Ingénierie optique

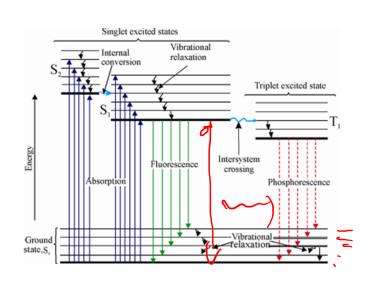
Semaine 12 – partie 1

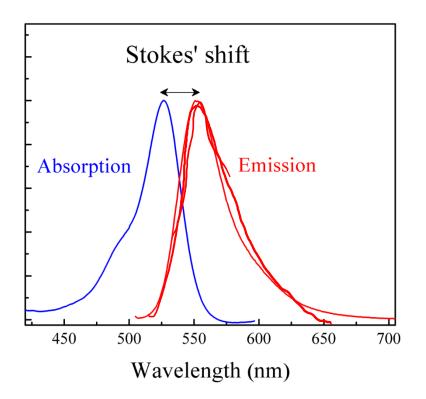
Trois rappels importants pour le cours d'aujourd'hui

• Taux de transition p [s⁻¹] (=probabilité), durée de vie t [s]; caractérisent le nombre de photons qui vont être produits/absorbés par les différentes transitions:

$$p = \frac{1}{\tau}$$

L'émission d'un atome/molécule est toujours à large spectre:



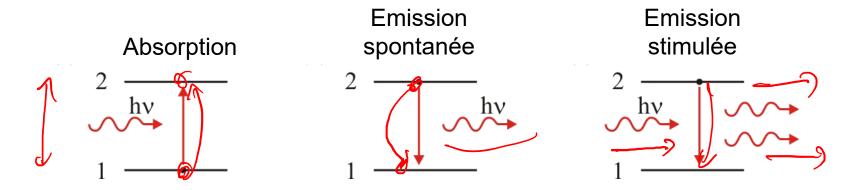


Transitions optiques et coefficients d'Einstein

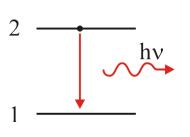
 Les transitions sont déterminées par la différence d'énergie entre les niveaux concernés qui détermine aussi la fréquence de la radiation:

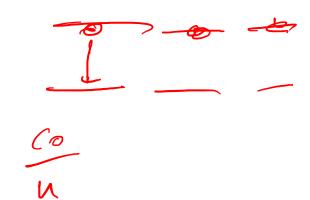
$$\Delta E = E_2 - E_1 = h \nu_0$$

- On considère un volume V avec une certaine quantité de photons
- Dans un premier temps on considère des photons monochromatiques à la fréquence ν (qui peut être ν_0 mais pas nécessairement)
- Il existe trois types de transitions



Transitions optiques



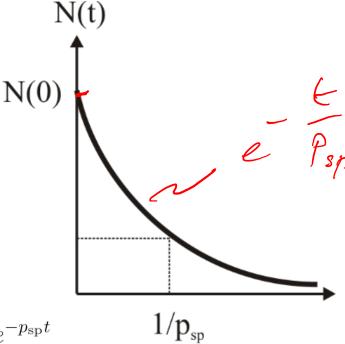


Emission spontanée:

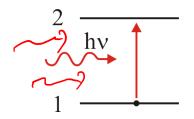
- probabilité de transition $2 \to 1$ par unité de temps pour un volume V:

$$p_{\rm sp} = \frac{c}{V} \sigma(\nu)$$

- $\sigma(\nu)$ section efficace de transition [cm²]
- probabilité d'émettre un photon de façon spontanée dans l'intervalle Δt : $p_{\rm sp} \Delta t$
- pour N atomes, $\Delta N = N p_{\rm sp} \Delta t$ feront une transition pendant l'intervalle Δt ; $dN/dt = -p_{\rm sp} N$
- évolution de la population d'atomes excités: $N(t) = N(0)e^{-p_{\rm sp}t}$



Transitions optiques



Absorption:

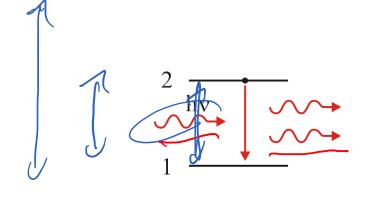
- probabilité de transition $1 \rightarrow 2$ par unité de temps pour un volume V:

$$p_{\rm ab} = \frac{c}{V} \sigma(\nu)$$

- c'est la même loi qui contrôle l'émission spontannée
- si on a n photons dans le volume V (on utilise P_{ab}):

$$P_{\rm ab} = \overbrace{V}^{c} \sigma(\nu)$$

Transitions optiques



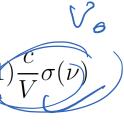
- Emission stimulée:
 - Probabilité de transition $2 \to 1$ par unité de temps pour un volume V:

$$p_{\rm st} = \frac{c}{V} \sigma(\nu)$$

- pour n photons dans le volume V: $P_{\rm st} = n \frac{c}{V} \sigma(\nu)$
- le photon émis est cohérent, il a la même phase que le photon incident !
- comme $P_{\rm st}=P_{\rm ab}$ on introduit un symbole unique pour la densité de probabilité d'émission stimulée ou d'absorption $W_i=P_{\rm st}=P_{\rm ab}$

