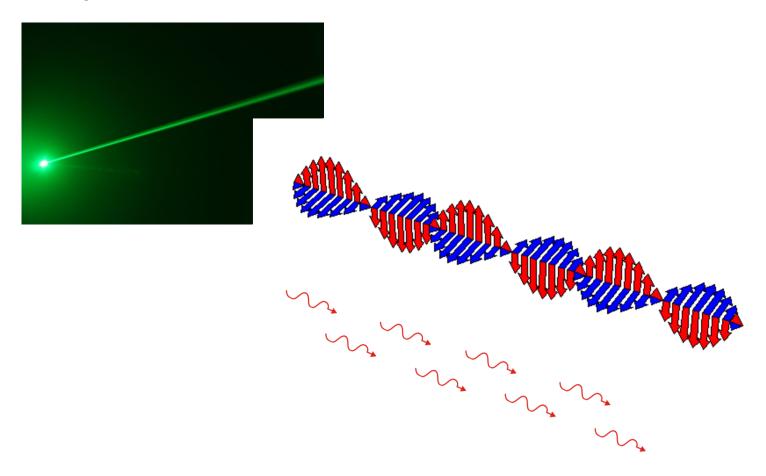

Ingénierie optique

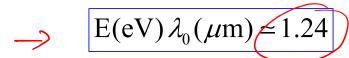
Semaine 10 – partie 1

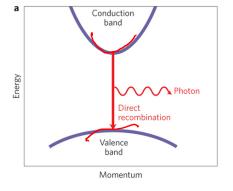
Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie



Photons

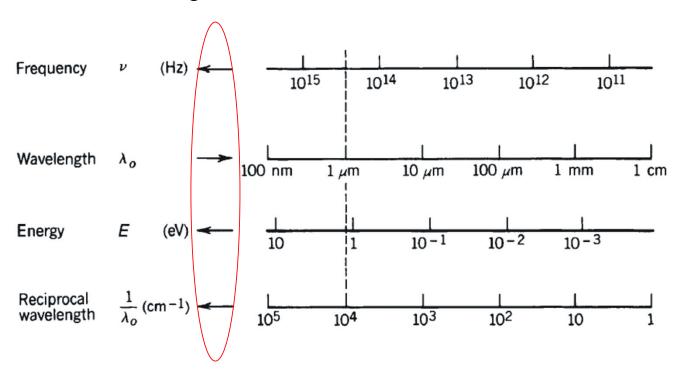
- Optique quantique: nouvelle perspective sur des phénomènes optiques déjà connus
- Théorie sous-jacente: électrodynamique quantique qui inclut la quantification des champs électromagnétiques
- Dans ce cours on se limite à une approche phénoménologique et on décrit un certain nombre de phénomènes


Rayon – onde – particule



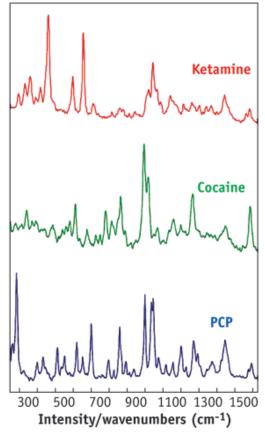
- Energie: $E=h\nu=\hbar\omega$ $h \neq 6.63\cdot 10^{-34}\,\mathrm{Js}$
- Constante de Planck réduite, $\hbar \neq h/2\pi$
- L'énergie du photon dépend de la fréquence correspondante:
 - photon infrarouge ($\lambda_0=1\,\mu\mathrm{m}$, $\nu=3\cdot10^{14}\,\mathrm{Hz}$):

$$h\nu = 1.99 \cdot 10^{-19} \,\mathrm{J} = 1.24 \,\mathrm{eV}$$


- énergie acquise par un électron dans une différence de potentiel de $1.24\,\mathrm{V}^{-}$
- relation très utile:

– par exemple: , GaAs bandgap $E=1.43\,\mathrm{eV} \to \lambda_0=870\,\mathrm{nm}$

• Différentes échelles d'énergie:


