Selected Topics in Advanced Optics

Week 4 – part 1

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

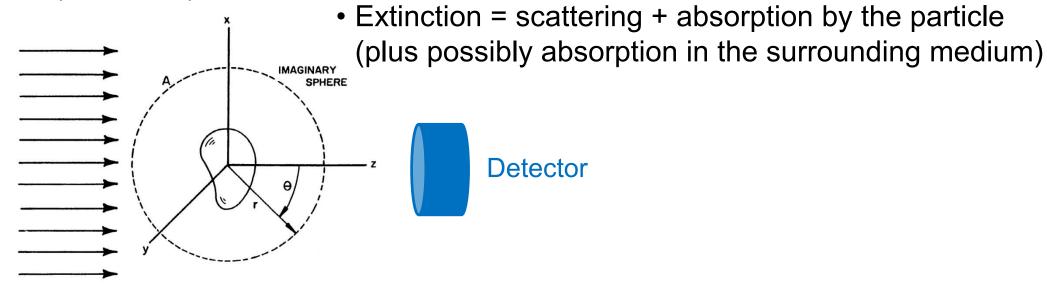
Module 3: Light scattering

- C.F. Bohren & D.R. Huffman, <u>Absorption and scattering of light by small particles</u> (Wiley, New York, 1983).
- H.C. van de Hulst, <u>Light scattering by small particles</u> (Dover, New York, 1981).
- F. Mühlig et al., «Multipole analysis of meta-atoms», Metamaterials vol. 5, p. 64 (2011).

Light scattering determines our perception of the world

Scattering experiment

 When an object is positioned on an incident beam, the amount of measured energy decreases (extinction)



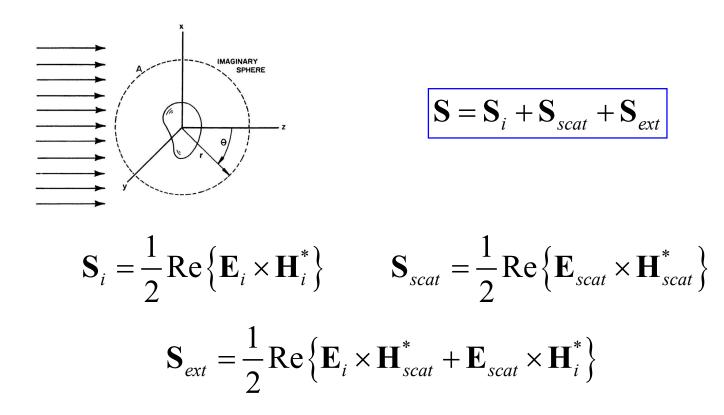
Power flow across a closed surface around the scatterer:

$$W_{abs} = -\int_{A} dA \, \mathbf{S} \cdot \mathbf{e}_{r}$$

• $W_{abs} > 0$ and corresponds to the power absorbed in the object (if energy is generated in the object, then $W_{abs} < 0$)

Scattering experiment

- From the electromagnetic field around the object, we can obtain the Poynting vector
- The time-averaged Poynting vector can be written outside the object as sum of incident and scattered fields, as well as the interaction between the two (extinction):



Scattering experiment

 Combining these different components of the Poynting vector, we define the different energy flows:

$$W_i = -\int_A dA \, \mathbf{S}_i \cdot \mathbf{e}_r \qquad W_{scat} = \int_A dA \, \mathbf{S}_{scat} \cdot \mathbf{e}_r \qquad W_{ext} = -\int_A dA \, \mathbf{S}_{ext} \cdot \mathbf{e}_r$$

And rewrite the power absorbed by the object:

$$W_{abs} = W_i - W_{scat} + W_{ext}$$

• For a non-absorbing surronding medium ($W_i = 0$), we finally have:

$$W_{ext} = W_{abs} + W_{scat}$$

 The extinction, absorption and scattering power flows can therefore be calculated from the electromagnetic fields.

