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List of material for the TP 

 

1x board 

 

1x linear stage 

1x adapter plate  

1x SM1 lens holder      

1x camera holder 

1x camera 
    

1x laser 

   

1x source holder 

 

1x lens cap with polarizer 

1x slip cap 

 

1x diffraction grating array (glass wafer) 

 

1x diffraction structures 
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2x polarizer sheet 

 

4x large screws with cap 

3x small screws with cap 

    

4x small screws (triangular head) 

4x large screws 
   

3x Allen keys 

 

1x slotted screwdriver  

 

1x black cover 

 

1x ruler 

1x triangle 
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1 Background 

1.1.  Scalar Diffraction 

The text below is a modified copy of the book from David G. Voelz, Computational Fourier 

optics: a MATLAB tutorial, SPIE Bellingham, 2011.  

 

Diffraction refers to the behavior of an optical wave when its lateral extent is confined; for 

example, by an aperture. It accounts for the fact that light rays do not follow strictly rectilinear 

paths when the wave is disturbed on its boundaries. In our everyday experience we rarely notice 

diffractive effects of light. The effects of reflection (from a mirror), or refraction (due to a lens) 

are much more obvious. In fact, the effects of diffraction become most apparent when the 

confinement size is on the order of the wavelength of the radiation. Nevertheless, diffraction 

plays a role in many optical applications and it is a critical consideration for applications 

involving high resolution, such as astronomical imaging, or long propagation distances such as 

laser radar, and in applications involving small structures such as photolithographic processes. 

The propagation behavior of an optical wave is fundamentally governed by Maxwell’s 

equations. In general, coupling exists between the wave’s electric field E with components (Ex, 

Ey, Ez) and its magnetic field H with components (Hx, Hy, Hz). There is also coupling between 

the individual components of the electric field, as well as between the magnetic components. 

However, consider a wave that is propagating in a dielectric medium that is linear (field 

quantities from separate sources can be summed), isotroptic (independent of the wave 

polarization, i.e., the directions of E and H), homogeneous (permittivity of the medium is 

independent of position), nondispersive (permittivity is independent of wavelength), and 

nonmagnetic (magnetic permeability is equal to the vacuum permeability). In this case, 

Maxwell’s vector expressions become decoupled, and the behavior of each component of the 

electric or magnetic fields can be expressed independently from the other components. Scalar 

diffraction refers to the propagation behavior of light under this ideal situation. The long list of 

assumptions for the medium suggests a rather limited application regime for scalar diffraction 

theory. However, scalar diffraction can clearly be used for describing free-space optical (FSO) 

propagation, which refers to transmission through space.  

 

Monochromatic Fields and Irradiance 

Let  

( ) ( ) ( )1 1 1U x, y A x, y exp j x, y=        Eq. 1 

 

be the field in the x–y plane is located at some position “1” on the z axis.  

Detectors do not currently exist that can follow the extremely high-frequency oscillations 

(>1014 Hz) of the optical electric field. Instead, optical detectors respond to the time-averaged 

squared magnitude of the field. So, a quantity of considerable interest is the irradiance, which 

is defined here as  

( ) ( ) ( ) ( )
2

1 1 1 1I x, y U x, y U x, y * U x, y= =
   

Eq. 2 

 

Irradiance is a radiometric term for the flux (watts) per unit area falling on the observation 

plane. It is a power density quantity that in other laser and Fourier optics references is often 
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called “intensity.” Expression (2) actually represents a shortcut for determining the time-

averaged square magnitude of the field and is valid when the field is modelled by a complex 

phasor.  

 

Optical Path Length and Field Phase Representation 

The refractive index n of a medium is the ratio of the speed of light in vacuum to the speed in 

the medium. For example, a typical glass used for visible light might have an index of about 

1.6. For light propagating a distance d in a medium of index n, the optical path length (OPL) is 

defined as 

    OPL nd=
      

Eq. 3 

 

The OPL multiplied by the wavenumber k shows up in the phase of the complex exponential 

used to model the optical field. Think of k as the “converter” between the distance spanned by 

one wavelength and 2  (rad of the phase). If a plane wave propagates a distance d through a 

piece of glass with index n, then the OPL is as indicated in Eq. (3), and the field phasor 

representation is  

( ) ( )U d Aexp jknd=
     

Eq. 4 

In effect, the wavelength shortens to /n in the glass. There are other variations of this theme; 

for example, exp(jkr), where r is a radial distance in vacuum. Phasor forms associated with the 

optical field can also be a function of transverse position x and y; for example,  

 

( )2 2k
exp j x y

2z

 
+ 

 
      Eq. 5 

This is known as a “chirp” term and indicates a field phase change as the square of the transverse 

position. This type of term appears in a variety of situations to model a contracting or expanding 

optical field.  