- L'énergie du photon dépend de la fréquence:
 - photon micro-onde ($\lambda_0=1\,\mathrm{cm}$): $h\nu=1.24\cdot 10^{-4}\,\mathrm{eV}$
- Unités d'énergie spectroscopiques: cm⁻¹

$$1 \,\mathrm{cm^{-1}} \longrightarrow 1.24/10'000 \,\mathrm{eV}$$

$$1 \,\mathrm{eV} \longrightarrow 8068.1 \,\mathrm{cm^{-1}}$$

 Même si on l'utilise comme unité, la longueur d'onde dépend du milieu (on fait donc référence à la longueur d'onde dans le vide); l'énergie (ou la fréquence) par contre ne dépendent pas du milieu

Olivier J.F. Martin

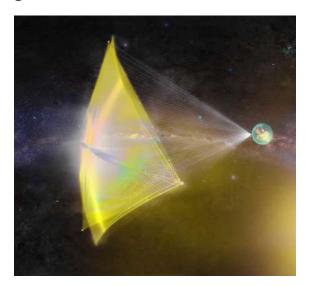
Ingénierie optique

Semaine 10 – partie 2

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

- Pas de masse...
- ... mais une quantité de mouvent!

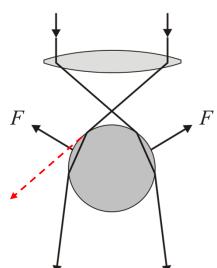
$$\mathbf{p}=\hbar\mathbf{k}$$

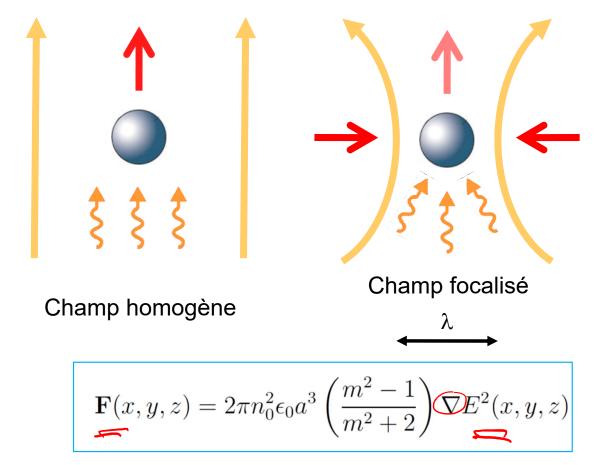


• En utilisant $p=\hbar k=\hbar\omega/c=\hbar 2\pi/\lambda$, $E=h\nu=\hbar\omega$ et $\hbar=h/2\pi$

- Cette quantité de mouvement peut être transférée à un objet de masse finie
 - → pression de radiation
 - → pincettes optiques (optical tweezer)
 - → piégage optique (optical trapping)

Pression de radiation – Breakthrough starshot sail program


- Une série de petits "vaisseaux" à voile que l'on lance depuis la stratosphère et auxquels on donne une vitesse initiale à l'aide d'une série de lasers terrestres
- Une fois mis en mouvement, chaque vaisseau doit pouvoir poursuivre sa route pendant des années, en évitant les collisions avec d'autres objets célestes
- Objectif: atteindre Alpha Centauri après 4.37 années de vol à 0.2 $c_{\scriptscriptstyle 0}$
- Challenges: matériau, illumination, etc...



- La pression de radiation d'une onde plane permet de pousser des objets
- Un faisceau focalisé permet de piéger des objets
- Cette force optique peut se comprendre en considérant la réfraction et en utilisant le principe action

 → réaction: la particule est attirée vers le centre du faisceau et la force de gravité peut être compensée
- La particule peut aussi être manipulée latéralement en déviant le faisceau
- Il y a donc deux types de forces optiques:
 - La pression de radiation (transfert "direct" de la quantité de mouvement du photon): champ homogène
 - La force liée au gradient du champ électrique,
 qui nécessite un champ inhomogène

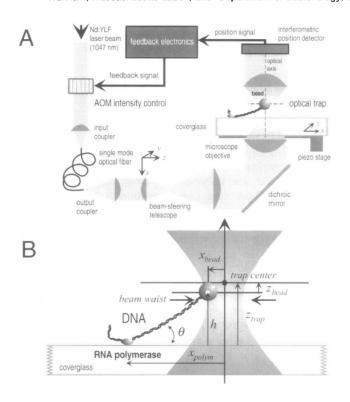
 Pour pouvoir piéger une particule latéralement, il faut une variation spatiale du champ optique (champ inhomogène, focalisé):

