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Module 3: Light scattering

e C.F.Bohren & D.R. Huffman, Absorption and scattering of light by small particles
(Wiley, New York, 1983).

« H.C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).

« F. Muhlig et al., «Multipole analysis of meta-atoms», Metamaterials vol. 5, p. 64
(2011).
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Light scattering determines our perception of the world

Olivier J.F. Martin



Scattering experiment

« When an object is positioned on an incident beam, the amount of measured energy

decreases (extinction)
x  Extinction = scattering + absorption by the particle

e (plus possibly absorption in the surrounding medium)

NE— -~~~ IMAGINARY
A -~ S~_ SPHERE

— 2 \ \

|
- | — Detector
——s. L e i

-
e —-

« Power flow across a closed surface around the scatterer:

W oo :_IAdAS'er

« W, >0 and corresponds to the power absorbed in the object

(if energy is generated in the object, then W, <0)
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Scattering experiment

From the electromagnetic field around the object, we can obtain the Poynting vector

The time-averaged Poynting vector can be written outside the object as sum of
incident and scattered fields, as well as the interaction between the two (extinction):
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Sext — %Re {El X Hzcat
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Scattering experiment

« Combining these different components of the Poynting vector, we define the
different energy flows:

W, == das, e, = | aas ——| d4s,,

scat Scat r ext

* And rewrite the power absorbed by the object:

w, =W —-W

abs scat

+ W

ext

* For a non-absorbing surronding medium (17, =0), we finally have:
w =W, +W

ext abs scat

« The extinction, absorption and scattering power flows can therefore be calculated from
the electromagnetic fields.
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Cross sections

« To obtain characteristic parameters that do not depend on the illumination, one
normalizes with the incident irradiance [, (intensity of the incident electromagnetic
field):

C — VVext — I/Vabs — chat
ext abs scat
1. 1 I

l l l

* These cross sections have the dimension of an area !

- By dividing the cross section by the geometrical cross-sectional area G ( G = 7a’
for a sphere) projected onto a plane perpendicular to the incident beam, one
obtains the efficiencies:

_ Cext _ Cabs _ Cscat
Qext o G Qabs G Qscat G

« The efficiency indicates the effective optical size of the particle, compared to its
real, geometrical size.
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Cross sections

« The efficiency indicates the effective optical size of the particle, compared to its real,
geometrical size

* The effective size can be significantly larger than the physical size

« This can be understood in terms of electromagnetic field distribution:
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Cross sections

« Often an object appears larger than its physical size!

Sphere, A,=1 um, n=1.5 (A,4~0.66 um)
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Cross sections

« This of course depends on the relative dimension of the object, compared to the
wavelength

Sphere, radius=1 um, n=1.5
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Differential cross section

« For a given object, light is scattered differently in different directions, one defines the
differential cross section ‘X(Q)‘z / k* into a solid angle dQ , such that
2 2
o om0 [X(0:9) X(0)
Co = |, 4] dO =], 40—

« The differential cross section provides the amount of light scattered into a specific
direction and is similar to the cross section known in atomic physics.
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Scattering by a sphere — Mie scattering and VSH

The Mie theory provides an exact solution for light scattering by a sphere.

This solution relies on vector spherical harmonics (VSH): solutions of Helmholtz
equation in spherical coordinates.

It mainly consists in solving Maxwell's equations in spherical coordinates inside and
outside the sphere and imposing the boundary conditions (continuity of E and H
parallel and D and B perpendicular) at the interface between the sphere and the
surrounding medium.

Expressions are simple in spherical
coordinates, but all axes are not
equal!

Wolfram Mathworks
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Scattering by a sphere — Mie scattering and VSH

« Assuming a exp(—jwt) time dependence, and a linear, homogeneous, isotropic
medium, Maxwell's equations give us:

B FEE=0  VE()=0
W) ER(D=0 V(=0
VxE(r):]a)gH(r) VxH(r)=—jwcE(r)

« We obtain solutions for these equations in spherical
coordinates using a generating scalar function in
the form:

v (r.60.4)=R(r)0(0)d(¢)
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Scattering by a sphere — Mie scattering and VSH

* From the scalar generating function and the position vector r, one defines vectorial
harmonic functions:

VxM|(r
M(r)=Vx(rw(r)) N(r)= p (r)
« Which are divergence free and fulfil:
V-M(r)=0
V-N(r)=0

VxN(r)=kM(r)
« The generating function satisfies the wave equation in spherical coordinates:

2
Li(,ﬂ 81//)+ - 1 g (s n95§”j .12 g gZ+k2w:0
or ) r-sinf 06 00 ) r’sin’ 0 0¢
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Scattering by a sphere — Mie scattering and VSH

* Finally, one obtains the scattered field as

o0 n
5
Esca(r, 0, ¢) = Z Z k™ EpmlanmNpm (1, 0, @) Eo| et am—) (n —m)!
i Fom = qﬁr (en + 1)(11 +m)!’

+ b Mum (1, 6, @)].
« With
Mum = [f:’l’mH(COS 0)ig — Tpum (COS 9)'{,@]

X hfq] }(kr) exp(ime),
/(IJ kr

Nym = n(n + 1)P(cos 6) ' k{ exp(imy)i,
iy

+ [-{”m[COS 0)ig + 177, (COS Qﬁﬁﬂ}

l d (1) :
X EE [rh” (kr)] exp(ime).

