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Module 3: Light scattering

• C.F. Bohren & D.R. Huffman, Absorption and scattering of light by small particles
(Wiley, New York, 1983).

• H.C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).
• F. Mühlig et al., «Multipole analysis of meta-atoms», Metamaterials vol. 5, p. 64 

(2011).
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Light scattering determines our perception of the world
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Scattering experiment

• When an object is positioned on an incident beam, the amount of measured energy 
decreases (extinction)

• Power flow across a closed surface around the scatterer:

• and corresponds to the power absorbed in the object 
(if energy is generated in the object, then                )

Detector

abs rA
W dA= − ⋅∫ S e

0absW >
0absW <

• Extinction = scattering + absorption by the particle
(plus possibly absorption in the surrounding medium) 
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Scattering experiment

• From the electromagnetic field around the object, we can obtain the Poynting vector
• The time-averaged Poynting vector can be written outside the object as sum of 

incident and scattered fields, as well as the interaction between the two (extinction):

i scat ext= + +S S S S

{ }*1 Re
2i i i= ×S E H { }*1 Re

2scat scat scat= ×S E H

{ }* *1 Re
2ext i scat scat i= × + ×S E H E H
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Scattering experiment

• Combining these different components of the Poynting vector, we define the 
different energy flows:

• And rewrite the power absorbed by the object:

• For a non-absorbing surronding medium (           ), we finally have:

• The extinction, absorption and scattering power flows can therefore be calculated from 
the electromagnetic fields.

i i rA
W dA= − ⋅∫ S e scat scat rA

W dA= ⋅∫ S e ext ext rA
W dA= − ⋅∫ S e

abs i scat extW W W W= − +

ext abs scatW W W= +
0iW =



Olivier J.F. Martin

Cross sections

• To obtain characteristic parameters that do not depend on the illumination, one 
normalizes with the incident irradiance     (intensity of the incident electromagnetic 
field): 

• These cross sections have the dimension of an area !
• By dividing the cross section by the geometrical cross-sectional area G (               

for a sphere) projected onto a plane perpendicular to the incident beam, one 
obtains the efficiencies:

• The efficiency indicates the effective optical size of the particle, compared to its 
real, geometrical size.

iI

ext abs scat
ext abs scat

i i i

W W WC C C
I I I

= = =

2G aπ=

ext abs scat
ext abs scat

C C CQ Q Q
G G G

= = =
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Cross sections

• The efficiency indicates the effective optical size of the particle, compared to its real, 
geometrical size

• The effective size can be significantly larger than the physical size
• This can be understood in terms of electromagnetic field distribution:
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Cross sections

• Often an object appears larger than its physical size!

Sphere, λ0=1 µm, n=1.5 (λeff=0.66 µm)

scatQ

Radius (µm)
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Cross sections

• This of course depends on the relative dimension of the object, compared to the 
wavelength

Sphere, radius=1 µm, n=1.5

scatQ

Wavelength (nm)
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Differential cross section

• For a given object, light is scattered differently in different directions, one defines the 
differential cross section                     into a solid angle        , such that 

• The differential cross section provides the amount of light scattered into a specific 
direction and is similar to the cross section known in atomic physics.

dΩ

( ) ( )2 2
2

2 20 0 4

,
scatC d d d

k k
π π

π

θ φ
φ θ

Ω
= = Ω∫ ∫ ∫

X X

( ) 2 2/ kΩX



Olivier J.F. Martin
Nanophotonics and Metrology Laboratory

Week 4 – part 2

Selected Topics in Advanced Optics





Olivier J.F. Martin
Nanophotonics and Metrology Laboratory

Week 4 – part 3

Selected Topics in Advanced Optics



Olivier J.F. Martin

Scattering by a sphere – Mie scattering and VSH

• The Mie theory provides an exact solution for light scattering by a sphere.
• This solution relies on vector spherical harmonics (VSH): solutions of Helmholtz 

equation in spherical coordinates.
• It mainly consists in solving Maxwell's equations in spherical coordinates inside and 

outside the sphere and imposing the boundary conditions (continuity of E and H
parallel and D and B perpendicular) at the interface between the sphere and the 
surrounding medium.

• Expressions are simple in spherical
coordinates, but all axes are not
equal!