 
1.2 Diffraction and Rayleigh–Sommerfeld solution 

Consider the propagation of monochromatic light from a 2D plane (source plane) indicated by 

the coordinate variables  and  (Fig. 1). At the source plane, an area: defines the extent of a 

source or an illuminated aperture. The field distribution in the source plane is given by U1(,), 

and the field U2(x, y) in a distant observation plane can be predicted using the first Rayleigh–

Sommerfeld diffraction solution 

( ) ( )
( )12

2 1 2

12

exp jkrz
U x, y U , d d

j r


=    
 

    
Eq. 6 

 
Figure 1 Geometry for a situation where light propagates from a source plane to an 

observation plane 
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Here,  is the optical wavelength; k is the wavenumber, which is equal to 2/ for free space; 

z is the distance between the centres of the source and observation coordinate systems; and r12 

is the distance between a position on the source plane and a position in the observation plane. 

 and  are variables of integration, and the integral limits correspond to the area of the source: 

With the source and observation positions defined on parallel planes, the distance r12 is  

( ) ( )
2 22

12r z x y= + −  + − 
    

Eq. 7 

 

Expression (6) is a statement of the Huygens–Fresnel principle. This principle supposes the 

source acts as an infinite collection of fictitious point sources, each producing a spherical wave 

associated with the actual source field at any position (). The contributions of these spherical 

waves are summed at the observation position (x, y), allowing for interference. The extension 

of Eqs. (6) and (7) to nonplanar geometries is straightforward; for example, involving a more 

complicated function for r, but the planar geometry is more commonly encountered, and this is 

our focus here. Expression (6) is, in general, a superposition integral, but with the source and 

observation areas defined on parallel planes, it becomes a convolution integral, which can be 

written as  

 

( ) ( ) ( )2 1U x, y U , h x , y d d=   − −  
    

Eq. 8 

 

where the general form of the Rayleigh–Sommerfeld impulse response is 

( )
( )
2

exp jkrz
h x, y

j r
=

      
Eq. 9 

and 
2 2 2r z x y= + +

      
Eq. 10 

 

The Fourier convolution theorem can be applied to rewrite the integral equation Eq. (8) as 

 

( ) ( )  ( )  1

2 1U x, y U x, y h x, y−=   
    

Eq. 11 

 

For this convolution interpretation the source and observation plane variables are simply 

relabelled as x and y. An equivalent expression for Eq. (11) is  

 

( ) ( )  ( ) 1

2 1 x yU x, y U x, y H f ,f−=                          Eq. 12 

 

where H is the Rayleigh–Sommerfeld transfer function given by 

 

( ) ( ) ( )
22

x y x yH f ,f exp jkz 1 f f
 

= −  −  
      

Eq. 13 

Strictly speaking, 2 2

x yf f 1+   must be satisfied for propagating field components. An 

angular spectrum analysis is often used to derive Eq. (13). This solution only requires that r 

>> , the distance between the source and the observation position, be much greater than 

the wavelength. 
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Fresnel approximation 

The square root in the distance terms of Eq. (7) or (10) can make analytic manipulations of the 

Rayleigh–Sommerfeld solution difficult and add execution time to a computational simulation. 

By introducing approximations for these terms, a more convenient scalar diffraction form is 

developed. Consider the binomial expansion 

21 1
1 b 1 b b ...

2 8
+ = + − +      Eq. 14 

where b is a number less than 1, then expand Eq. (7) and keep the first two terms to yield 
2 2

12

1 x 1 y
r z 1

2 z 2 z

 −  −    
 + +    

     

    Eq. 15 

 
This approximation is applied to the distance term in the phase of the exponential in Eq. (8), 

which amounts to assuming a parabolic radiation wave rather than a spherical wave for the 

fictitious point sources. Furthermore, use the approximation r12 = z in the denominator of Eq. 