Section efficace, ligne spectrale, force d'oscillateur

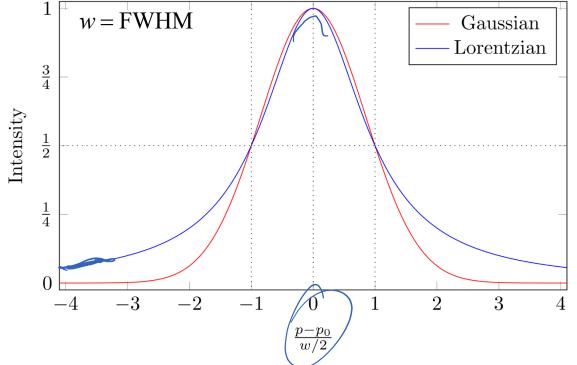
- Probabilité totale d'émettre un photon $p_{\rm sp} + P_{\rm st} = (n + 1)$
- La section efficace peut prendre différentes formes:
 - Lorentz:

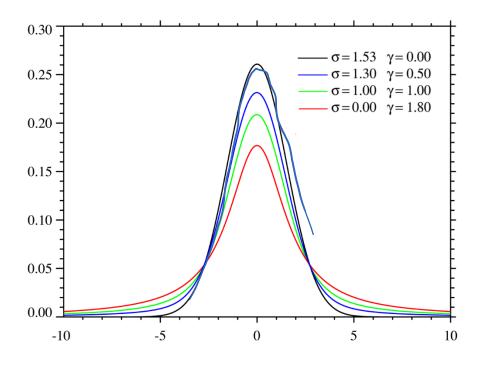


$$L(x) = \frac{1}{1+x^2}$$
 $x = \frac{p-p_0}{w/2}$

$$G(x) = e^{-(\ln 2)x^2}$$

$$V(x;\sigma,\gamma) = \int_{-\infty}^{\infty} G(x';\sigma) L(x-x';\gamma) dx'$$

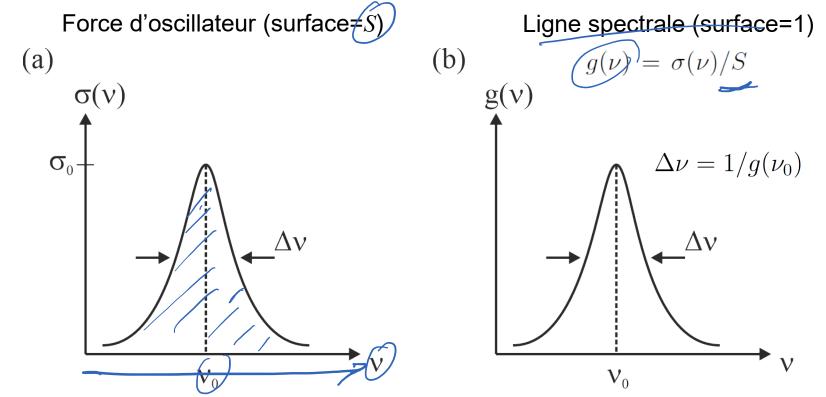




FWHM: full width at half maximum

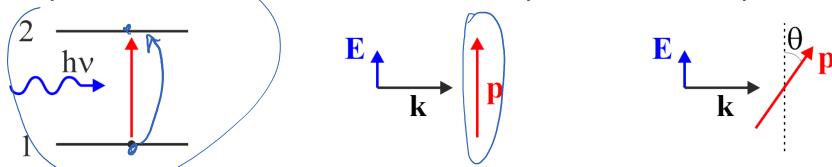
Section efficace, ligne spectrale, force d'oscillateur

- Section efficace centrée autour de v_0 , où les transitions sont les plus probables
- La force d'oscillateur $S=\int_0^\infty \mathrm{d}\nu \sigma(\nu)$ caractérise la probabilité d'absorption ou d'émission de radiation sur l'entier du spectre
- Pour comparer différents systèmes, on définit une ligne spectrale dont la surface vaut 1:



Olivier J.F. Martin

- Jusqu'à présent, nous avons implicitement calculé ce qui se passe dans un volume V; il est possible de considérer des grandeurs qui ne dépendent pas du volume
- On introduit une nouvelle force d'oscillateur \overline{S} et la ligne spectrale $\overline{\sigma}(v) = \overline{S} g(v)$
- Des calculs basés sur la distribution de photons et moyennés sur toutes les orientations possibles du moment dipolaire de l'atome et la polarisation du photon permettent d'obtenir: λ^2
- En effet, on peut considérer une transition atomique comme un dipôle...