Wolfram Mathworks
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Scattering by a sphere – Mie scattering and VSH

• Assuming a                   time dependence, and a linear, homogeneous, isotropic 
medium, Maxwell's equations give us:

• We obtain solutions for these equations in spherical 
coordinates using a generating scalar function in 
the form:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2

0 0

0 0

k

k

j jωε ωε

∇ + = ∇⋅ =

∇ + = ∇⋅ =

∇× = ∇× = −

E r E r E r

H r H r H r

E r H r H r E r

exp( )j tω−

( ) ( ) ( ) ( ), ,r R rψ θ φ θ φ= Θ Φ
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Scattering by a sphere – Mie scattering and VSH

• From the scalar generating function and the position vector r, one defines vectorial 
harmonic functions:

• Which are divergence free and fulfil:

• The generating function satisfies the wave equation in spherical coordinates:

( ) ( )( ) ( ) ( )
k

ψ
∇×

= ∇× =
M r

M r r r N r

( )
( )
( ) ( )

0

0

k

∇⋅ =

∇ ⋅ =

∇× =

M r

N r

N r M r

2
2 2

2 2 2 2 2

1 1 1sin 0
sin sin

r k
r r r r r

ψ ψ ψθ ψ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂   + + + =   ∂ ∂ ∂ ∂ ∂   
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Scattering by a sphere – Mie scattering and VSH

• Finally, one obtains the scattered field as

• With

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)
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Scattering by a sphere – Mie scattering and VSH

• Radial dependence: Hankel functions of the first kind
• Angular dependence: Legendre functions
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Scattering by a sphere – Mie scattering and VSH

• Expansion coefficients for a given scatterer are obtained by projecting the field on 
the VSH:

• Scattering cross-section:

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)
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Scattering by a sphere – Cartesian multipoles

• One is used to represent the scattering in Cartesian coordinates (not in spherical 
coordinates)

• VSH → Cartesian multipoles
• Only orders ±1 of VSH are required for Cartesian dipoles:

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)
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Scattering by a sphere – Cartesian multipoles

• Cartesian quadrupoles:

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)
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Scattering by a sphere – Cartesian multipoles

• Cartesian quadrupoles:

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)
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Link between VSH and Cartesian multipoles

• Not all axes are equal!

Far-field

Far-field

Charges 
distribution 

Far-field radiation 
pattern VSH decomposition
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Some Cartesian multipoles

• The radiation pattern can be understood by visualizing the corresponding moving 
charges
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The larger the scatterer, the higher the required multipoles

r =
 1

50
 n

m
r =

 2
0 

nm

Dipole term Quadrupole term Sum

Dielectric sphere n=1.55, λ=600 nm
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Scattering by particles small compared to the wavelength

• We define two parameters:
– Size parameter

– Relative refractive index

• We look at spheres with a small size parameter:

• Then we can approximate the Hankel functions with their power series (see e.g. M. 
Abramowitz and A. Stegun, Pocketbook of mathematical functions (Harri Deutsch, 
Thun, 1984))

0

2 1 1nax ka and m xπ
λ

= =  

0

2 nax ka π
λ

= =

1 1k nm
k n

= =

(n: index of surrounding)

(n1: index of the sphere)
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Scattering by particles small compared to the wavelength

• Finally, one obtains the scattered intensity       for a sphere illuminated with incident 
intensity    :

scatI

iI

( )
24 6 2

2
4 2 2

8 1 1 cos
2scat i

na mI I
r m

π θ
λ

−
= +

+
Rayleigh scattering
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Scattering by a small particle in the electrostatic limit

• If the particle is small, it makes sense to assume that 
the incident field is homogeneous

• One can then use an electrostatic approach and the 
formulae simplify dramatically:

• When extinction is 
dominated by absorption, its 
spectrum goes with 1/λ

• When it is dominated by 
scattering, its spectrum 
goes with 1/λ4
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Scattering by a small particle in the electrostatic limit

• The previous approach is very useful for light scattering by a dipole (two oscillating 
charges +q and –q) with dipole moment

• Potential at a point P (assuming d→0 but qd remains constant):

• By comparison, we can show that the field scattered by a small
sphere is similar to that of a dipole with dipole moment:

• Where we introduce the sphere polarizability:

z zp qd= =p e e

3 2
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Scattering by a small particle in the electrostatic limit

• The polarizability completely characterizes the sphere and can be used to define the 
cross sections:

• These equations are valid if scattering is small compared to absorption; as a 
consequence using the optical theorem:

{ }
4

2

Im

6

ext

scat

C k

kC

α

α
π

=

=

{ }Imabs ext scat extC C C C k α= − =
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Light scattering by a slab

• When measuring a (very large) homogeneous slab, one considers the reflected (R), 
absorbed (A) and transmitted (T) light intensities

• Optical theorem in that case:
• In general one cannot measure absorption, but it can be deduced from R and T :

1A R T+ + =

1A R T= − −

T
R

A
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