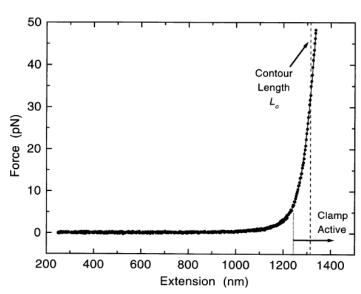
Sphère de rayon a Indice de réfraction n_1 , dans un milieu d'indice n_0

$$m = n_1 / n_0$$

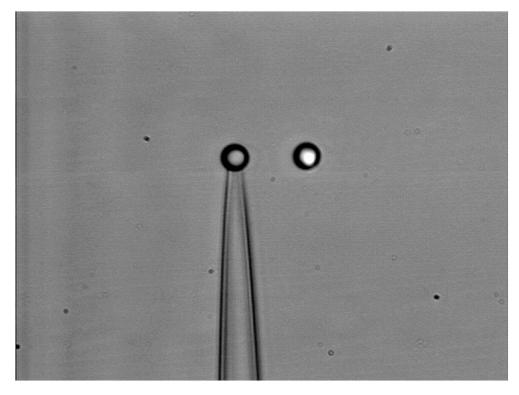
Olivier J.F. Martin

Manipulation non-invasive à l'échelle du nanomètre avec des forces de l'ordre du


pN (10⁻⁹ N)

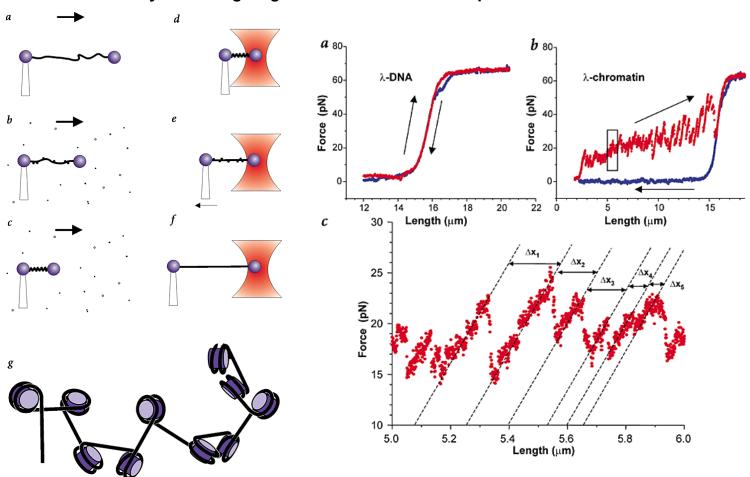

Biophysical Journal Volume 72 March 1997 1335-1346

1335


Stretching DNA with Optical Tweezers

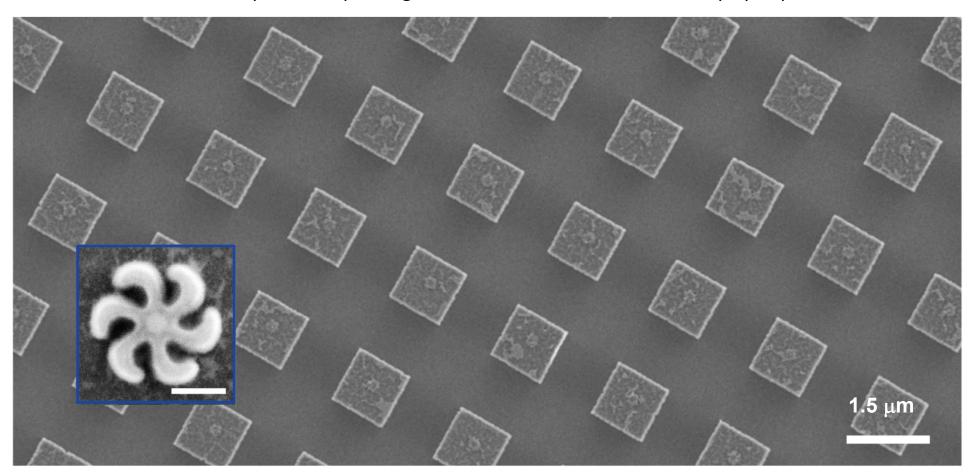
Michelle D. Wang,* Hong Yin,* Robert Landick,§ Jeff Gelles,* and Steven M. Block*
*Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; *Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254; and §Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706 USA