• To obtain characteristic parameters that do not depend on the illumination, one normalizes with the incident irradiance I_i (intensity of the incident electromagnetic field):

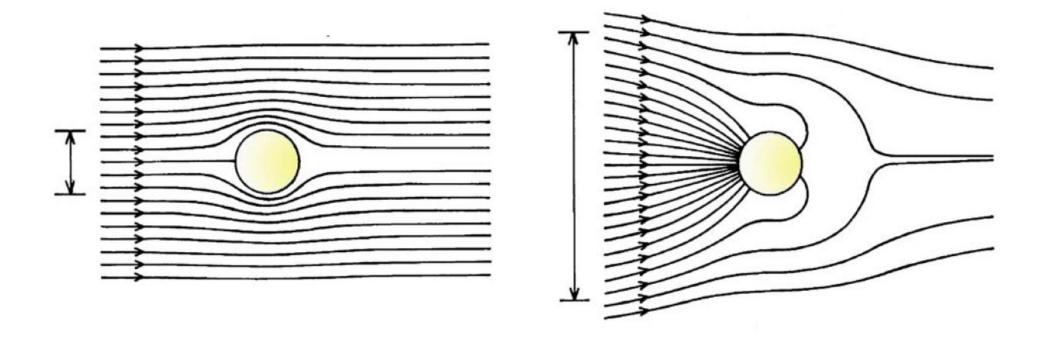
$$C_{ext} = \frac{W_{ext}}{I_i}$$
 $C_{abs} = \frac{W_{abs}}{I_i}$ $C_{scat} = \frac{W_{scat}}{I_i}$

- These cross sections have the dimension of an area!
- By dividing the cross section by the geometrical cross-sectional area G ($G = \pi a^2$ for a sphere) projected onto a plane perpendicular to the incident beam, one obtains the efficiencies:

$$Q_{ext} = \frac{C_{ext}}{G}$$
 $Q_{abs} = \frac{C_{abs}}{G}$ $Q_{scat} = \frac{C_{scat}}{G}$

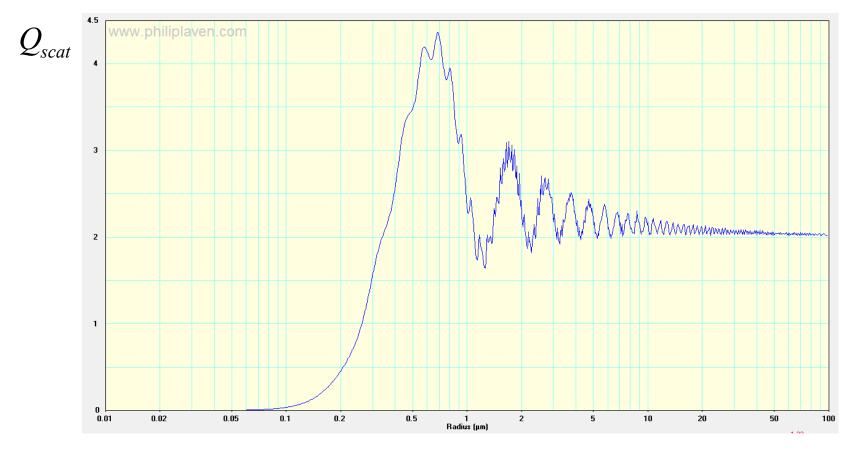
 The efficiency indicates the effective optical size of the particle, compared to its real, geometrical size.

- The efficiency indicates the effective optical size of the particle, compared to its real, geometrical size
- The effective size can be significantly larger than the physical size
- This can be understood in terms of electromagnetic field distribution:



Often an object appears larger than its physical size!

Sphere, λ_0 =1 μ m, n=1.5 (λ_{eff} =0.66 μ m)



Radius (µm)

 This of course depends on the relative dimension of the object, compared to the wavelength

Sphere, radius=1 μm, n=1.5

Wavelength (nm)

Differential cross section

• For a given object, light is scattered differently in different directions, one defines the differential cross section $\left|\mathbf{X}(\Omega)\right|^2/k^2$ into a solid angle $d\Omega$, such that

$$C_{scat} = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \frac{\left| \mathbf{X}(\theta, \phi) \right|^2}{k^2} = \int_{4\pi} d\Omega \frac{\left| \mathbf{X}(\Omega) \right|^2}{k^2}$$

• The differential cross section provides the amount of light scattered into a specific direction and is similar to the cross section known in atomic physics.