... et comprendre que l'orientation entre le champ et le dipôle va jouer un rôle

$$\overline{\sigma}(v) = \frac{\lambda^2}{8\pi t_{\rm sp}} g(v) \quad \triangle$$

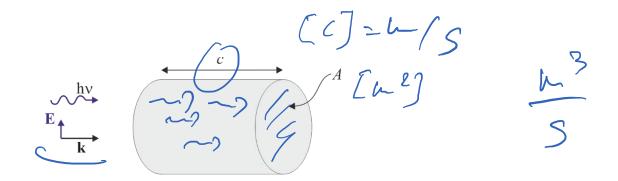
- Le coefficient $t_{\rm sp}$ est un temps qui correspond à la durée de vie de la transition 2 ightarrow 1
- On le relie à la probabilité d'émission spontanée:

$$P_{\rm sp} = \frac{1}{\widehat{t_{\rm sp}}}$$

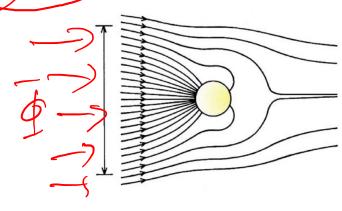
- Dans un laser, on aura une compétition entre l'émission stimulée (qui fait gagner des photons) et l'absorption (qui fait perdre des photons)
- Considérons tout d'abord un flux de photons monochromatiques ϕ , d'intensité I et de fréquence v :

$$\varphi = \frac{1}{hv}$$

- Ce flux de photons interagît avec un atome de fréquence de résonance v_0
- On souhaite calculer la probabilité d'interaction $W_i \equiv P_{\rm ab} = P_{\rm st}$



- On peut considérer que le flux de photons ϕ occupe un volume V dans l'espace et le temps, construit sur un cylindre de base A, longueur c et volume V=cA [cm³/s]
- Le flux de photons (photons/s) qui traverse la base du cylindre est ϕA
- Comme les photons vont à la vitesse c, on a à chaque instant $n = \phi A = \phi V / c$ photons dans volume; on en déduit: $\phi = nc/V$
- Nous avons vu précédemment que $P_{ab} = n \frac{Q}{V} \sigma(v)$ (probabilité d'absorption)
- On en déduit donc $P_{\rm ab} \equiv P_{\rm st} \equiv W_i = \phi \sigma(\nu)$



- Dans un laser, on aura différentes longueurs d'onde, on doit donc généraliser ce résultat pour un spectre de photons $\rho(v)$
- On a maintenant deux dépendances en fréquence: la transition optique g(v) (centrée autour de v_0) et les photons dans la cavité $\rho(v)$
- On intègre la relation $W_i = nc\sigma(v)/V$ sur l'entier du spectre:

$$W_{i} = \int_{0}^{\infty} \underbrace{\frac{\rho(v)V}{hv}}_{C} c \sigma(v) dv \simeq \frac{\rho(v_{0})c}{hv_{0}} \int_{0}^{\infty} \sigma(v) dv = \frac{\rho(v_{0})}{hv_{0}} c\overline{S} = \frac{\lambda^{3}}{8\pi h t_{sp}} \underbrace{\rho(v_{0})}_{C} c\overline{S}$$

- on a utilisé le fait que $\sigma(\nu)$ varie rapidement autour de ν_0
- on a introduit $\lambda = c / v_0$
- on s'est souvenu que $\overline{S} = \lambda^2 / 8\pi t_{\rm sp}$

• On a donc
$$W_i = \frac{\lambda^3}{8\pi\hbar t_{\rm sp}} \rho(v_0)$$
 et $\overline{n} = \frac{\lambda^3}{8\pi\hbar} \rho(v_0)$

Finalement, pour la probabilité d'absorption ou d'émission stimulée:

$$W_i = \frac{\overline{n}}{t_{\rm sp}}$$

- En 1916, Einstein a étudié le rapport entre émission spontanée et stimulée · pporfamele
- On introduit les coefficients d'Einstein A et B:

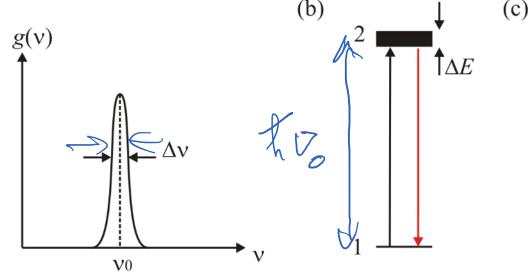
$$P_{sp} = A$$

$$W_{i} = B\rho(v_{0})$$

$$B = \frac{\lambda^{3}}{8\pi h t_{sp}}$$

$$\frac{B}{A} = \frac{\lambda^{3}}{8\pi h}$$

- Le taux d'émission stimulée occasionné par une source polychromatique est proportionnel à la densité d'énergie lumineuse à la fréquence ν_0 de la transition considérée: $W_i = \cancel{B}_{\nu}(\nu_0)$
- Si l'on observe le spectre de la radiation émise par un ensemble d'atomes tous semblables, on s'attend a n'observer qu'un pic très mince de fréquence correspondant à la transition entre les (a) (b) deux niveaux concernés. Dans la réalité on observe un pic relativement large associé aux différents niveaux en jeu