(6) to arrive at the Fresnel diffraction expression: 

( ) ( ) ( ) ( )
jkz

2 2

2 1

e k
U x, y U , exp j x y d d

j z 2z

  =   − + −      


 
Eq. 16 

This expression is also a convolution of the form in Eq. (8), where the impulse response is  

( ) ( )
jkz

2 2e jk
h x, y exp x y

j z 2z

 
= +        

Eq. 17 

and the transfer function is 

( ) ( )jkz 2 2

x y x yH f ,f e exp j z f f =  +
 

    
Eq. 18 

The expressions in Eqs. (11) and (12) are again applicable in this case for computing diffraction 

results.  

Another useful form of the Fresnel diffraction expression is obtained by moving the quadratic 

phase term that is a function of x and y outside the integrals: 

( )
( )

( )

( ) ( ) ( )

2 2

2

2 2

1

exp jkz k
U x, y exp j x y

j z 2z

k 2
U , exp j exp j x y d d

2z z

 
= +    

     
   +  −  +           


 Eq. 19 

Along with the amplitude and chirp multiplicative factors out front, this expression is a Fourier 

transform of the source field times a chirp function where the following frequency variable 

substitutions are used for the transform: 

x
f

z
 →


   

y
f

z
 →


    Eq. 20 

The accuracy of the Fresnel expression when modelling scalar diffraction at close ranges suffers 

as a consequence of the approximations involved. A criterion which is commonly used for 

determining when the Fresnel expression can be applied is the Fresnel number. The Fresnel 

number is given by 

𝑁𝐹 =
𝑤2

4𝜆𝑧 
     Eq. 21 

where w is the width of a square aperture in the source plane, or the diameter of a circular 

aperture, and z is the distance to the observation plane. If NF is larger than 1 for a given 

scenario, then it is commonly accepted that the observation plane is in the near field region, 

where the Fresnel approximations, typically, lead to useful results. However, for relatively 
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“smooth” fields over the source aperture, the Fresnel expression can be applicable up to Fresnel 

numbers of even 20 or 30. In a geometrical optics context, the Fresnel expression describes 

diffraction under the paraxial assumption, where only rays that make a small angle (< ~0.1 rad) 

relative to the optical axis are considered. 

 
Fraunhofer approximation 

Fraunhofer diffraction, which refers to diffraction patterns in a regime that is commonly known 

as the “far field,” is arrived at mathematically by approximating the chirp term multiplying the 

initial field within the integrals of Eq. 19 as unity. The assumption involved is 

 

( )2 2

max

k
z

2

  + 
 
 
       

Eq. 22 

and results in the Fraunhofer diffraction expression: 

 

( )
( )

( ) ( ) ( )2 2

2 1

exp jkz k 2
U x, y exp j x y U , exp j x y d d

j z 2z z

   
= +   −  +          

  Eq. 23 

 

The condition of Eq. (22), typically, requires very long propagation distances relative to the 

source support size. However, a form of the Fraunhofer pattern also appears in the propagation 

analysis involving lenses. The Fraunhofer diffraction expression is a powerful tool and finds 

use in many applications such as laser beam propagation, image analysis, and spectroscopy. 

Along with multiplicative factors out front, the Fraunhofer expression can be recognized simply 

as a Fourier transform of the source field with the variable substitutions 

x
f

z
 →


   

y
f

z
 →


     Eq. 24 

The Fraunhofer expression cannot be written as a convolution integral, so there is no impulse 

response or transfer function. But, since it is a scaled version of the Fourier transform of the 

initial field, it can be relatively easy to calculate, and as with the Fresnel expression, the 

Fraunhofer approximation is often used with success in situations where Eq. (22) is satisfied. 

For simple source structures such as a plane-wave illuminated aperture, the Fraunhofer result 

can be useful even when Eq. (22) is violated by more than a factor of 10, particularly if the main 

quantity of interest is the irradiance pattern at the receiving plane. Using the Fresnel number 

NF, the commonly accepted requirement for the Fraunhofer region is NF << 1.  

