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Gratings, stratified media and photonic crystals
Part lll - Photonic crystals
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Some references

« B.E.A. Saleh & M.C. Teich, Fundamental of photonics 2" Ed. (Wiley, Hoboken,
2007), Chapter 7.

« J.D. Joannopoulos et al., Photonic crystals, Molding the flow of light (Princeton
University Press, 1995).

« K. Sakida, Optical properties of photonic crystals (Springer, Berlin, 2001)
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Bragg gratings — total reflection regime

» Stack of partially reflective mirrors:
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» Dielectric Bragg grating:
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1D photonic crystal | | ﬂ | |

Z

"Crystal" with periodicity A RERRR
Reciprocal lattice vector: G=g=27/A

We are looking at solutions that satisfy the periodicity of the crystal

In a periodic system, a wave at a point x differs from its value a period A away by a

complex constant C :

X X-I-A x+2A X+3A

u(x+A) u(x+2A)  u(x+mA)
u(x)  ul(x+A) T ulx+(m-1A)

x

=C u(x+mA)=C"u(x)
C=e/M
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1D photonic crystal
»  We now consider a function: R(x) = e/ u(x)
« Which is periodic with period A: R(x+A) = e””"“"Mu(x+ A) = R(x)

* And can be written as a Fourier series:

R(.X): Z Ane—j(Znﬂ/A)x
N=—00

« We obtain an expression for a wave in a periodic structure:

- - - - 2N
. —j(f+2nm/A)x —jp, x .
u(x) = E,Anej = E Ae B, =p+—

Nn=—o0 Nn=—o0
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1D photonic crystal — Reciprocal lattice
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1D photonic crystal — Reciprocal lattice
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1D photonic crystal — Reciprocal lattice
0 | i | 2
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1D photonic crystal — Reciprocal lattice
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1D photonic crystal — Reciprocal lattice
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1D photonic crystal — Reciprocal lattice

« Traditionally, one represents the first Brillouin zone between -n/A and n/A :
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1D photonic crystal — Reciprocal lattice

 All the solutions from the wave equation that satisfy periodicity can be represented
in the first Brillouin zone:
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1D photonic crystal — Reciprocal lattice

 All the solutions from the wave equation that satisfy periodicity can be represented

in the first

Brillouin zone:

Q)

4 _ o=ck

\ R
.

. /

5 5

o

R 5
. 5
o

w=ck+G)

/A 0 wA  2m/A

1 1.5 2 25 3 3.5 4 4.5 5

X

.
N
.
.
S
.

A

w=ck

w=ck+G)

A 0

wA  2mWA

L L L L L '
1.5 2 2.5 3 3.5 4 4.5 5

X

.
.
[y
N
.

4 w=ck

ow=c(k+G)

/A 0 wA  2m/A

1.5

1

0.5

0

-0.5

-1

-1.5 L
0 0.5

L L L L L L |
1 1.5 2 25 3 3.5 4 4.5 5

X

Olivier J.F. Martin



1D photonic crystal — Band structure

* Free space » Photonic crystal (dielectric/air)
© o
Ly *
ad " /\
0,
gap -
w = ck/n 2
n: refraction
index
-n/a  ky mwa -n/a ky mwa

« Two types of modes are created:
— Air modes (field in the low index — orange — region) ‘ gap

— Dielectric modes (field in the high index — red — region)
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1D photonic crystal — Band structure and reflectance
* Very high reflectivity is observed in the bandgap, as optical modes cannot exist in
the crystal at those frequencies

« The dispersion is bent close to the edge of the bandgap (modified group velocity!)
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2D photonic crystal
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2D photonic crystal — Reciprocal lattice

. Square lattice:
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Figure 2 The square latftice. On the left is the network of lattice points in
real space. In the middle is the corresponding reciprocal lattice. On the
right is the construction of the Brillouin zone: taking the center point as
the origin, we draw the lines connecting the origin to other lattice points
(red), their perpendicular bisectors (blue), and highlight the square bound-
ary of the Brillouin zone (yellow).

. Triangular lattice:

o) o) 7“ &{ “§
@ @
Figure 3 The triangular laftfice. On the left is the network of lattice
points in real space. In the middle is the corresponding reciprocal lat-.
tice, which in this case is a rotated version of the original. On the right

is the Brillouin zone construction. In this case, the Brillouin zone is a
hexagon centered around the origin.

Things are more complicated in 3D !

Figure 4 The Brillouin zone
for the face-centered cubic
lattice. The reciprocal lat-
fice is a body-centered cu-
bic lattice, and the Brillouin
zone is a truncated octahe-
dron with center at I'. Also
shown are some of the
names which are tradition-
ally given to the special di-
rections in the zone. The irre-
ducible Brillouin zone is the
yellow polyhedron with cor-
ners at I, X, U, L, W, and K.

