2 - j\gamma_j \omega}$$

• ε_{∞} represents the effect of all oscillators at high frequency, if all oscillators are included in the summation, then $\varepsilon_{\infty} = 1$

MgO crystal: reflectance data are well fitted using two oscillators (in this spectral

region)

$$\varepsilon_{r} = \varepsilon_{\infty} + \sum_{j} \frac{\omega_{pj}^{2}}{\omega_{j}^{2} - \omega^{2} - j\gamma_{j}\omega}$$



$$\varepsilon_{\infty} = 3.01$$

$$\omega_{1} = 401 \,\text{cm}^{-1} \quad \gamma_{1} = 7.62 \,\text{cm}^{-1} \quad \omega_{p1}^{2} / \omega_{1}^{2} = 6.6$$

$$\omega_{2} = 640 \,\text{cm}^{-1} \quad \gamma_{2} = 102.4 \,\text{cm}^{-1} \quad \omega_{p2}^{2} / \omega_{2}^{2} = 0.045$$

The permittivity of hemoglobin depends on the oxygen level

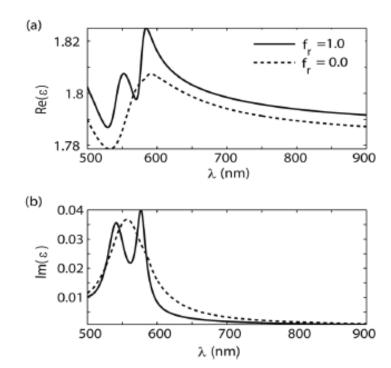


FIG. 2. (a) Real and (b) imaginary parts of the dielectric function of Hb at a concentration of 25 mM, in the oxygenated ($f_r = 1$) and deoxygenated ($f_r = 0$) states.

JOURNAL OF APPLIED PHYSICS 110, 044701 (2011)

Strongly coupled bio-plasmonic system: Application to oxygen sensing

 A simple model with three oscillators reproduces this permittivity very well, but the oscillators are different for the oxygenated and de-oxygenated states:

$$\varepsilon_{\alpha} = \varepsilon_{w} + \frac{\nu_{p1}^{2}}{\nu_{01}^{2} - \nu^{2} - i\gamma_{01}\nu} + \frac{\nu_{p2}^{2}}{\nu_{02}^{2} - \nu^{2} - i\gamma_{02}\nu} + \frac{\nu_{p3}^{2}}{\nu_{03}^{2} - \nu^{2} - i\gamma_{03}\nu},$$

TABLE I. Values of the various parameters used to fit the permittivity of Hb.

	$ \frac{\nu_{pl}}{(\text{THz})} $	ν _{p2} (THz)	$ \frac{\nu_{p3}}{(\text{THz})} $	γοι (THz)	γο2 (THz)	γοз (THz)	λ ₀₁ (nm)	λ ₀₂ (nm)	λ ₀₃ (nm)
Oxygenated Hb	23.5	15.8	87.0	32.5	15.0	39.0	541.0	577.0	415.0
Deoxygenated Hb	35.5	3.0	64.5	66.0	10.0	20.0	556.0	586.0	434.0

$$\varepsilon_{eff} = f_r \varepsilon_{oxy} + (1 - f_r) \varepsilon_{deoxy}.$$

JOURNAL OF APPLIED PHYSICS 110, 044701 (2011)

Strongly coupled bio-plasmonic system: Application to oxygen sensing

Drude model (for metals)

- The spring constant is set to zero K = 0
- As a result: $\omega_0 = 0$

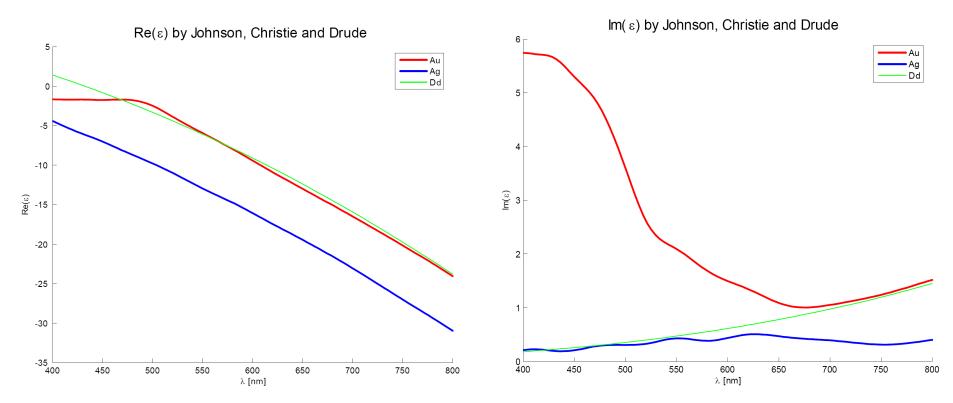
$$\varepsilon_r = 1 - \frac{\omega_p^2}{\omega^2 + j\gamma\omega}$$

$$\varepsilon' = 1 - \frac{\omega_p^2}{\omega^2 + \gamma^2} \qquad \varepsilon'' = \frac{\omega_p^2 \gamma}{\omega(\omega^2 + \gamma^2)}$$