S. Mihlig, Metamaterials vol. 5, p. 64 (2011) Olivier J.F. Martin



Scattering by a sphere — Mie scattering and VSH

« Radial dependence: Hankel functions of the first kind hL”‘

* Angular dependence: Legendre functions 1, (cos ) = -

P (cos 0),

sin @ "

T,m(COS 0) = iP’”(cos 0)
nm — d@ n .

=1 m=-1 1=1 m=0 1=1 m=1

ox
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Scattering by a sphere — Mie scattering and VSH

« Expansion coefficients for a given scatterer are obtained by projecting the field on
the VSH: 2n o,
/ f E(r = (.-')N:m(f‘ = a)sin 6.d6 dy
_Jo_ Jo

Unm = 2w pm
/ / N (r = @)|” sin 6.d6 dy
0 0

2 pm
/ / E(r = ci)l\’l;’;m(r = a)sin 6d6 dy
__JO 0

bpm = P
/ / |I\'(Inm(r = E?)F sin 6 d6 {f(,{)
0 0
« Scattering cross-section:

o0 n
Csca = kiz Z n(n + l)(|”um|2 + |bnm|2)-

n=|m=—n

S. Mihlig, Metamaterials vol. 5, p. 64 (2011) Olivier J.F. Martin



Scattering by a sphere — Cartesian multipoles

* One is used to represent the scattering in Cartesian coordinates (not in spherical
coordinates)

 VSH — Cartesian multipoles

* Only orders £1 of VSH are required for Cartesian dipoles:

Py [ (a1) —aj—1) [ my\ (b1 —b1-1)
p=| "y | =Cy| ilar +ai-1) m=|my, | =cCo| i(b11 +b1-1)

Co = /671 /cZok

S. Mihlig, Metamaterials vol. 5, p. 64 (2011) Olivier J.F. Martin



Scattering by a sphere — Cartesian multipoles

 (Cartesian quadrupoles:

/Qxx Q«T}" sz\
Q= Q yx Q}"}" Qyz
\ O Qzy Qz /

| i6 , \
t(azr +ay —2) — ——axo (az—2—az») i(az,—1 —az,)
Q=D | iv6
(a2,—2 —az> —i(ax2+ax—2) — 5 42,0 (az2,—1 +az 1)
\ i(a2,—1 — a1 (a2, —1 +az1) iv/6as /

S. Mihlig, Metamaterials vol. 5, p. 64 (2011) Olivier J.F. Martin



Scattering by a sphere — Cartesian multipoles

 (Cartesian quadrupoles:
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S. Mihlig, Metamaterials vol. 5, p. 64 (2011) Olivier J.F. Martin



Link between VSH and Cartesian multipoles

« Not all axes are equal!

Charges Far-field radiation
distribution pattern

. Far-field
—

VSH decomposition

Far-field

»
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Some Cartesian multipoles

« The radiation pattern can be understood by visualizing the corresponding moving
charges
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The larger the scatterer, the higher the required multipoles

Dipole term
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Scattering by particles small compared to the wavelength

 We define two parameters:
_ 27na

— Size parameter x=ka= (n: index of surrounding)
0
, . k n .
— Relative refractive index m = ; = — (n;: index of the sphere)
n

 We look at spheres with a small size parameter:

27wna

x=ka= <1 and |m|x<<1

0
« Then we can approximate the Hankel functions with their power series (see e.g. M.
Abramowitz and A. Stegun, Pocketbook of mathematical functions (Harri Deutsch,
Thun, 1984))
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Scattering by particles small compared to the wavelength

Finally, one obtains the scattered intensity /

intensity /. :

cat

scat

4 6
_87z na

m* —1

A4

m* +2

2

(1 +cos’ H)Ii

Rayleigh scattering

for a sphere illuminated with incident
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Scattering by a small particle in the electrostatic limit

If the particle is small, it makes sense to assume that

the incident field is homogeneous

One can then use an electrostatic approach and the

formulae simplify dramatically:

E —&
Q. = 4xlm{ L_m
2&
81 + m
2
Qs = §x4 ©1
a3 +2¢&
81 m
Qext — Qabs + Qscat

|

When extinction is
dominated by absorption, its
spectrum goes with 1/A

When it is dominated by
scattering, its spectrum
goes with 1/A4
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Scattering by a small particle in the electrostatic limit

The previous approach is very useful for light scattering by a dipole (two oscillating

charges +q and —q) with dipole moment p=pe_=gqde.

Potential at a point P (assuming d—0 but ¢gd remains constant):

p_ PT :pcosé?

3 2
dre v 4dme, r

By comparison, we can show that the field scattered by a small
sphere is similar to that of a dipole with dipole moment:

3 81—8m

p=4r¢ a E,=¢ ok,

& +2,

3 81—8m

Where we introduce the sphere polarizability: o =4ra 5
6‘1+ &,
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Scattering by a small particle in the electrostatic limit

« The polarizability completely characterizes the sphere and can be used to define the
Cross sections:
C,.=kIm{a}

. 2
scat 677 |a|

* These equations are valid if scattering is small compared to absorption; as a
consequence using the optical theorem:

Cabs = Cext _ C

scat

=C,, =kIm{a}

Olivier J.F. Martin



Light scattering by a slab

 When measuring a (very large) homogeneous slab, one considers the reflected (R),
absorbed (4) and transmitted (7) light intensities

* Optical theorem inthatcase: A+R+T7T =1

* In general one cannot measure absorption, but it can be deduced from R and T

A=1-R-T
T
R

Olivier J.F. Martin
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