Selected Topics in Advanced Optics

Week 4 – part 2

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

Selected Topics in Advanced Optics

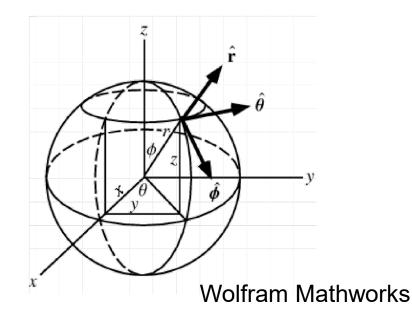
Week 4 – part 3

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

- The Mie theory provides an exact solution for light scattering by a sphere.
- This solution relies on vector spherical harmonics (VSH): solutions of Helmholtz equation in spherical coordinates.
- It mainly consists in solving Maxwell's equations in spherical coordinates inside and outside the sphere and imposing the boundary conditions (continuity of E and H parallel and D and B perpendicular) at the interface between the sphere and the

surrounding medium.

 Expressions are simple in spherical coordinates, but all axes are not equal!



• Assuming a $\exp(-j\omega t)$ time dependence, and a linear, homogeneous, isotropic medium, Maxwell's equations give us:

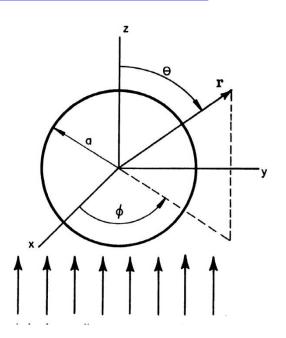
$$\nabla^{2}\mathbf{E}(\mathbf{r}) + k^{2}\mathbf{E}(\mathbf{r}) = 0 \qquad \nabla \cdot \mathbf{E}(\mathbf{r}) = 0$$

$$\nabla^{2}\mathbf{H}(\mathbf{r}) + k^{2}\mathbf{H}(\mathbf{r}) = 0 \qquad \nabla \cdot \mathbf{H}(\mathbf{r}) = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r}) = j\omega\varepsilon\mathbf{H}(\mathbf{r}) \qquad \nabla \times \mathbf{H}(\mathbf{r}) = -j\omega\varepsilon\mathbf{E}(\mathbf{r})$$

 We obtain solutions for these equations in spherical coordinates using a generating scalar function in the form:

$$\psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$



 From the scalar generating function and the position vector r, one defines vectorial harmonic functions:

$$\mathbf{M}(\mathbf{r}) = \nabla \times (\mathbf{r}\psi(\mathbf{r})) \qquad \mathbf{N}(\mathbf{r}) = \frac{\nabla \times \mathbf{M}(\mathbf{r})}{k}$$

Which are divergence free and fulfil:

$$\nabla \cdot \mathbf{M}(\mathbf{r}) = 0$$

$$\nabla \cdot \mathbf{N}(\mathbf{r}) = 0$$

$$\nabla \times \mathbf{N}(\mathbf{r}) = k\mathbf{M}(\mathbf{r})$$

The generating function satisfies the wave equation in spherical coordinates:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} + k^2 \psi = 0$$

Finally, one obtains the scattered field as

$$\mathbf{E}_{sca}(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} k^2 E_{nm} [a_{nm} \mathbf{N}_{nm}(r,\theta,\varphi) \\ + b_{nm} \mathbf{M}_{nm}(r,\theta,\varphi)].$$

$$E_{nm} = \frac{|\mathbf{E}_0|}{2\sqrt{\pi}} i^{(n+2m-1)} \sqrt{(2n+1)\frac{(n-m)!}{(n+m)!}},$$