 Mesure de l'élasticité d'un brin d'ADN reliant deux sphères (une des sphères est attachée à une pipette, l'autre est piégée par la lumière)

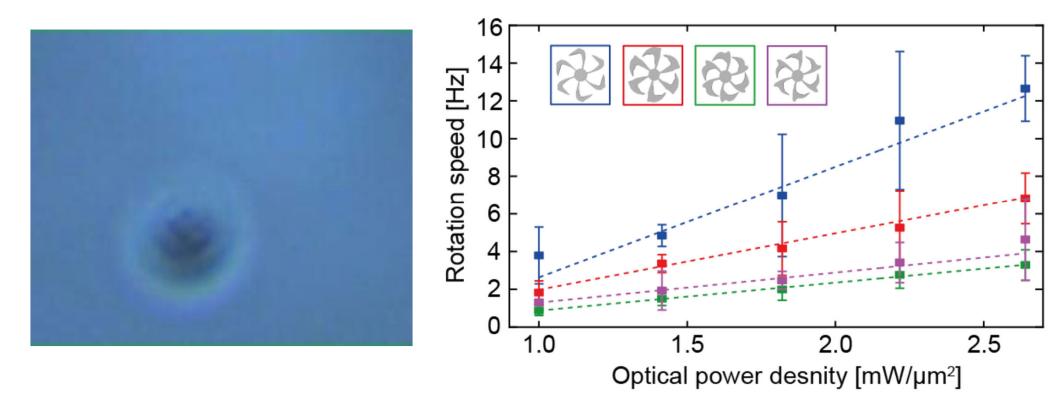


Northwestern University

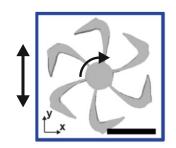
Piégeage optique - Débobinage de l'ADN

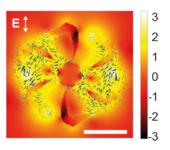

Nature Structural Biology 8, 606 - 610 (2001) doi:10.1038/89646

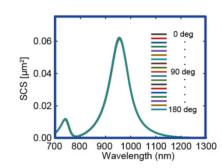
Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers

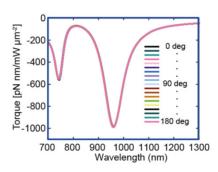

Nanomoteur optique

Nanostructure en or (100 nm) intégrée dans un bloc de verre (1 μm)


Nanomoteur optique


- Nanostructure en or (100 nm) intégrée dans un bloc de verre (1 μm)
- Lorsqu'on illumine le nanomoteur avec de la lumière il commence à tourner
- Plus l'intensité lumineuse augmente, plus il tourne vite




Nanomoteur optique

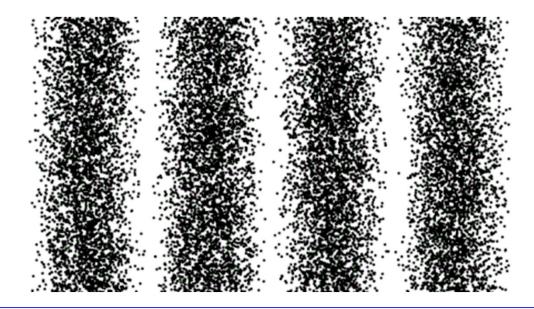
- Les effets liés à la polarisation peuvent être très complexes
- Par exemple, une illumination avec une polarisation linéaire crée ici le mouvement de rotation!
- Et le torque induit ne dépend pas de l'orientation de la polarisation incidente

Ingénierie optique

Semaine 10 – partie 3

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

Dualité onde – particule


- La lumière est une onde électromagnétique qui satisfait les équations de Maxwell...
- La lumière est composée de photons...
- ... donc le photon est une onde!
- Le photon a une certaine quantité de mouvement (puisqu'il produit des forces)...
- ... donc le photon est une particule!