Looking at the equations above one can see that in this region (Fraunhofer region), U2(x,y) is 

just the two-dimensional Fourier transform of U1(x,y) except for a multiplicative phase 

factor which does not affect the intensity of the light. This regime is also called Fraunhofer 

Diffraction or Fraunhofer Approximation. The examples presented here are calculated 

numerically assuming Fraunhofer approximation, i. e. simple two-dimensional Fourier 

transform.  
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3.2 Gratings and Periodic Functions 

The following explanations are a shortened version of the document: Fourier Optics in 

Examples by Klaus Betzler, Fachbereich Physik, Universität Osnabrück. 

 

When the two-dimensional pattern is only structured in one dimension, that also shows up in 

the Fourier transform, yet in a reciprocal meaning. This is visualized by Figs. 2 and 3. 

 

 

  
 

Figure 2: Array of lines (left) and the corresponding two-dimensional Fourier transform (right). 

 

  
Figure 3: Array of points (left) and the corresponding two-dimensional Fourier transform 

(right). 

 

In Fig. 2, the pattern is constant in the vertical dimension, its Fourier transform shows a delta 

function behavior in this dimension, yielding a linear array of points. Vice versa for Fig. 3. 

That’s due to the fact that the Fourier transform of a constant is the delta function and vice 

versa.  

The number of elements in the original pattern strongly determines the sharpness of the 

diffraction pattern. Fig. 4 demonstrates this using a one-dimensional regular structure of points 

as source pattern. Depending on the number of points used, the diffraction pattern varies in 

sharpness. 

 

  

  

  

  

  
Figure 4: Dependence of the diffraction pattern on the number of source objects used. The sharpness 

increases with this number (from top to bottom: 3, 7, 11, 15, 19). 
 

A special problem in Fourier transform is the fact that one always has to deal with limited data, 

albeit theory assumes unlimited data to be transformed. Using limited data means to make a 

transformation of the product of the unlimited data with a rectangular function. The Fourier 

transform in that case is the convolution of the two transforms. As the transform of a rectangular 

function shows side wings (sinus cardinal), these also show up in the transform of the product, 

mainly convoluted to each of the peaks of the transform. This spurious additional intensity may 

affect the pattern of the Fourier transform producing fictitious information. The effect is shown 

in Fig. 5, the peaks are smeared out, surrounded by undesired side wings. 
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Figure 5: Sharply limited pattern (left) and its Fourier transform (right). Side wings appear at 

the peaks. 

 

The effect can by reduced by smoothing the sharp edges of the original pattern. This treatment 

is called apodization or windowing. The pattern is multiplied by an appropriate apodization or 

windowing function. In Fig. 6 this is done using sin2 functions 

2 2

x y

x y
pattern pattern sin sin

L L

   
=     

   

     Eq. 25 

Lx and Ly respectively, are the sizes of the original pattern. 

  
 

Figure 6: The pattern of Fig. 5 multiplied by an apodization function. The side wings in the 

Fourier transform disappear. 

 

The resulting Fourier transform is now free from any side wings, yet the peaks are broadened 

slightly. This is due to the suppression of the outer parts of the pattern, which corresponds to 

an overall size and thus information reduction.  

According to the Sampling Theorem the sampling frequency in discrete Fourier transform 

(DFT) must be at least twice the highest frequency to be detected. If this requirement cannot be 

met, Aliasing occurs, i. e., frequencies above this limit are aliased by corresponding lower 

frequencies. 

 

The extent of the diffraction pattern is complementary to the size of the single diffracting 

elements. Fig. 7 shows this reciprocal behavior using a single circular shape as example. 
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Figure 7: Circular apertures of different size (upper row) and their corresponding 

Fourier transforms (lower row). The intensities are normalized to their respective 

maximum value. 

 

Similar results are produced by a two-dimensional regular array of objects. 

A similar reciprocity as for the element size and the extent of the diffraction pattern of course 

must be valid for the periodicity of the original and transformed functions. This is one of the 

essentials of the Fourier transform. 

In Fourier theory, convolution and product are complementary mathematical operations. The 

Fourier transform of a product of two functions equates the convolution of the Fourier 

transforms of the two functions. Vice versa, the Fourier transform of a convolution of two 

functions equates the product of the two Fourier transforms of the single functions.  A regular 

array of identical elements can be treated as a convolution of an array of corresponding 

points and a single element. The Fourier transform then must equate the product of the two 

elementary transforms. For diffraction optics, this means that the diffraction pattern of a regular 

array can be calculated as the product of the diffraction pattern of a single element and the 

interference pattern of the point array. Figs. 8 – 10 visualize this property of the Fourier 

transform. 