* Irreducible Brillouin zone:

The Brillouin zone possesses the symmetries of the
lattice, hence not the entire zone needs to be considered:

. Brillouin zone of
Rel laffioe reciprocal lattice

Figure 5 Left: A photonic crystal made using a square lattice.
An arbitrary vector r is shown. Right: The Brillouin zone of the
square latftice, centered at the origin (). An arbitrary wave
vector k is shown. The irreducible zone is the light blue friangu-
lar wedge. The special points at the center, corner, and face
are conventionally known as I', M, and X.

¢ Specific points in the Brillouin zone are given a name
I'(=center), X, M, etc.... They appear in the band diagram
and represent waves propagating in specific directions
Olivier J.F. Martin



2D Photonic crystal — Band diagram

« The complete dispersion diagram represents a surface...

f= 0.3,epstrou=1, eps guide =10.89 , bandes 1 et 2, TE polarization
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2D Photonic crystal — Band diagram

* ... but only specific directions are usually represented

eps_=1, eps, =10.89, fint= 0.3, N= 381, pol= H-pol, TE
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2D Photonic crystal — Band diagram

* Another representation is equifrequency curves/surfaces:
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Example of full bandgap

« Dielectric spheres on a diamond lattice
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Phys. Rev. Lett. 65, 3152, 1990
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Example of full bandgap

« Dielectric spheres on a diamond lattice

« The existence of a gap depends on the filling factor and on the dielectric contrast
between the scatterers and the background
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Some common 2D lattices

« Square lattice of holes

filling factor = far
n=3.36
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Some common 2D lattices

« Square lattice of holes

filling factor = fai- = 50 %
n=3.36

disp_sgr_hole TE.dat disp_sgr_hole_TM.dat
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Some common 2D lattices
« Square lattice of pillars

filling factor = fgiel
n=3.36
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Some common 2D lattices

« Square lattice of pillars

filling factor = fg4iel = 20 %
n=3.36

disp_sqgr_pill TE.dat disp_sqgr_pill TM.dat
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Scaling laws

« Since the phenomenon behind photonic bands is interference, for a specific
dielectric contrast, a given band structure can be produced for different frequencies

by scaling the dimensions:

Energy :u = ¢_2  Wave vector:k =k—a a :period
A 2rnc 27

1 pm EHT = 150KV Signal A = 5E2 Date 1 Dee 2008 FEINT
I '| WD = &rmm Mag= 1388 KX Time :21:42-41

Microwave frequencies Optical frequencies Olivier J.F. Martin



Band structure

« Always shown in the reciprocal (Fourier) space and limited to the first Brillouin zone

« The forbidden bands in different directions usually do not overlap (i.e. the crystal
properties are different for waves propagating in different directions)

« The forbidden bands for both polarizations do not usually overlap (i.e. the crystal
properties are different for waves propagating in the same direction, but with
different polarizations)

« A full bandgap (for any polarization and propagation direction) rarely exists; it only
appears for strong dielectric contrasts (i.e. strong scattering)

Olivier J.F. Martin
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3D photonic crystals « Or are being replicated in the

» The most striking 3D photonic crystals laboratory:
exist in nature: ; s

S Ty..rm!!

Opal structures
B oo (Tyndall Lab):
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Examples of 3D photonic crystals and their fabrication

* Yablonovite (etching)

24807

Olivier J.F. Martin



Examples of 3D photonic crystals and their fabrication

* Very sophisticated deep etching techniques have been developed to
realize photonic crystals

< 6.2 pm pore %% %%
] < 8 pm pitch g%

Olivier J.F. Martin



Examples of 3D photonic crystals and their fabrication

« Wood pile (microfabrication)
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J. Ye et al., Langmuir vol. 22, p. 7378 (2008)ivier J.F. Martin



Different examples of photonic crystals and their fabrication

 Inverted opals (infiltration + selective etching)
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Examples of 3D photonic crystals and their fabrication

* Holography

Olivier J.F. Martin
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Basic photonic crystal components

« 2D patterning in planar waveguide (the waveguide provides vertical confinement,
the photonic crystal lateral functions)

€, (2 ) € (xy)
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” Pt
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Basic photonic crystal components

« 2D patterning in planar waveguide

"2+1" D

InP / Gaj-xAsxInxP-x-y
GaAs / AlGa).xAs
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Basic photonic crystal components

« Suspended membranes can prevent such leakage by providing high dielectric
contrast in the vertical direction

membrane
air/Si
GaAs /air
InP/air

||2+|ll D

air/Si/SiO;
air/InP/BCB
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Defects in infinite periodic lattices

« Like in semiconductors, most interesting effects arise from defects in the periodic
lattice

 These defects build “confined states” within the band structure
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Waveguides

« Extended defect in one specific direction
« The propagation vector can be defined in that direction

« Waveguides with different dimensionalities exist:
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Waveguides

