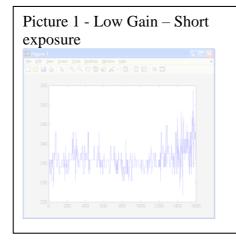
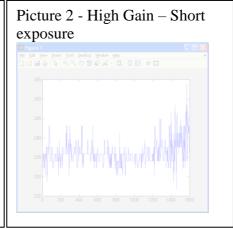


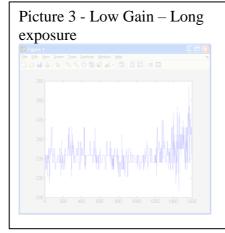
Detector Noise

1. Noise evaluation

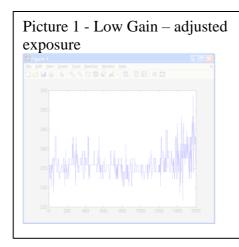

Please provide a table with the different means and standard deviations including parameters for each image and each color, for blue, green and red. (4 dark noise, 2 nearly saturated).

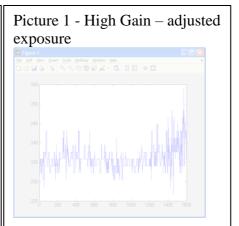

		RED		GREEN		BLUE	
		Mean	STD	Mean	STD	Mean	STD
Dark	Low Gain – Short exposure						
	High Gain – Short exposure						
	Low Gain – Long exposure						
	High Gain – Long exposure						
Bright	Low Gain – adjusted exposure						
	High Gain – adjusted exposure						

Give example line plots with a width of one line taken in the middle of the image for the measurement. (select one channel - red, green or blue, **six plots** (4 dark noise, 2 nearly saturated, select one channel - red, green or blue).

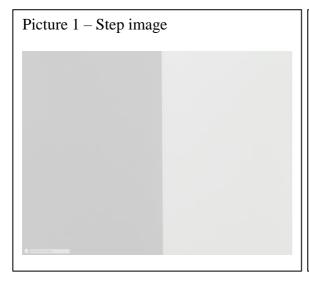

Specify the channel color you have selected:

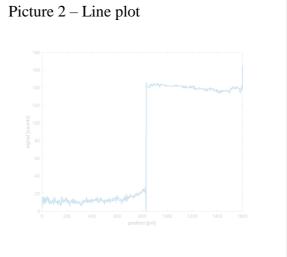
Dark noise plots

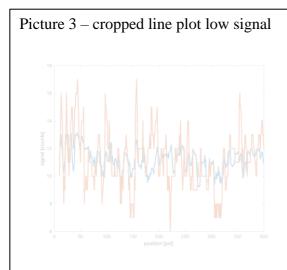


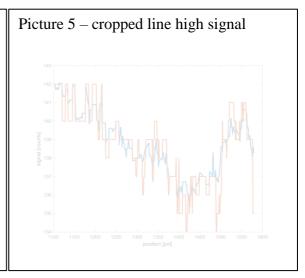


Bright images



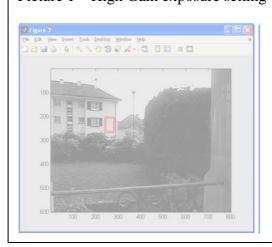

Comments:



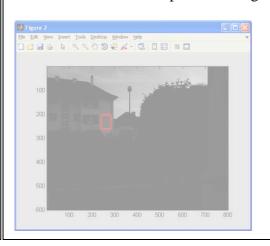

2. Noise reduction by averaging (45 min)

Show one set of example images like in Figure 14 for the high gain! (one channel - red, **four plots**). Make a table with the values for single line for low and high gain.

Find out how many lines (N = ?) from the high gain image have to be averaged to compensate the noise added by the gain!


	Low gain N=1	High gain N=1	High Gain $N = ???$
MEAN_red_left			
STD_red_left			
MEAN_red_right			
STD_red_right			

Comments:


3. High dynamic range imaging (45 min)

Show the images with the ROI (two plots).

Picture 1 – High Gain exposure setting

Picture 2 – Low Gain exposure setting

Indicate the **measurement zone** in the images!! Find the values as below

Image high gain: MEAN_ROI =

 $STD_ROI =$

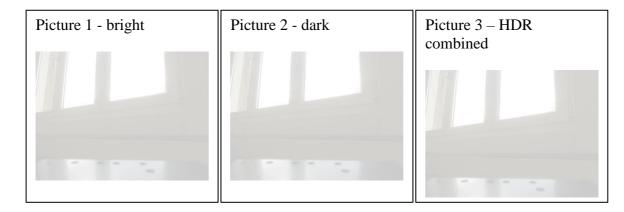
Image low gain: $MEAN_ROI =$

STD_ROI =

Evaluate the dynamic range increase obtained by the changing of the gain from low to high and calculate the dynamic range factor G with its error! (use the standard deviations as errors for the input values)

The dynamic range factor G is

$$G_0 = \frac{\textit{Mean signal value for high gain}}{\textit{Mean signal value for low gain}} = \frac{\textit{MEAN_ROI}_{\textit{high gain}}}{\textit{MEAN_ROI}_{\textit{low gain}}} =$$


Error calculation

$$\frac{\Delta G}{G_0} = \sqrt{\left|\frac{\left(STD_{ROI_{high\ gain}}\right)}{MEAN_{ROI_{high\ gain}}}\right|^2 + \left|\frac{\left(STD_{ROI_{low\ gain}}\right)}{MEAN_{ROI_{low\ gain}}}\right|^2} = \dots + \dots =$$

Give the final result

$$G = G_0 \pm \Delta G = \dots \dots \dots \pm \dots \dots$$

Show an example of high dynamic range imaging and provide the **three images** as shown in the example. Indicate in the image in which area one can gather supplementary information.

Describe below what are your observations.

Comments:			

4. Web example for HDR

Find a HDR example image on the web and cite correctly!

https://www.fotor.com/features/hdr.html, downloaded 20.2.2019

What is your opinion about such images?

Comments:			

(Optional) Personal feedback:
Was the amount of work adequate?
What is difficult to understand?
What did you like about it?
How can we do better?