 

  
 

Figure 8: Single circular aperture and its Fourier transform. 
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Figure 9: Regular array of points and corresponding Fourier transform 
 

  
 

Figure 10: Regular array of circular apertures (convolution of single aperture and point array) and its 

corresponding Fourier transform (product of the respective Fourier transforms). 
 

Note in the simulations in Fig. 8.-10. apodization was applied.  

A diffraction grating is a (one-dimensional) array of identical slits or mirror elements. The 

diffraction pattern can be calculated by one or two-dimensional Fourier transform in a similar 

way as discussed above if we can assume Fraunhofer Approximation. Various typical features 

are shown in the following figures (appropriate aliasing is used to get sharp diffraction patterns) 

 

  
Figure 11: Ideal grating (narrow slits) and corresponding diffraction pattern. 

 

  

  
 

Figure 12: Slit width equates one half of the period: The minima of the slit diffraction 

function (top right) correspond to the maxima N=±2, ±4,...of the grating diffraction resulting 

in missing maxima (bottom right). 



 

13 

 

 

  
 

  
 

Figure 13: Slit width equates one third of the period: The minima of the slit diffraction function (top 

right) correspond to the maxima _ 􀀀 __ N=±3, ±6,...   (result bottom right). 

 

Fraunhofer Diffraction Example 

It is extremely difficult (impossible?) to find closed-form diffraction solutions using the 

Rayleigh–Sommerfeld expression for most apertures. The Fresnel expression is more tractable, 

but solutions are still complicated even for simple cases such as a rectangular aperture 

illuminated by a plane wave. Analytic Fraunhofer diffraction analysis is easier and, for our 

purposes, serves as a check on some of the computer results. Consider a circular aperture 

illuminated by a unit amplitude plane wave. The complex field immediately beyond the aperture 

plane is  

𝑈1(𝜉, 𝜂) = 𝑐𝑖𝑟𝑐 (2
√𝜉2+𝜂2

𝑤
)    Eq. 26 

 

To find the Fraunhofer diffraction field, the Fourier transform is taken as 

 

ℑ{𝑈1(𝜉, 𝜂)} = 𝑤2
𝐽1(𝜋𝑤√𝑓𝜉

2+𝑓𝜂
2)

2𝑤√𝑓𝜉
2+𝑓𝜂

2
    Eq. 27 

 

Then, with the substitutions in Eq. (24), and applying the leading amplitude and phase terms 

of Eq. (23), the field is found with 

𝐼2(𝑥, 𝑦) = (
𝑤2

4𝜆𝑧
)

2

[
𝐽1(𝜋

𝑤

𝜆𝑧
√𝑥2+𝑦2)

𝑤

2𝜆𝑧
√𝑥2+𝑦2

]

2

   Eq. 28 
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2 Setup and equipment 

2.1 Analytical calculation of Fraunhofer diffraction 

 

Let’s use MATLAB to display an irradiance pattern. We want to calculate  

 

𝐼(𝑥, 𝑦) = (
𝑤2

4𝜆𝑧
)

2

[
𝐽1(𝜋

𝑤

𝜆𝑧
√𝑥2+𝑦2)

𝑤

2𝜆𝑧
√𝑥2+𝑦2

]

2

   Eq. 28 

 
For the example below, I have chosen arbitrary parameters. You should use 
the code and change the parameters to the actual setting in your experiment!   
 

The following parameters have been used:  

 

Aperture (round or square) width   w = 2 mm  

Wavelength        = 633 nm (He–Ne laser wavelength) 

Distance from aperture     z = 50 m 

 

The Fresnel number constraint will assure that we can use Fraunhofer diffraction formula 

(Fourier transform) and requires that w2/4z < 0.1 or z > 10w2/4, which leads to z > 15.8 m. 

We’ll use z = 50 m. 

 

Now, let’s choose the other parameters.  A first parameter is the size of the screen L, which 

would in our case correspond to the detector size!  