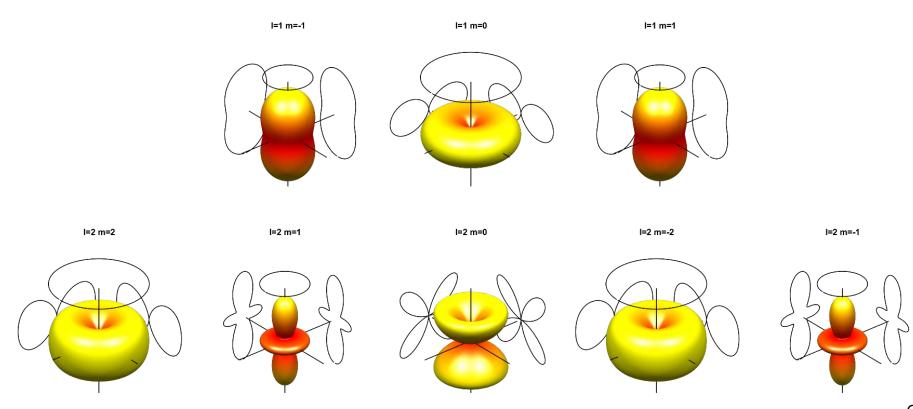
With

$$\mathbf{M}_{nm} = \left[i\pi_{nm}(\cos\theta)\mathbf{i}_{\theta} - \tau_{nm}(\cos\theta)\mathbf{i}_{\varphi} \right] \\ \times h_{n}^{(1)}(kr)\exp(im\varphi), \\ \mathbf{N}_{nm} = n(n+1)P_{n}^{m}(\cos\theta)\frac{h_{n}^{(1)}(kr)}{kr}\exp(im\varphi)\mathbf{i}_{r} \\ + \left[\tau_{nm}(\cos\theta)\mathbf{i}_{\theta} + i\pi_{nm}(\cos\theta)\mathbf{i}_{\varphi} \right] \\ \times \frac{1}{kr}\frac{d}{dr}\left[rh_{n}^{(1)}(kr) \right] \exp(im\varphi).$$

S. Mühlig, Metamaterials vol. 5, p. 64 (2011)

- Radial dependence: Hankel functions of the first kind $h_n^{(1)}$
- Angular dependence: Legendre functions $\pi_{nm}(\cos \theta) = \frac{m}{\sin \theta} P_n^m(\cos \theta)$,

$$\tau_{nm}(\cos \theta) = \frac{d}{d\theta} P_n^m(\cos \theta).$$



Expansion coefficients for a given scatterer are obtained by projecting the field on

the VSH:

$$a_{nm} = \frac{\int_0^{2\pi} \int_0^{\pi} \mathbf{E}(r=a) \mathbf{N}_{nm}^*(r=a) \sin \theta \, d\theta \, d\varphi}{\int_0^{2\pi} \int_0^{\pi} |\mathbf{N}_{nm}(r=a)|^2 \sin \theta \, d\theta \, d\varphi},$$

$$b_{nm} = \frac{\int_0^{2\pi} \int_0^{\pi} \mathbf{E}(r=a) \mathbf{M}_{nm}^*(r=a) \sin \theta \, d\theta \, d\varphi}{\int_0^{2\pi} \int_0^{\pi} |\mathbf{M}_{nm}(r=a)|^2 \sin \theta \, d\theta \, d\varphi}.$$

Scattering cross-section:

$$C_{sca} = k^2 \sum_{n=1}^{\infty} \sum_{m=-n}^{n} n(n+1)(|a_{nm}|^2 + |b_{nm}|^2).$$

Scattering by a sphere – Cartesian multipoles

- One is used to represent the scattering in Cartesian coordinates (not in spherical coordinates)
- VSH → Cartesian multipoles
- Only orders ±1 of VSH are required for Cartesian dipoles:

$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = C_0 \begin{pmatrix} (a_{11} - a_{1-1}) \\ i(a_{11} + a_{1-1}) \\ -\sqrt{2}a_{10} \end{pmatrix} \qquad \mathbf{m} = \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix} = cC_0 \begin{pmatrix} (b_{11} - b_{1-1}) \\ i(b_{11} + b_{1-1}) \\ -\sqrt{2}b_{10} \end{pmatrix}$$

$$C_0 = \sqrt{6\pi}i/cZ_0k$$

Scattering by a sphere – Cartesian multipoles

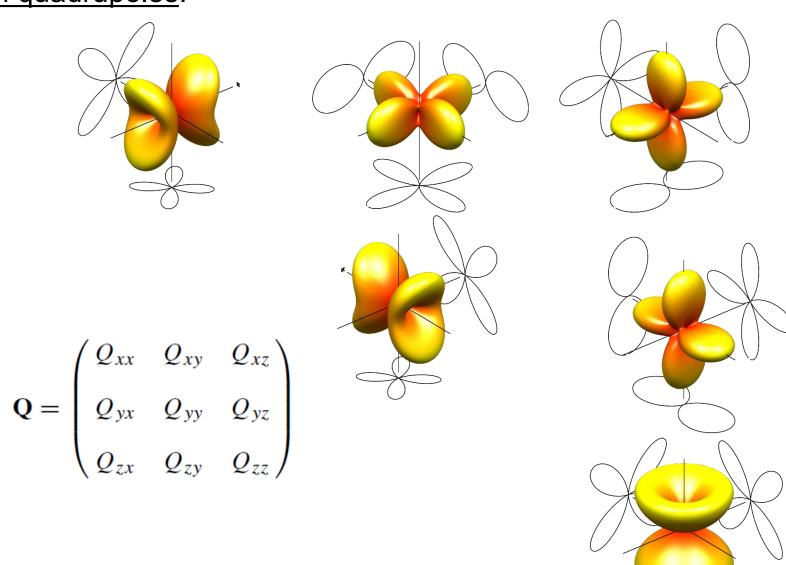
Cartesian quadrupoles:

$$\mathbf{Q} = \begin{pmatrix} Q_{xx} & Q_{xy} & Q_{xz} \\ Q_{yx} & Q_{yy} & Q_{yz} \\ Q_{zx} & Q_{zy} & Q_{zz} \end{pmatrix}$$

$$\mathbf{Q} = D_0 \begin{pmatrix} i(a_{2,2} + a_{2,-2}) - \frac{i\sqrt{6}}{2} a_{2,0} & (a_{2,-2} - a_{2,2}) & i(a_{2,-1} - a_{2,1}) \\ (a_{2,-2} - a_{2,2}) & -i(a_{2,2} + a_{2,-2}) - \frac{i\sqrt{6}}{2} a_{2,0} & (a_{2,-1} + a_{2,1}) \\ i(a_{2,-1} - a_{2,1}) & (a_{2,-1} + a_{2,1}) & i\sqrt{6}a_{2,0} \end{pmatrix}$$

Scattering by a sphere – Cartesian multipoles

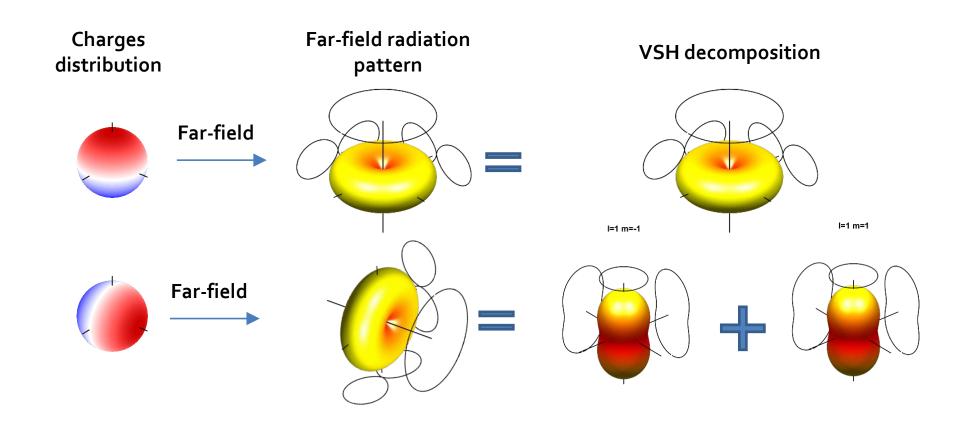
Cartesian quadrupoles:



S. Mühlig, Metamaterials vol. 5, p. 64 (2011)

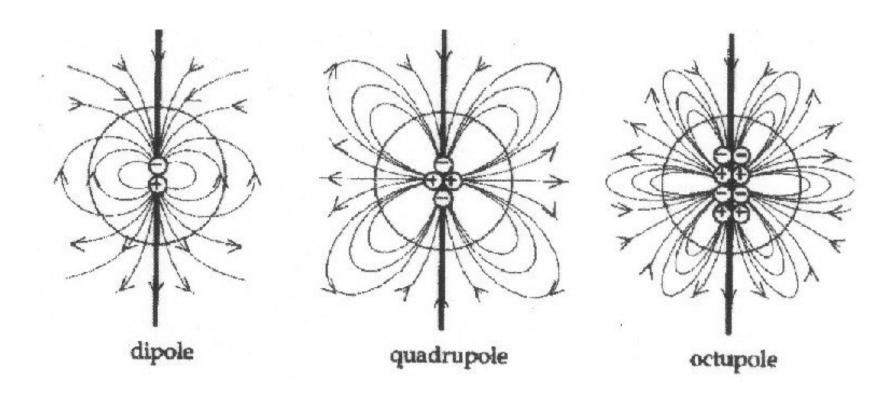
Link between VSH and Cartesian multipoles

Not all axes are equal!

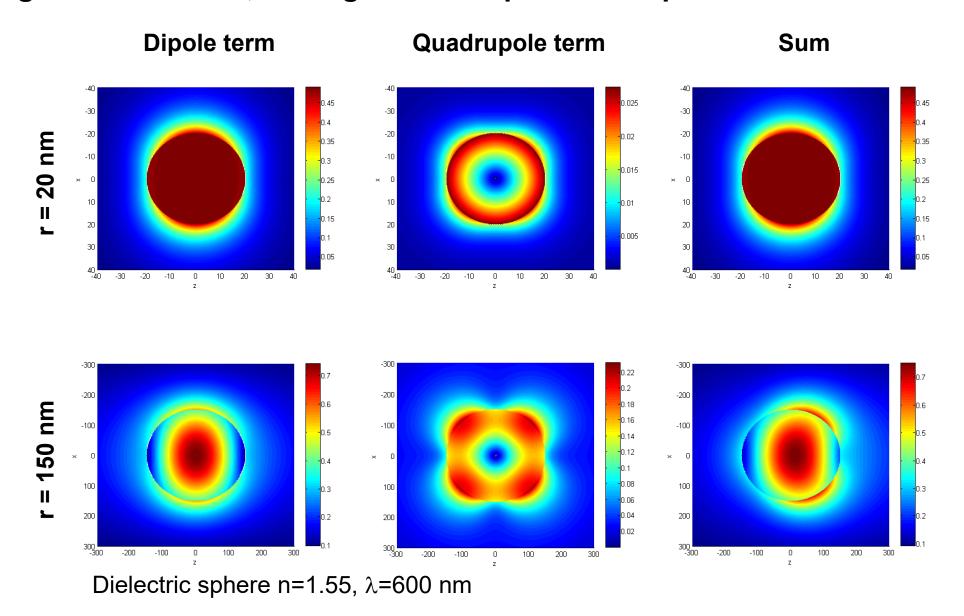


Some Cartesian multipoles

 The radiation pattern can be understood by visualizing the corresponding moving charges



The larger the scatterer, the higher the required multipoles



Selected Topics in Advanced Optics

Week 4 – part 4

Olivier J.F. Martin Nanophotonics and Metrology Laboratory

Scattering by particles small compared to the wavelength

We define two parameters:

- Size parameter
$$x = ka = \frac{2\pi na}{\lambda_0}$$
 (n: index of surrounding)

- Relative refractive index $m = \frac{k_1}{k} = \frac{n_1}{n}$ (n_1 : index of the sphere)
- We look at spheres with a small size parameter:

$$x = ka = \frac{2\pi na}{\lambda_0} \ll 1 \qquad and \qquad |m| x \ll 1$$

Then we can approximate the Hankel functions with their power series (see e.g. M. Abramowitz and A. Stegun, <u>Pocketbook of mathematical functions</u> (Harri Deutsch, Thun, 1984))

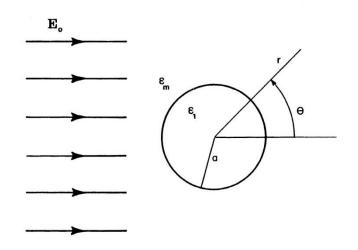
Scattering by particles small compared to the wavelength

Finally, one obtains the scattered intensity I_{scat} for a sphere illuminated with incident intensity I_i :

$$I_{scat} = \frac{8\pi^4 na^6}{\lambda^4 r^2} \left| \frac{m^2 - 1}{m^2 + 2} \right|^2 \left(1 + \cos^2 \theta \right) I_i$$
 Rayleigh scattering

Scattering by a small particle in the electrostatic limit

- If the particle is small, it makes sense to assume that the incident field is homogeneous
- One can then use an electrostatic approach and the formulae simplify dramatically:



$$Q_{abs} = 4x \operatorname{Im} \left\{ \frac{\varepsilon_1 - \varepsilon_m}{\varepsilon_1 + 2\varepsilon_m} \right\}$$

$$Q_{scat} = \frac{8}{3} x^4 \left| \frac{\varepsilon_1 - \varepsilon_m}{\varepsilon_1 + 2\varepsilon_m} \right|^2$$

$$Q_{ext} = Q_{abs} + Q_{scat} \qquad x = ka = \frac{2\pi na}{\lambda_0}$$

- When extinction is dominated by absorption, its spectrum goes with 1/λ
- When it is dominated by scattering, its spectrum goes with 1/λ⁴

Scattering by a small particle in the electrostatic limit

- The previous approach is very useful for light scattering by a dipole (two oscillating charges +q and -q) with dipole moment $\mathbf{p} = p \mathbf{e}_z = qd \mathbf{e}_z$
- Potential at a point P (assuming $d \rightarrow 0$ but qd remains constant):

$$\Phi = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\varepsilon_m r^3} = \frac{p\cos\theta}{4\pi\varepsilon_m r^2}$$

 By comparison, we can show that the field scattered by a small sphere is similar to that of a dipole with dipole moment:

$$\mathbf{p} = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1 - \varepsilon_m}{\varepsilon_1 + 2\varepsilon_m} \mathbf{E}_0 = \varepsilon_m \alpha \mathbf{E}_0$$

• Where we introduce the sphere polarizability: $\alpha = 4\pi a^3 \frac{\mathcal{E}_1 - \mathcal{E}_m}{\mathcal{E}_1 + 2\mathcal{E}_m}$

Scattering by a small particle in the electrostatic limit

• The polarizability completely characterizes the sphere and can be used to define the cross sections:

$$C_{ext} = k \operatorname{Im} \{\alpha\}$$

$$C_{scat} = \frac{k^4}{6\pi} |\alpha|^2$$

 These equations are valid if scattering is small compared to absorption; as a consequence using the optical theorem:

$$C_{abs} = C_{ext} - C_{scat} \simeq C_{ext} = k \operatorname{Im} \{\alpha\}$$

Light scattering by a slab

- When measuring a (very large) homogeneous slab, one considers the reflected (R), absorbed (A) and transmitted (T) light intensities
- Optical theorem in that case: A + R + T = 1
- In general one cannot measure absorption, but it can be deduced from R and T:

$$A = 1 - R - T$$