« The defect (e.g. Missing row(s)) creates a mini-band inside the bandgap, where

otical modes can exist

Bandstructure of guide (f=0.3, eps=11.2896 )
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Waveguides and bends

« Since we operate inside the bandgap, losses are very small, even for very small
bending radi

* This cannot be achieved with conventional waveguides
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Waveguides and bends

« Optimization of the structures using sophisticated algorithms
(e.g. genetic optimization) can produce complex optical circuits
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Fig. 1. Top: Standard and two modified Z-bend waveguides. Bottom: Transmission through the Fig. 4. Scanning electron micrograph of the fabricated Z-bend. The number, shape and size of
bends calculated using a 2D frequemc\-' domain finite element model . the holes at each bend are designed using topology optimization. The inset shows a magnified
. view of the optimized holes as designed (white contour) and actually fabricated.
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Waveguides and bends

« Many conventional integrated optics components can be revisited within the
framework of photonic crystals

Optics Express vol. 10, p. 1048-1059 (2002) Olivier J.F. Martin



Optical resonator

* Missing motif and its simple equivalent (in the bandgap)
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High Q cavities
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High Q cavities

Optimization processes can lead to very high Q and very small modal volume
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High Q cavities

« Optimization processes can lead to very high Q and very small modal volume
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Slow light

COMMENTARY | FOCUS

Why do we need slow light? |

THOMAS F. KRAUSS g \/
d
g o0e /\
] air band
-
(&
G o4 : g
=2 Photonic | Band Gap
o
& 02
dielectric band
%05 025 0 0.25 0.5

Wave vector (ka/2x)

nature photonics | VOL 2 | AUGUST 2008 | www.nature.com/naturephotonics pp. 448-450

At the edge of the bandgap the group
velocity dw/dk can be significantly
reduced, reaching almost zero!
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Slow light

3 3 : 'TTE week ending
PRL 94, 073903 (2005) PHYSICAL REVIEW LETTERS 25 FEBRUARY 2005

Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides

H. Gersen,"* T.J. Karle,” R.J.P. Engelen,] W. Bugax:rts,'j' J.P. Korterik,' N. F. van Hulst,' T. F. Krauss,” and L. E‘.luipt:rs1 ll

Interference

a)  Optical
delay line

Time resolved

Group velocity c,/1'000

Olivier J.F. Martin



Photonic fibers

« The photonic bandgap associated with such fibers produces
frequency selectivity, high power concentration and can
trigger nonlinear effects and anomalous dispersion

Fabrication from a bundle: Dispersion relation:
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An assortment of optical (OM) and scanning electron
(SEM) micrographs of PCF structures. (A) SEM of an
endlessly single-mode solid core PCF. (B) Far-field
optical pattern produced by (A) when excited by red and
green laser light. (C) SEM of a recent birefringent PCF.
(D) SEM of a small (800 nm) core PCF with ultrahigh
nonlinearity and a zero chromatic dispersion at 560-nm
wavelength. (E) SEM of the first photonic band gap PCF,
its core formed by an additional air hole in a graphite
lattice of air holes. (F) Near-field OM of the six-leaved
blue mode that appears when (E) is excited by white
light. (G) SEM of a hollow-core photonic band gap fiber.
(H) Near-field OM of a red mode in hollow-core PCF

_ (white light is launched into the core). (I) OM of a hollow-
6 7 8 9 10 1 12 core PCF with a Kagomé cladding lattice, guiding white

Normalized wave vector along fiber BA light.

Normalized frequency wA/c
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Photonic fibers
Particle trapping and guidance in a 0
hollow-core PCF (38). The van der Waals
forces between the pm-sized polystyrene
particles (c) are broken by making them
dance on a vibrating plate (a). The laser d
Q

beam (b) captures them and entrains
them into the hollow-core PCF (d).

University of Bath 2002
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infrared ultraviolet
frequency ladder
In a solid-core PCF, the pattern of air holes acts like a (A) The supercontinuum spectrum produced from an
modal sieve. In (a), the fundamental mode is unable to infrared laser operating at 800 nm and producing 200-fs
escape because it cannot fit in the gaps between the air pulses. The infrared light is launched (a) into highly
holes--its effective wavelength in the transverse plane is too nonlinear PCF (b) and the supercontinuum is dispersed into
large. In (b) and (c), the higher order modes are able to its constituent colors at a diffraction grating (d). The
leak away because their transverse effective wavelength is resulting spectrum is cast on a screen (c). (B) The
smaller. If the diameter of the air holes is increased, the supercontinuum spectrum consists of millions of individual
gaps between them shrink and more and more higher order frequencies, spaced by the ~100-MHz repetition rate of the
modes become trapped in the "sieve." infrared laser. The resulting ladder can be used as a highly

accurate "ruler" for measuring frequency

P. Russell, Science vol. 299, p. 358 (2003) Olivier J.F. Martin
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