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Module 2: Material properties and optical constants

• B.E.A. Saleh & M.C. Teich, Fundamental of photonics 2nd Ed. (Wiley, Hoboken, 
2007), Chapters 5 & 6.

• C.F. Bohren & D.R. Huffman, Absorption and scattering of light by small particles
(Wiley, New York, 1983).

• Optical Society of America, Handbook of optics,2nd Ed. (Mc Grawn Hill, New York, 
1995), Vol. II, Chapter 33.
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Maxwell’s equations without sources

• This is the form generally used in optics 
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• The electric and magnetic properties of the medium are 
described by the constitutive relations:

• P and M depend on the applied fields E and H. This dependence describes the 
response of the medium

• Although the matter is neutral, it does not mean that charges cannot respond to the 
applied fields !

P
M

: polarization density
: magnetization density
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Classical theories of optical constants

• Two sets of quantities are used to describe the optical properties: the complex
refractive index
and the complex dielectric function (or relative permittivity)

• We assume non-magnetic materials
• Both quantities are related:
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• Most phenomena relevant to optics concern dielectric materials (i.e. magnetic 
effects can be neglected)

• In response to an applied electric field E, a dielectric medium creates a polarization 
density P:

Electromagnetic waves in dielectric media

• This response characterizes the medium:
– Linear (linear relation between E and P)
– Nondispersive: instantaneous response
– Homogeneous: relation between E and P independent of the position
– Isotropic: relation between E and P independent of the direction of E, the vectors E and P

must be parallel
– Spatially nondispersive: the relation between E and P is local; i.e. P is only influenced by 

E at the same point (optically active materials are spatially dispersive).
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Linear, nondispersive, homogeneous, isotropic media

• P and E are parallel and proportional:

( ) ( )0, ,t tε χ χ=P r E r : electric susceptibility

( ) ( ) ( ) ( ) ( )0 0, 1 , , ,rt t t tε χ ε ε ε= + = =D r E r E r E r

• Maxwell’s equations become:
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• Wave equation for each field component:
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Inhomogeneous media

• Inhomogeneous wave equations:
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• Often the equation for the electric field is written:
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• For a medium varying slowly in space:
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Anisotropic media

• Tensorial susceptibility and permittivity:

0i ij j i ij j
j j

P E D Eε χ ε= =∑ ∑

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E
D E
D E

ε ε ε
ε ε ε
ε ε ε

    
    = ⋅    

        

• E and D are not parallel !
• Most crystals (including semiconductors) are anisotropic
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Anisotropic media – Refractive indices

• Permittivity tensor

• Can be represented by an ellipsoid (because it is a symmetric tensor of second 
rank)
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Anisotropic media – Refractive indices

• Biaxial crystal:
• Uniaxial crystal:
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Anisotropic media – Propagation/polarization along the principal axes

• Linear polarized plane wave traveling along one of the principal axes              and 
polarized parallel to another principal axis:

( , , )x y z

• The polarization direction of the electric field determines the phase velocity
• These 3 waves keep their velocities and polarizations: 

normal modes of the crystal
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Nonlinear media

• The relation between P and E is nonlinear.
• The superposition principle is not valid anymore !
• For a nonlinear, but homogeneous isotropic medium, one can derive the following 

wave equation:
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• For nondispersive, nonmagnetic media, the polarization 
density can be written as a nonlinear function of E ;
for example:
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Nonlinear media

• A nonlinear medium is characterized by a nonlinear relation between P and E
• The relation between P and E is linear when the field E is small, but becomes 

nonlinear when E becomes comparable with the interatomic electric field 
(E ~ 105 – 108 V/m)

• Macroscopic description: P=Np (p: individual dipole moment induced by the applied 
field); either N or p can be nonlinear

• In principle the higher order susceptibilities are tensors!
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Dispersive media

• The relation between P and E is
not instantaneous, it is dynamic and depends on the history of the system. The 
polarization density can be expressed as a convolution:
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dium has a frequency - dependent susceptibility.
  Every material is dispersive!
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Dispersive media

• Waves of different wavelengths are refracted differently:

• The frequency-dependent speed of light produces different time delays for the 
different spectral components (e.g. low frequency components travel faster than 
high frequency ones):
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Kramers-Kronig relations

• Absorption and dispersion are related
• A material with a frequency-dependent refractive index must be absorptive (and 

conversely)… every material is dispersive!
• Kramers-Kronig relate the real and imaginary parts of the susceptibility:
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• Hilbert transform pair:                           are analytic in the upper complex plane 
(related to causality)

• The real part can be computed from the imaginary one and vice-versa
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Absorption

• Complex dielectric susceptibility:
• Complex permittivity:
• is still valid, but with a complex wavenumber:

jχ χ χ′ ′′= +
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• β : propagation constant of the wave (phase change rate)
• α : absorption coefficient (if α < 0, then γ = -α : gain)
• The sign depends on the convention chosen for

a forward propagating wave:        will decay if α > 0
exp( )j tω+

exp( )j t jkrω+ −
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Transmission window
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A very useful reference
http://refractiveindex.info

http://refractiveindex.info/
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Lorentz model
(book by Bohren and Huffman)

• Now we assume the following time-dependence: 
• The electrons and ions in matter are treated as simple harmonic oscillators (springs)
• The applied force is given by the local electric field
• Equation of motion:

m b K e+ + =x x x E 

• Solution (oscillatory part):
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→ the displacement and field are usually not in phase
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Lorentz model

• The amplitude is maximum for           and the width inversely proportional to
• At low frequency the oscillator is in-phase             and at high frequency it is out of 

phase by 180o. The change occurs at
• The induced dipole moment of a single oscillator is
• For a collection of n oscillators per volume unit, the polarization is
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Lorentz model

• The real part and the imaginary part of the permittivity are then

• A region of anomalous dispersion exists around the resonance
• High frequency limits:
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Multiple oscillator model

• The Lorentz model can be extended for a broad range of materials by considering 
several resonances (i.e. several oscillators):

• represents the effect of all oscillators at high frequency, if 
all oscillators are included in the summation, then
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Multiple oscillator model

• MgO crystal: reflectance data are well fitted using two oscillators (in this spectral 
region)
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Multiple oscillator model

• The permittivity of hemoglobin depends on the oxygen level
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Multiple oscillator model

• A simple model with three oscillators reproduces this permittivity very well, but the 
oscillators are different for the oxygenated and de-oxygenated states:



Olivier J.F. Martin

Drude model (for metals)

• The spring constant is set to zero
• As a result:
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• The real part of the permittivity is negative !
• The following website gathers parameters for the Drude model for many metals:

http://www.wave-scattering.com/drudefit.html
• For one metal, there are often different possible fits, depending on the wavelength 

range of interest ! 
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Plasmonic metals

• Coinage metals (noble metals, group 11): Cu, Ag, Au
• The plasma frequency determines the optical range where plasmonic effects can be 

excited
• Further plasmonic metals include Al, W, Pt
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Spectral line shapes

• It is often useful to fit a function on the spectral response of a system
• There are three such main functions

• Lorentzian:
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Spectral line shapes

• In most cases, on can safely use a Lorentzian curve
• A complex spectrum can be decomposed into a collection of simple lines

wikipedia

The spectrum is the sum of two Lorentzians
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