Interférence par une double fente – 3 perspectives

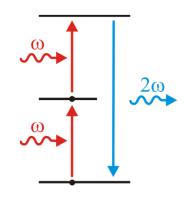
Géométrique Ondulatoire Quantique Intensité

Dualité onde – particule

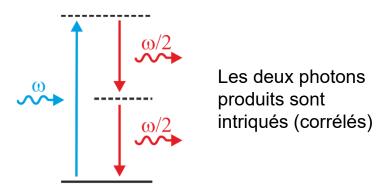
 Interférence par une double fente avec des photons uniques et en faisant la moyenne dans le temps:

• Le photon est <u>à la fois</u> une onde et une particule, parfois c'est son caractère ondulatoire qui est mis en évidence par une expérience (interférence), parfois c'est son caractère corpusculaire (force optique)!

Flux de photons

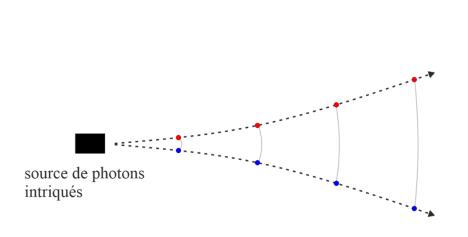

Table 6.1 – Densité moyenne de flux de photons pour différentes sources

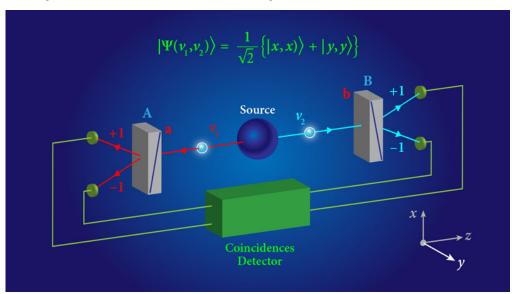
Source	Flux (photons/cm ² s)
Etoile	10^{6}
Pleine lune	10^{8}
Eclairage électrique	10^{12}
Soleil	10^{14}
Laser He–Ne (10 mW focalisé sur un spot de $20\mu\mathrm{m})$	10^{22}


Communication quantique

Optique non-linéaire

Second harmonic generation:

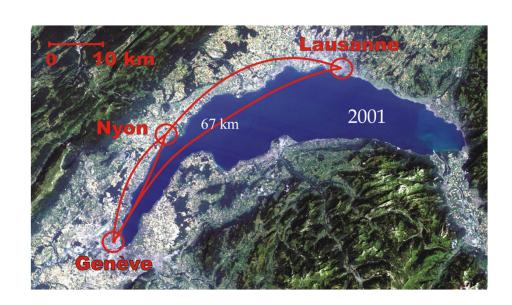

Parametric down-conversion:

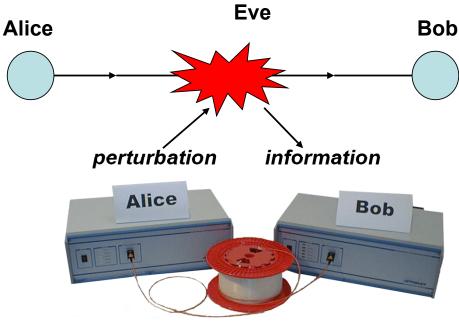


- Paire de photons intriqués : l'état quantique d'un photon ne peut pas être décrit indépendamment de l'état de l'autre photon
- Etat classique (bit classique): état 0 ou 1
- qubit: état 0, 1, ou n'importe quelle superposition des deux $|\psi\rangle = a_0|0\rangle + a_1|1\rangle$
- Pour les photons, c'est la polarisation qui joue le rôle d'états de base $\ket{0}$ et $\ket{1}$

Communication quantique

- Si on a deux photons (2 qubits), on peut décrire l'état du système sur une base $|00\rangle$, $|10\rangle$, $|01\rangle$ et $|11\rangle$
- Si les photons sont intriqués, ils restent corrélés même s'ils se propagent à grande distance l'un de l'autre
- La statistique de la mesure doit suivre une distribution spécifiques; si on a interféré avec les photons, cette statistique n'est pas satisfaire et on peut donc le découvrir