A good display size for the function is if the array side length is perhaps five times wider 

than the pattern’s central lobe. The Bessel function J1 has a first zero when the argument is 

equal to 1.22. If y = 0, then the first zero in the pattern occurs when  

 

2𝜋
𝑤

2𝜆𝑧
𝑥 = 1.22𝜋    Eq. 29 

 

Solve for x to get half the center lobe width and double this result to get the full width of the 

center lobe 

𝐷lobe = 2.44
𝜆𝑧

𝑤
              Eq. 30 

 

We will choose L = 5 x 2.44 z/w = 0.2 m.  

 

Screen or detector size L    0.2 m  

 

A possible implantation of the code is available in the file “fraun_circ.m”. 

 
Running this script produces the results in Fig. 14. The Fraunhofer pattern of a circular aperture 

is commonly known as the Airy pattern. The central core of this pattern, whose width is given 

in Eq. (30), is known as the Airy disk.  
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a) b)  

Figure 14 Fraunhofer irradiance (a) image pattern and (b) x-axis profile for a circular 

aperture. This is known as the Airy pattern. 

 

2.2 Diffraction with a collimated beam setup and verification 

Mechanical setup:  

Start with the breadboard and mount the translation stage. 

 
Figure 15: Breadboard with translation stage 

 

The stage is fixed with screws arranged asymmetrically (see the right picture). Continue by 

mounting the adapter plate and the intermediate piece as below.  

 

   
 

Figure 16: Adapter plate and intermediate fixing have to be screw together. 

 

The cameras PCB (printed circuit board) special holder is mounted as shown below.  

 

    
 

Figure 17: Camera holder (left) mounted on the adapter plate with the intermediate piece. 

Right: as seen from below. 
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The assembly has to be fixed on the translation stage before the camera PCB is put into place.  

 
 

Figure 18  Mechanical holder to fix the camera 

 

 
 

Figure 19: Camera PCB in the mount ready for shooting. 

 

Mount the source holder at the other side of the breadboard so that the source is in front of the 

camera and put the laser in place. Switch on the laser (just connect to USB of the PC) and apply 

the lens cap.  

 

 

  
 

Figure 20: Source mounted with the lens cap (on the right) to achieve focussing and 

collimation 
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You should have a setup similar to that shown below. 

 

 
 

Figure 21: Collimated beam setup. The laser with the lens cap on the left illuminates the 

camera to the right. 

 

The red tube fixed over the source carries a plano-convex lens (f=12 mm,Ø=9 mm) made from 

BK7 (Thorlabs L1576). In addition, a polarizer is fixed inside the tube (Edmund Scientific part 

number ES45668). Moving the tube longitudinally (along the optical axis) focuses the light. 

Turning the tube adjusts the intensity (because there is a polarizer in the tube and the source is 

polarized too).  

 

 

Figure 22. Focalisation (black arrow) and intensity adjustment with the lens cap (white 

arrow). 

 

A collimated beam shows nearly no change of size when seen at different distances. This can 

be probed with a sheet of paper, as shown in the image sequence below in Fig. 23. 
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Figure 23: Light spot at different distances from the collimated source. There is nearly no 

change. 

 

Adjust the lens cap to have the best possible collimation. To make it happen the lens cap has to 

be moved along the optical axis to adjust the focus and the sheet of paper has to be used 

regularly to probe the collimation quality. 

For our measurements, we will use two different arrangements: without camera objective for 

direct observation of diffraction and with objective to observe grating diffraction. The infrared 

(IR) filter is a part of the objective holder of the camera objective. Use the sheet polarizer for 

additional intensity adaption. The sheet polarizer can be put just between the lens and the 

camera.  

 

• Remove the camera objective but leave the IR filter!  

• Set the linear stage at the middle position (5 mm). 

 

NOTE: The IR filter has to be left mounted in front of the camera.  

 

  
 

 

Figure 24. Details of the direct diffraction setup. The objective is removed and the distance 

between the detector surface and lens cap is set to a convenient value (e.g. 10 cm). 
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The diffractive structures will be put in front of the lens cap. So, the object plane is the end of 

the lens cap. It is important to know the distance between the object and the observation plane. 

Measure this carefully with the ruler and adjust with the linear stage to a convenient position. 

Put different diffracting objects in front of the lens cap and take images of their diffraction 

patterns. Analyse the results with the scripts discussed in the next sections.  

 

Diffraction of a circular aperture 

 

Place the holder containing the diffraction structures shown in Fig. 25 in front the lens cap. 