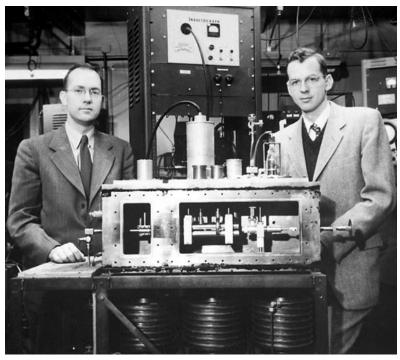


Ingénierie optique

Semaine 12 – partie 1

Lasers

- Light Amplification by Stimulated Emission of Radiation
- Microwave Amplification by Stimulated Emission of Radiation

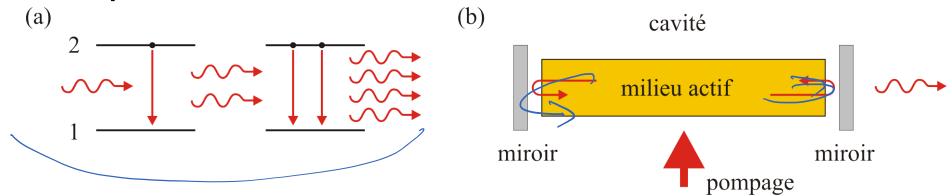


Townes, Gordon (et Zeiger) 1954

prl.aps.org

- 1958: Shalow et Townes, travail théorique
- 1960: Maiman premier laser rubis
- 1962: première diode laser
- 1964: prix Nobel (Basov, Prokhorov et Townes)

Lasers – Principe



- Objectif: amplifier la lumière et créer un rayonnement cohérent (donc avec une très petite largeur spectrale) en utilisant l'interaction lumière-matière
- Ingrédients?
 - émission stimulée milieu actif
 - pompage optique, électrique, chimique
 - feedback et effet de filtre cavité, résonateur

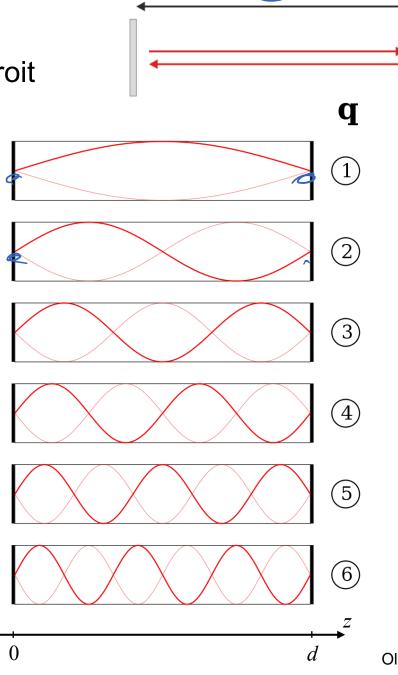
Cavité laser (Fabry-Perot)

- Rôle principal: créer un spectre d'émission étroit
- Champ électrique dans la cavité (mode de la cavité):

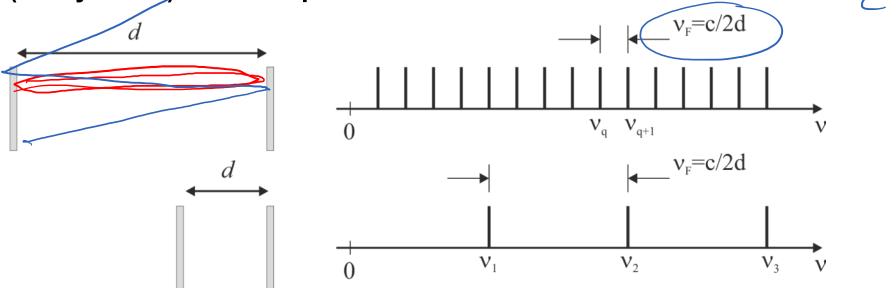
$$u(z,t) = \Re \{U(z) \exp(j2\pi\nu t)\}$$
$$= \Re \{A_q \sin(k_q z) \exp(j2\pi\nu_q t)\}$$

s'annule en z=0 et z=d

$$k_q = q \frac{\pi}{d} \quad (q = 1, 2, \ldots)$$



Cavité laser (Fabry-Perot) - Miroirs parfaits



- On considère des miroirs (r = 1) parfaits et pas de perte dans le milieu se trouvant dans la cavité
- Les modes sont espacés régulièrement dans l'espace des fréquences v
- Cet espacement (ν_F free spectral range) dépend de la taille de la cavité

$$\nu_q = \frac{ck_q}{2\pi} = q\frac{c}{2d}, \quad q = 1, 2, \dots$$

$$\nu_F = \frac{c}{2d}$$

Cavité laser (Fabry-Perot) – Miroirs réels



• Avec des miroirs réels $(r \neq 1)$ ou de l'absorption dans la cavité, l'intensité diminue d'un facteur $|r|^2$ pendant un aller-retour et le spectre d'intensité prend une autre forme:

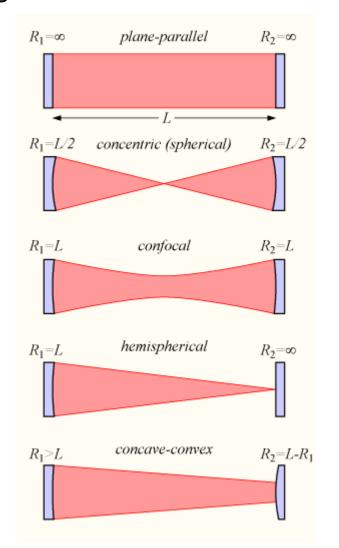
$$I = \frac{I_{\text{max}}}{1 + (2\mathscr{F}/\pi)^2 \sin^2(\pi \nu / \nu_F)}, \quad I_{\text{max}} = \frac{I_0}{(1 - |r|)^2}$$

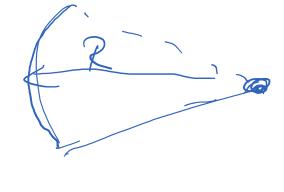
On a introduit la finesse de la cavité

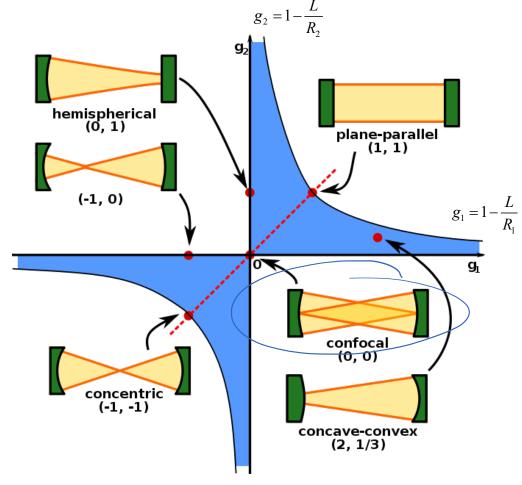
$$\mathscr{F} = \frac{\pi\sqrt{|r|}}{1-r}$$

Cavité laser (Fabry-Perot) – Conditions de stabilité

- Il existe différentes géométries de résonateurs
- L'alignement d'un résonateur est primordial pour sa stabilité

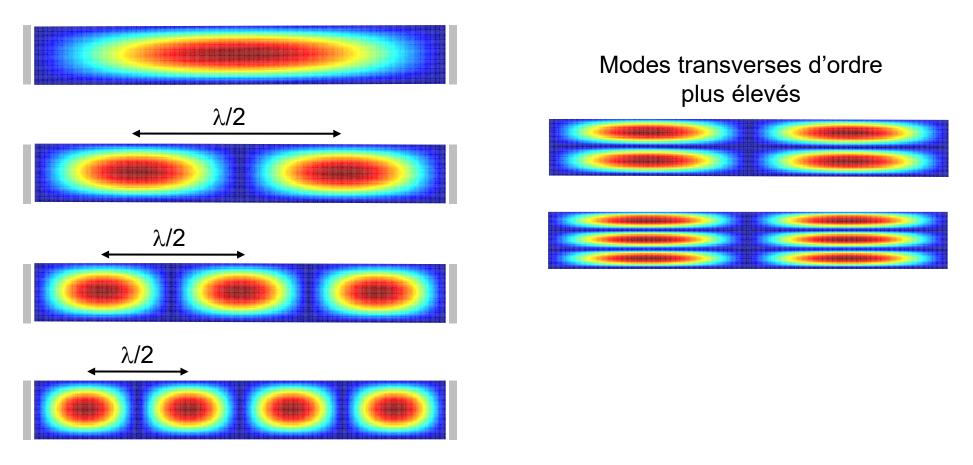






Cavité laser (Fabry-Perot) – Modes transverses

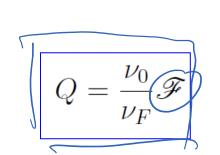
- La structure des modes est plus compliquée: il existe aussi une répartition transverse du champ électrique
- On essaie de limiter ces modes transverses

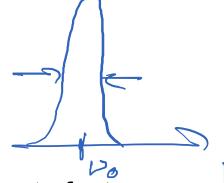


Cavité optique

Facteur de qualité d'une cavité:

$$Q = 2\pi \frac{\text{Energie emmagasin\'ee}}{\text{Energie perdue par cycle}}$$



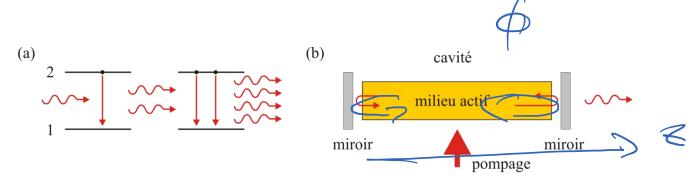


 Valeur typique: 10⁶ (il existe aussi des cavités lasers avec des très hauts facteurs de qualité ~10¹¹)

Geometry		B	$ \widetilde{\mathbf{E}}_x $		$ \widetilde{\mathbf{E}}_y $	
(r) (r)			10 (L 5 E 0 0 ★ -5 -10 -10 -5 0 5 10 k _x (a=1)		$ \begin{array}{c} 10 \\ (1 \\ 0 \\ 2 \\ -10 \end{array} $ $ \begin{array}{c} -10 \\ -5 \\ k_x \\ (a=1) \end{array} $	
r/a	\mathbf{r}'/\mathbf{a}	$\omega_n = a/\lambda_o$	${f Q}_{\parallel}$	${\bf Q}_{\perp}$	$\mathbf{Q}_{\mathrm{tot}}$	$\mathbf{V}_{ ext{eff}}$
0.35	0.45	0.265	34, 100	4,900	4,300	0.11
0.30	0.45	0.248	5,300	8,800	3,300	0.17

