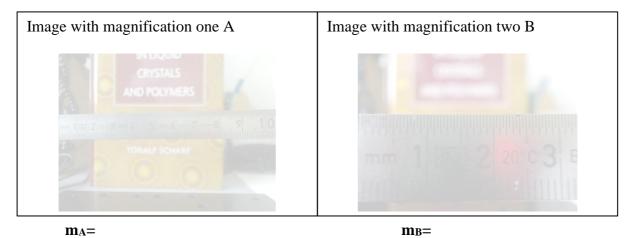



# **TP 01: Imaging**

## 1. Saturation and intensity adjustment of the camera

Take an image of the same scene at different exposure levels: one with default exposure, one with no saturated pixel and one with only a few saturated pixels.




Make line plots to show the saturation level and compare the plots for the three exposure conditions.

| Line plot 1 - default exposure                                                 | Line plot 2 - no saturated pixel | Line plot 3 - few saturated pixel |
|--------------------------------------------------------------------------------|----------------------------------|-----------------------------------|
| (B) (as the last last pasts given by (C)   |                                  |                                   |
| 200<br>200<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>1 |                                  |                                   |
| Comments                                                                       |                                  |                                   |



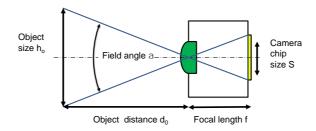
### 2 Procedure to measure the focal lengths

Show your two images with different magnifications.



Determine the focal length and show the numbers used for the calculation.  $(d_{IA}=0.5 \text{ mm} \text{ for one turn of the objective})$ 

$$f = \frac{d_{IB} - d_{IA}}{(m_B - m_A)} = >$$


Make an error estimation (see "Uncertainties and Error Propagation.pdf") assuming no error is made on  $d_{IA}$  and  $d_{IB}$ .

Give the steps to obtain the formula for  $\Delta f$ :

Result:  $f \pm Df =$ 

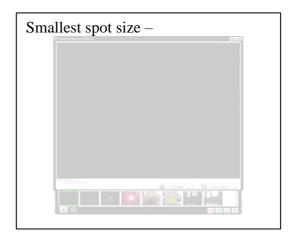


# 3 Measurement of the field of view (angle of view)



Measure  $h_{\text{o}}$  and  $d_{\text{o}}$ . Calculate the angle of view (field of view) and make an error estimation.

$$a = 2arctan \frac{S}{2f} = 2arctan \frac{h_o}{2d_o} \gg \frac{h_o}{d_o} =>$$


Give the steps to obtain the formula for  $\Delta\alpha$ :

Result:  $a \pm Da =$ 

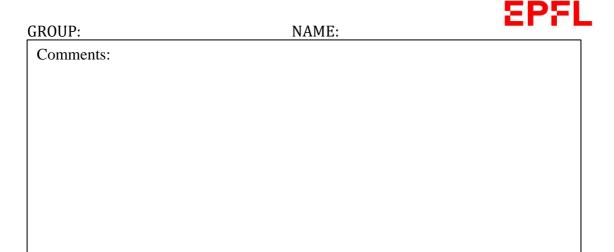


## 4 Measurement of the F# number.

A picture of the smallest spot size.



Fill the table below with your measurements of luminous disc size versa relative focusing position (min 5 measurements).


| No. | relative<br>position | Spot size<br>in pixel<br>(from<br>image) | Spot size in micron | Angle u | NA | F# |
|-----|----------------------|------------------------------------------|---------------------|---------|----|----|
| 1   | 0                    |                                          |                     |         |    |    |
| 2   |                      |                                          |                     |         |    |    |
| 3   |                      |                                          |                     |         |    |    |
| 4   |                      |                                          |                     |         |    |    |
| 5   |                      |                                          |                     |         |    |    |
| 6   |                      |                                          |                     |         |    |    |
|     |                      |                                          |                     |         |    |    |
|     |                      |                                          |                     |         |    |    |

| Calculate t | he | averaged | values |
|-------------|----|----------|--------|
|-------------|----|----------|--------|

u =

NA =

F# =



#### 5 Example from real world

Find an example on the internet of **one photographic lens** with small F# number. Try to find something that not all your classmates have. You might look at websites of well-known lens producers such as Nikon, Canon, Leica, Zeiss, Rodenstock, Fuji, etc. You can also include c-mount lenses (used for automated machine vision) in your search. Add a photo **of** the objective!



Leica Noctilux-M 1:0.95/50mm ASPH.

 $Ref: \ \underline{http://www.leicashop.com/brandnew\_de/leica-noctilux-m-1-0-95-50mm-\underline{asph.html}}$ 



| (Optional) Personal feedback:    |
|----------------------------------|
| Was the amount of work adequate? |
|                                  |
|                                  |
| What is difficult to understand? |
|                                  |
|                                  |
| What did you like about it?      |
|                                  |
|                                  |
| How can we do better?            |
|                                  |
|                                  |
|                                  |
|                                  |