- The real part of the permittivity is negative!
- The following website gathers parameters for the Drude model for many metals: http://www.wave-scattering.com/drudefit.html
- For one metal, there are often different possible fits, depending on the wavelength range of interest!

Plasmonic metals

- Coinage metals (noble metals, group 11): Cu, Ag, Au
- The plasma frequency determines the optical range where plasmonic effects can be excited
- Further plasmonic metals include Al, W, Pt



Selected Topics in Advanced Optics

Week 3 – part 5

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

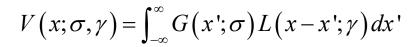
Spectral line shapes

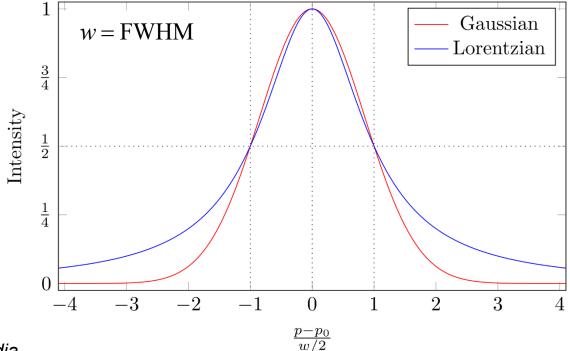
- It is often useful to fit a function on the spectral response of a system
- There are three such main functions
 - Lorentzian:

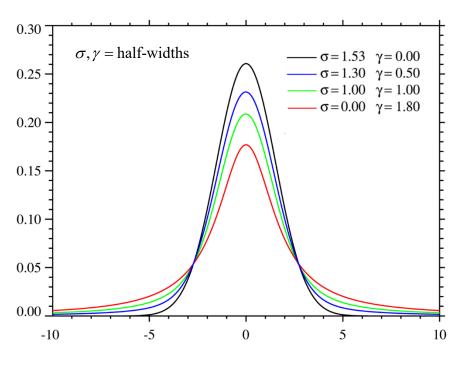
Gaussian:

$$L(x) = \frac{1}{1+x^2}$$
 $x = \frac{p-p_0}{w/2}$

$$G(x) = e^{-(\ln 2)x^2}$$





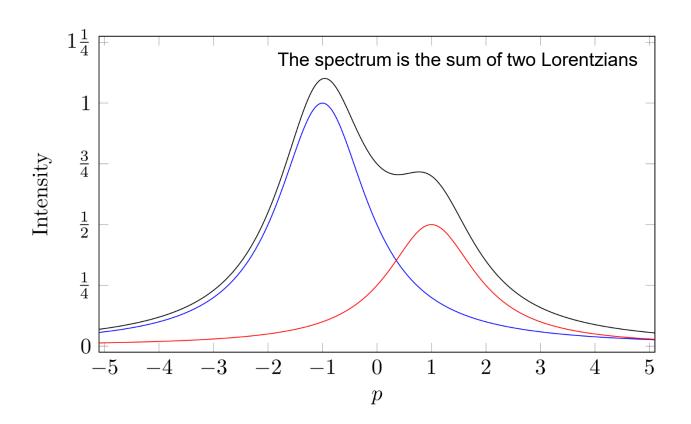


wikipedia

Olivier J.F. Martin

Spectral line shapes

- In most cases, on can safely use a Lorentzian curve
- A complex spectrum can be decomposed into a collection of simple lines



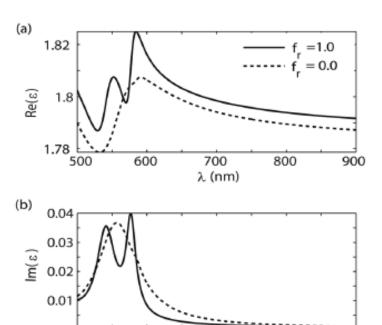


FIG. 2. (a) Real and (b) imaginary parts of the dielectric function of Hb at a concentration of 25 mM, in the oxygenated $(f_r = 1)$ and deoxygenated $(f_r = 0)$ states.

700 λ (nm)

600

500

900

800