Ingénierie optique

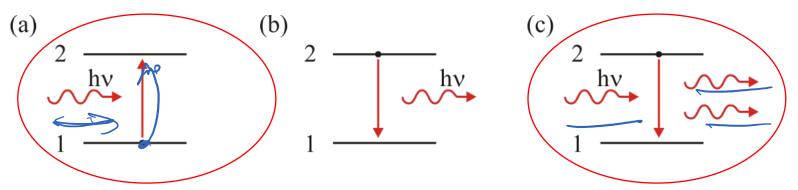
Semaine 12 – partie 2



- On considère une cavité avec une onde $E(z) \exp(j2\pi\nu t)$ se propageant dans la direction z (intensité $I(z) = |E(z)|^2/2\eta$, impédance du milieu: $\eta = \sqrt{(\mu_0/\epsilon_0\epsilon_r)}$)
- Flux de photons $\phi(z) = I(z)/h\nu$
- Durant la propagation dans le cavité, le flux de photons est modifié:

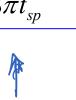
$$\frac{d\phi(z)}{dz} = \gamma(\nu)\phi(z)$$

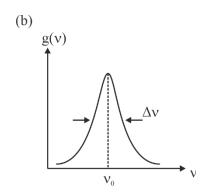
• $\gamma(\nu)$ changement d'amplitude (gain si >0; absorption si <0),



- L'absorption participe à l'atténuation de l'onde, l'émission stimulée participe à son amplification. L'émission spontanée ne participe qu'au bruit avec un photon émis sans relation avec l'onde incidente (photon incohérent)
- Probabilité/taux d'absorption **ou** d'émission stimulée: $W_i = \phi \sigma(\nu)$
- Les coefficients d'Einstein permettent de relier cette probabilité à la courbe de gain:

$$\sigma(\nu) = \frac{\lambda^2}{8\pi t_{sp}} g(\nu)$$





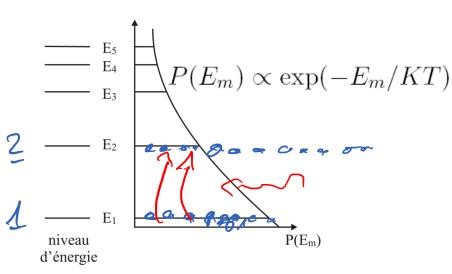
[W_i] = s⁻¹

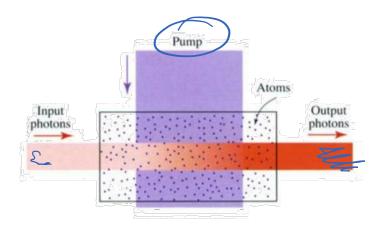
(a) 2 hv hv

- L'absorption et l'émission stimulée participent au processus d'amplification laser cohérent, pas l'émission spontanée
- N_1W_i photons absorbés et N_2W_i photons produits par émission stimulée.

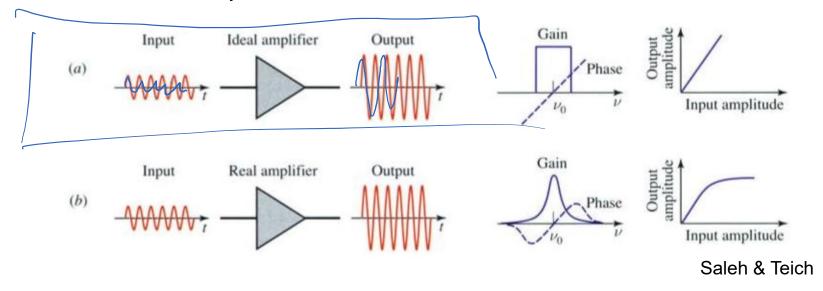
Bilan: $(N_2 - N_1)W_i = NW_i$ photons produits

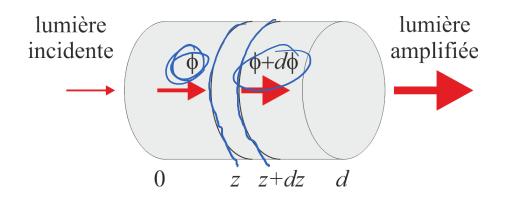
- N positif: inversion de population (ne se produit pas sans pompage)
- N=0 pas d'interaction, milieu transparent
- N<0 négatif: absorption





- On souhaite amplifier la lumière tout en gardant la phase du signal original
- Amplificateur idéal ou amplificateur réel:

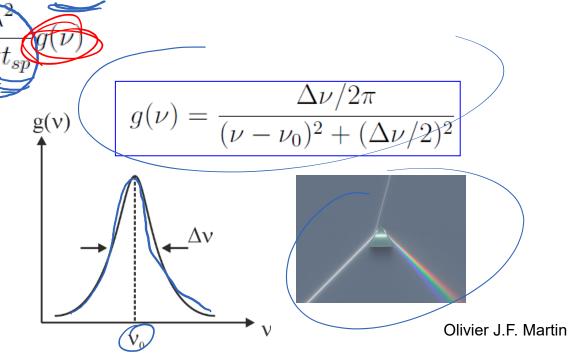


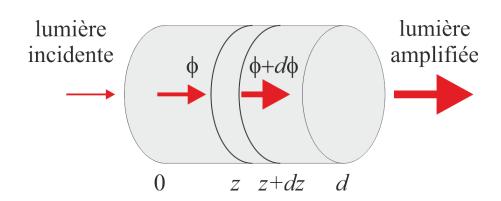


• Augmentation de la densité de photons sur une épaisseur dz : $d\phi = NW_i dz$

$$\phi(z) = \phi(0) \exp(\gamma(\nu)z)$$

- Coefficient de gain $\gamma(\nu) = N \sigma(\nu)$
- Section efficace, largeur de ligne (forme Lorentzienne)
- Le coefficient de gain dépend de la fréquence!
- On a un milieu dispersif!







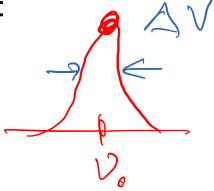
Evolution de la densité de photons et de l'intensité

$$\phi(z) = \phi(0) \exp(\gamma(\nu)z) \qquad I(z) = I(0) \exp(\gamma(\nu)z)$$

- Gain total (pour la longueur d): $G(\nu) = \exp(\gamma(\nu)d)$
- Si la ligne spectrale est Lorentzienne, le coefficient de gain l'est aussi:

$$\gamma(\nu) = \gamma(\nu_0) \frac{(\Delta \nu/2)^2}{(\nu - \nu_0)^2 + (\Delta \nu/2)^2}$$

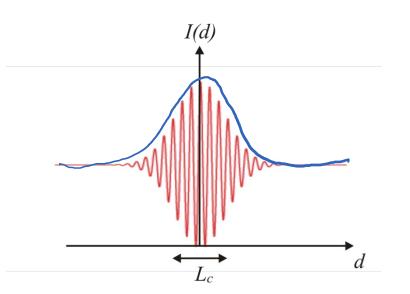
• Gain pour la fréquence centrale: $\gamma(\nu_0) = N(\lambda^2/4\pi^2t (\Delta\nu))$

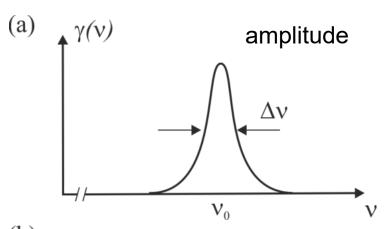


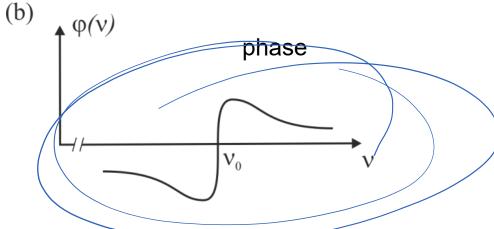
 En plus de voir son amplitude varier à cause du milieu amplifiant, l'onde dans la cavité voit aussi sa phase varier (le milieu est dispersif):

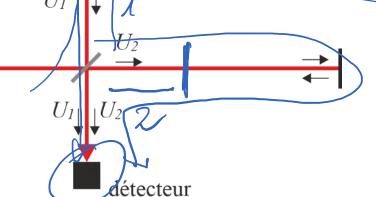
$$\varphi(\nu) = \frac{\nu - \nu_0}{\Delta \nu} \gamma(\nu)$$

Cet effet limite la cohérence:







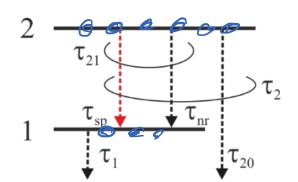


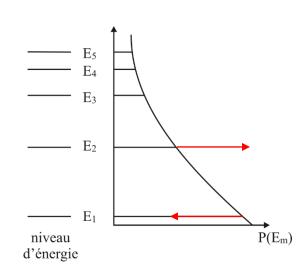
Ingénierie optique

Semaine 12 – partie 3

 $[\tau] = s$

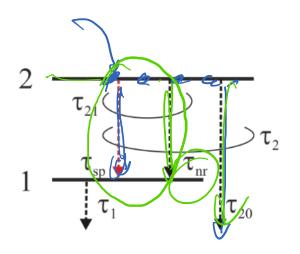
- On souhaite suivre l'évolution dans le temps des populations des niveaux 1 et 2
- Le lasage nécessite une inversion de population
- Il faut maintenir dans le temps $N=N_2-N_1>0$ entre ces populations
- On se concentre sur les niveaux 1 et 2
- D'abord on ne considère pas la présence de lumière (pas d'absorption, pas d'émission stimulée)