Slide it gently along the lens cap until the desired diffraction pattern appears on the camera. 

For the circular aperture, it should look like the image on the left of Fig. 26. 

 

   
 

Figure 25 Holder containing diffraction structures: a 100-microns wide slit, a 100-microns 

wide rectangular aperture and a circular aperture with a diameter of 100 microns.  

 

Use the script “fraun_circ.m” to analytically compute the diffraction pattern. You need to 

adjust the parameters in the script to your experimental setup. Be careful that all the 

parameters are correctly chosen and note the parameters in your report.  

 

Remember: The aperture width is 100 microns. Our wavelength is 635 nm and a typical 

propagation distance is 7 cm (to be measured by you!). Now, use your parameters for the 

simulations and compare with measurements.    

  
Figure. 26 Diffraction patterns measured and simulated. The height of the simulation field 

matches the detector height. Propagation distance in this case is 7 cm (you might have 

different values!!!). Pinhole diameter 100 microns. 
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Rectangular aperture diffraction 

As before, use the holder in Fig. 25. Slide it along the lens cap until you see a diffraction pattern 

as in the image on the left of Fig. 27. 

 

Again, you have to compare the diffraction pattern with the simulation. Use the script 

“fraun_square.m”. You again need to adjust the parameters in the script to the current 

problem. Be careful that all the parameters are correctly chosen and note the parameters in 

your report. 

 

  

Figure 27. Diffraction of a square aperture measured and calculated. Left measured, right 

simulated 
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2.3 Fraunhofer diffraction for a slit 

In this experiment, we want to measure the light intensity diffracted by a slit and simulate the 

corresponding diffraction pattern with Fraunhofer propagation.  

 

Measurement of Slit diffraction  

For the measurement, use the diffraction slit in the holder of Fig. 25.  

 

• Align the slit  

• Adjust intensity to avoid saturation with the polarizer  

• Take images with the slit aligned vertically 

 

An example of the measurement is shown below. Make a measurement and plot the images as 

shown below:  

 

  
A)     B) 

 
C)      D) 

Figure 28 Evaluation of the intensity pattern for slit diffraction. A) Image, B) 2d intensity as 

seen in Matlab, C) Single line intensity and D) averaged line intensity. 

 

You can use the script “AVG_line_ROI_red_single.m” to create the plots above.  

 

Take care to have a well aligned (vertical!!!) diffraction pattern 

that allows averaging procedures and avoid saturation.  
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Figure 29 Example plot with matching parameters between measurement and simulation. 

Such plots could be created with a modified script (AVG_line_ROI_red_compare.m).  

 

To assure the validity of the Fraunhofer approximation the calculation of the Fresnel number 

has to be done with the following formula 

𝑁𝐹 =
𝑤2

4𝜆𝑧 
 

For the slit, we can use the analytical diffraction equation to control our results. The zeros of 

intensity for the first order minima of a slit are given by the equation  

 

sin 𝜃 =
𝜆

𝑤
 

 

where  is the diffraction angle, w is the slit width and  is the wavelength.  

 

In the experiment, the distance from the slit to the camera is z. On our camera image, the 

positions x of the minima are given by the relation   

 

tanq =
x

z
 

and with the diffraction angle  from above, one finds  

 

𝑥 = 𝑧 tan 𝜃 = 𝑧 tan (arcsin (
𝜆

𝑤
))  

 

2.4 Grating diffraction and Fourier transform  

Grating diffraction is observed by illuminating a grating with a plane wave and focusing the 

light onto the detector. For the measurements, we are using the original camera objective. 

One uses collimated laser light that leads to extremely small spot sizes. Saturation is an issue 

and needs to be carefully controlled.  

The sheet polarizer is used to adjust the light intensity. It is placed in front of the collimation 

lens. By rotating the source in its mount, the light intensity is varied. In addition, the settings of 

the camera are changed to prevent overexposure. We are looking for the smallest focus size that 

can be achieved for point sources located away from the detector.  

 

The laser diode is itself a polarized source. Sources are polarized in a certain direction and 

rotation of the source with respect to the sheet polarizer allows intensity adjustment (cosine 
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square law when rotated by a certain angle ). To measure the focalisation properties, follow 

the following procedure: 

 

• Mount the objective in front of the camera 

 

 
Figure 30 Mount the objective. Rotating allows to focus the collimated source to the 

smallest spot size  

 

For convenience, we will not use the collimated laser beam as before but work with a situation 

where the laser is put as far as possible and imaged onto the detector by the objective.  

