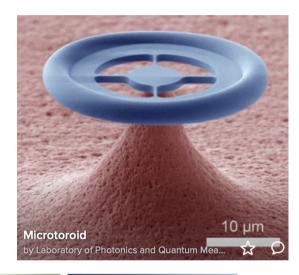

EPFL


■ Ecole Polytechnique Fédérale de Lausanne

EPFL

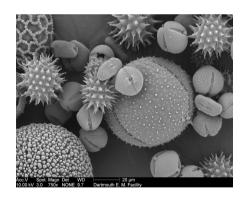
Examples of Micromachined devices

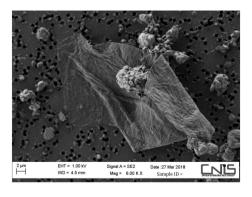
Sandia silicon microchain, 2002

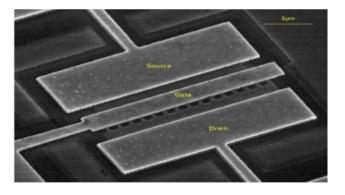
Nanolab, EPFL, Quantum dots Nanowires, 2023

Patek Philippe – 2016 silicon regulating organ & reset mechanism

Neurosoft Bioelectronics soft ECoG, 2023

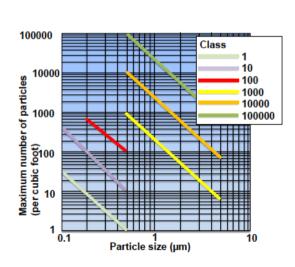



EPFL


Cleanroom a highly controlled environment

a controlled particle count

 designed to minimise airborne particles (dust, skin flakes, fibers) that can interfere with the manufacturing process



pollen skin dust transistor

Cleanroom a highly controlled environment

Classification ISO

- ISO class 1: 10 particles per m³ (particles > 0.1µm)
- ISO class 5: 100'000 particles per m³ (particles > 0.1μm)

Class	>0.1 um	>0.2 um	>0.3 um	>0.5 um	>1 um	>5 um	FED STD 209E equivalent
<u>ISO 1</u>	10	2					
ISO 2	100	24	10	4			
ISO 3	1,000	237	102	35	8		Class 1
ISO 4	10,000	2,370	1,020	352	83		Class 10
<u>ISO 5</u>	100,000	23,700	10,200	3,520	832	29	Class 100
ISO 6	1,000,000	237,000	102,000	35,200	8,320	293	Class 1,000
<u>ISO 7</u>				352,000	83,200	2,930	Class 10,000
ISO 8				3,520,000	832,000	29,300	Class 100,000
ISO 9				35,200,000	8,320,000	293,000	Room Air

Cleanroom a highly controlled environment

air filtration

- HEPA (High Efficiency Particulate Air) or ULPA (Ultra-low Penetration Air) filters
- constant air flow: 20 to 600 air changes per hours
- positive air pressure

temperature and humidity control

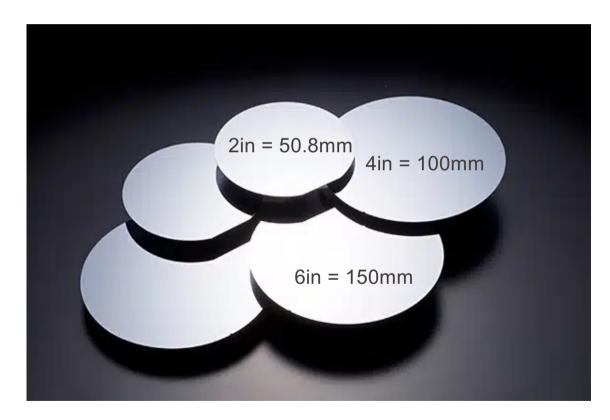
- temperature: 20 24°C (stability of photolithography)
- humidity: 40 60% RH

surface cleanliness

- surfaces, equipment, tools designed to minimise particle shedding
- stainless steel, coated plastics, lint-free cloths

Cleanroom a highly controlled environment

- personnel and protective clothing
 - human presense is a large source of contamination!
 - 1. full-body overall
 - 2. gloves
 - 3. goggles
 - 4. mask
 - 5. shoe covers
 - gowning room


EPFL Materials

substrates

- Silicon, GaAS, glass
- polymers

Si wafers

- diameter: 2in 18in
- 12in: modern semicond. fab.
- thickness: 275 1'000 μm
- flatness
- orientation flat and notch
- (100) or (111) orientation

EPFL Materials

thin-films

- metals
- insulators
- deposition
 - evaporation
 - sputtering
 - ALD
 - CDV...

evaporator

etching

EPFL Materials

photoresists

- positive
- negative

parameters

- Thickness range: 0.5 2 µm (thin)
- Thickness range: 2 100 µm (thick)
- spin-coating speed
- DUV to UV sensitive
- E-beam and X-ray

coater - developper

The process flow

- detailed sequence of steps and techniques to fabricate a device
- → a roadmap outlining how various fabrication processing are combined to create the desired features on a silicon wafer

Ingrédients

1.5 c.c. de sel

1 c.c. de sucre

60 g de beurre 3 dl de lait (300 g)

Nombre de personnes - 8 +

rine blanche

0.5 cube de levure (env. 20 g)

1 iaune d'œuf

1 c.s. de lait ou de crème

500 a de farine pour tresse ou de fa-

instruments and tools

Comment c'est fa

Mélanger dans un grand bol farine, sel et sucre. Émietter la levure, incorporer. Ajouter le beurre en dés et le lait, mélanger, pétrir en pâte molle et lisse. Laisser doubler de volume env. 2 h à couvert à termérature ambiante.

Diviser la pâte en deux portions, façonner chacune en un rouleau d'env. 70 cm de long aux extrémités plus fines. Tresser, déposer sur une plaque chemisée de papier cuisson. Mélanger le jaune d'œuf et le lait, en dorer la tresse, laisser lever encore env. 30 minutes. Préchauffer le four à 200°C. Dorer encore à l'œuf au lait

Cuisson: env. 35 min dans la moitié inférieure du four.

quantities, time, temperature...

result

The process flow

- Recipe: To define the roadmap.
- Repeatability: To ensure that devices are fabricated consistently with high yield.
- Optimization: To minimize defects and improve performance.
- **Documentation**: Provides a clear record of every step and parameter, essential for troubleshooting and improving processes.

How to define a process flow?

1. Define the objectives

- what is the final device?
 - a transistor, MEMS device, sensor or I.C., etc
- understand the key features and functional requirements of the device
 - materials, structure and performance
- identify the required layers and materials
 - silicon, metal, insulation
 - layer thicknesses

How to define a process flow?

2. Break down the device structure

- Analyze the device structure. What are the important regions (e.g., active areas, gates, interconnects)?
- Identify which features need patterning, doping, deposition, or etching.
- Divide the process into layers
 - Start with the substrate (e.g., silicon wafer) and think about each layer that needs to be added or patterned, such as insulating layers, conductive layers, or doped regions.

How to define a process flow?

3. List the major steps

- Wafer preparation: Cleaning or polishing the wafer.
- Oxidation: Growing oxide layers if needed.
- Deposition: Adding thin films of materials (e.g., silicon dioxide, polysilicon, metals).
- Patterning: Using photolithography to define regions for etching or doping.
- Etching: Removing material to create the desired features.
- Doping: Introducing impurities to alter electrical properties.
- Metallization: Adding metal layers for interconnections.
- Packaging: Preparing the device for final use (cutting, bonding, sealing).

Preparation of a process flow

template from the Cmi

- 2 examples
 - Si mold
 - Flexible electrodes