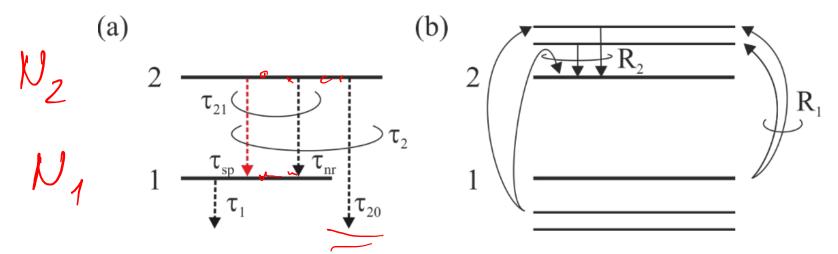




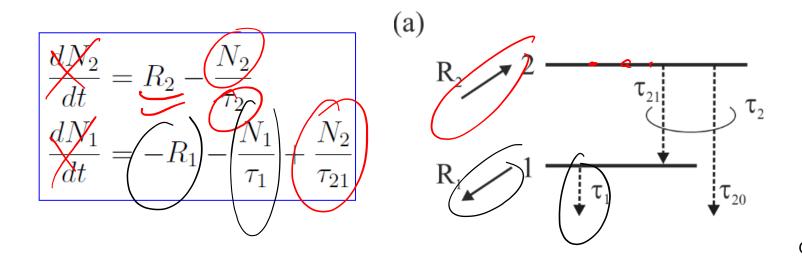
 $[\tau] = s$

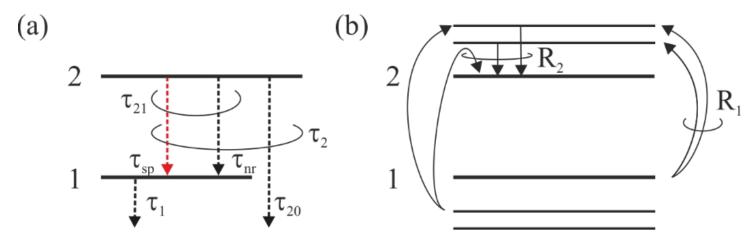
- Ce sont les taux [s-1] que l'on additionne, pas les durées de vie [s]
- Pour le niveau 2 on a globalement $\tau_2^{-1} = \tau_{21}^{-1} + \tau_{20}^{-1}$ et $\tau_{21}^{-1} = t_{sp}^{-1} + \tau_{nr}^{-1}$
- Si au départ les occupations des niveaux sont N_I et N_2 , le système va se désexciter progressivement en suivant les durées de vie τ_1 et τ_2
- On peut atteindre un état d'équilibre pour les populations des niveaux 1 et 2 en amenant des électrons vers le niveau 2 et en enlevant des électrons du niveau 1





 On peut atteindre un état d'équilibre pour les populations des niveaux 1 et 2 en amenant des électrons vers le niveau 2 et en enlevant des électrons du niveau 1





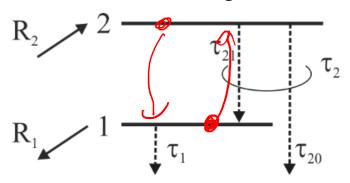
• A l'équilibre $dN_1/dt=dN_2/dt=0$ on obtient la différence de populations $N_0=N_{\rm equilibre}=N_2-N_1$

$$N_0 = R_1 \tau_2 \left(1 - \frac{\tau_1}{\tau_{21}} \right) + R_1 \tau_1$$

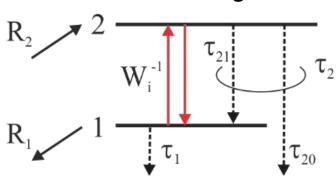
 A l'équilibre, on peut atteindre une grande différence de populations si le niveau deux est pompé de façon intense (R₁ et R₂ grands)

Rate equations – Bilan des taux d'occupation des niveaux

Sans lasage



Avec lasage



Avec absorption et émission stimulée:

$$[W_i] = s^{-1}$$

$$[\tau] = s$$

$$\frac{dN_2}{dt} = R_2 - \frac{N_2}{\tau_2} - \frac{N_2W_i}{\tau_2} + \frac{N_1W_i}{\tau_1}$$

$$\frac{dN_1}{dt} = -R_1 - \frac{N_1}{\tau_1} + \frac{N_2}{\tau_{21}} + N_2W_i - N_1W_i$$

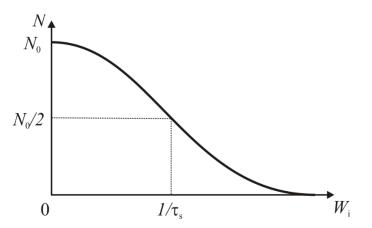
• A l'équilibre: ($N < N_0$)

$$N = \left(\frac{N_0}{1 + \tau_s W_i}\right)$$

 $[W_i] = s^{-1}$

 $[\tau] = s$

N2-N1



- La différence de population diminue en présence de radiation (avec émission stimulée et absorption)
- Lorsque l'interaction entre les deux niveaux augmente (W_i grand), alors $N \to 0$ et il ne peut plus y avoir de lasage
- au_s représente la constante de temps de saturation et joue un rôle important dans la dynamique du laser