 

• REMOVE THE LENS CAP (!) from the source. 

 

• Adjust the intensity again using the sheet polarizer and rotate the source to lower the 

intensity  

• Adjust the exposure settings (low gain, if possible, also play with exposure time) 

• It is very important to avoid saturation because it falsifies the measurement. Note that 

this is not always possible 

 

 
 

Figure 31. Example image for the smallest spot size of the laser. The intensity has to be 

adapted depending on the diffractive object. Avoid saturation (not always possible!). 

 

Now the diffractive structures can be applied. Here, we will put them directly in front of the 

camera objective.  
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Figure 32. Setup with sheet polarizer and the application of the diffractive structure in front of 

the objective. 

 

There are several structures implemented on the sample. We want to study the influence of the 

gratings period and aspect ratio on the diffraction pattern and compare this with simulations.  

 

Structure type Period (m) Slit width (m) 

Line grating 20 10 

Line grating 40 10 

Line grating 60 10 

Line grating 60 20 

Line grating 60 30 

2d grating - square 50 10 

2d grating - square 50 25 

2d grating - triangle  50 25 

2d grating - circle  50 25 
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Figure 33 Diffractive structures present on the high-resolution wafer used in our experiment. 

A larger print out is given in the appendix at the end of this document. 

 

In our experiment, we will put the diffractive structure in front of the lens. Because of the lens, 

the formula describing the diffraction properties for Fraunhofer diffraction will change. One 

finds  

 

( )
( )

( ) ( ) ( )2 2

2 1

exp jkf k 2
U x, y exp j x y U , exp j x y d d

j f 2f f

   
= +   −  +          

  Eq. 34 

 

where f is the focal length of the lens. The equation is similar to expression Eq. (23) above but 

the definition of the spatial frequency has changed. Instead of Eq. 24 one finds now 

 

x

x
f

f
=


   y

y
f

f
=


     Eq. 35 

 

So, everything is expressed in terms of the focal lengths.  

This will have consequences on the calculation of the position of the diffraction spots on the 

detector.  

 

Do the following:  

• Determine the centre peak position by taking an image without diffractive structures.  

• Introduce the diffractive structure in front of the objective lens 

• Adjust intensity  

• Take images for all gratings and name them correctly 

• Take care that the images are aligned horizontally for further 

processing!! 
 

The resulting images are plotted below.  
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Figure 34. Diffraction patterns of gratings with different parameters. From top: =20m, 

w=10 m, =40m, w=10 m, =60m, w=10 m, =60m, w=20 m, =60m, 

w=30 m. The pictures need to be aligned perfectly horizontal which is not the case in this 

example.  

 

Diffraction pattern simulation 

Next, we will compare a simulated diffraction pattern with measurements using the script 

“fft_example_1d_grating_compare.m”. We want to visualize the effect of the slit/rectangle and 

the grating period and this is best done by plotting two graphs in each simulation plot – one for 

the slit alone and one for the grating. Note that w is the rectangle widths. The image below 

shows a simulation of selected a grating configuration.   

   
=20m, w=10 m  

   

Figure 35. Simulated diffraction patterns for different situations. In Blue, the diffraction of a 

single rectangle is shown. In red, the grating diffraction is given.  

 

Next, the simulation can be compared with experiment. To do so, a line plot of the measurement 

as shown in Fig. 36 should be used. The script will help you. It plots an image and a subplot 

with the diffraction pattern. You need to change to parameters in the script to your current 

situation. Determine the centre of your plot by introducing the name of your files and utilizing 

the zoom and curser function as in the MATLAB figure below. 
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Figure 36. The centre spot of the diffraction image is best found visually. In this example, it is  

x_center = 773 and y_center = 617. 

  

Change the script at the corresponding lines and run it again. You will get results similar to 

the plot below. 

 

 
=20m and w=10 m 

 

Figure 37. Comparison of measured and simulated plots for a given grating. In red is the 

simulated diffraction pattern and in blue the measurement 

 



 

28 

 

3. Appendix 

 