Communication quantique

- Réalisation de sources de photons uniques et démonstration d'un lien optique quantique
- Alice souhaite transmettre une information à Bob

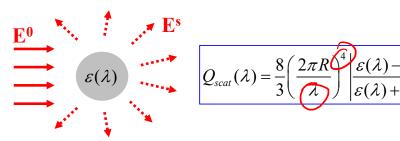
Si Eve espionne la ligne, dès qu'elle obtient de l'information, elle perturbe la mesure

(les inégalités de Bell sont violées)

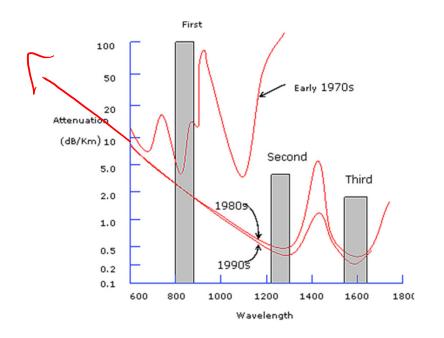
GAP Université de Genève

Olivier J.F. Martin

Ingénierie optique

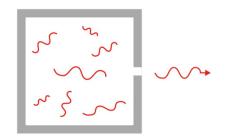

Semaine 10 – partie 4

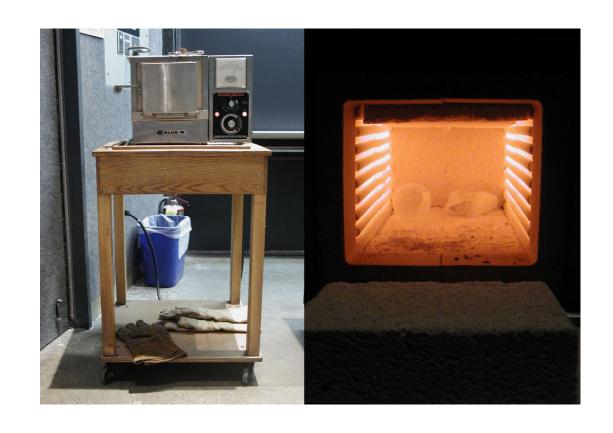
Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie



Diffusion de la lumière

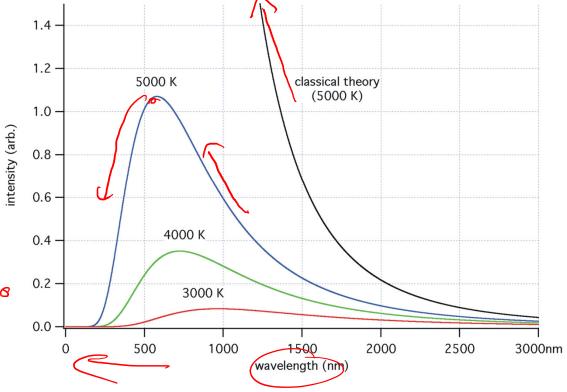
Diffusion Rayleigh:
 (pour de très petites particules, R << λ)




Particulièrement efficace pour les petites longueurs d'onde

Emission thermique

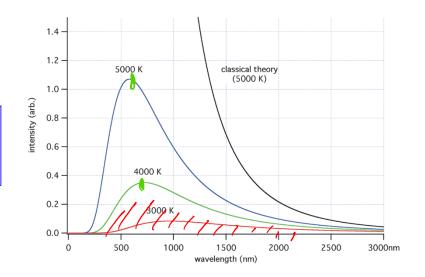
- Corps noir:
 - objet idéal isolé de l'extérieur où toute radiation est absorbée


Emission thermique

 Selon la théorie de Rayleigh, le spectre d'émission d'un corps noir devrait diverger pour les longueurs d'onde courtes (catastrophe ultraviolette):

$$B_{\lambda T} = \frac{2cKT}{\lambda^4} \quad \text{for each } \lambda \neq_{8}$$

 Planck a développé la théorie quantique du rayonnement, qui ne diverge pas:


$$B_{\lambda T} = \frac{2hc^2}{\lambda^5 [\exp(hc/\lambda KT) - 1]}$$

 Même s'ils ne sont pas des corps noirs idéaux la plupart des objets suivent cette loi au moins sur une partie du spectre

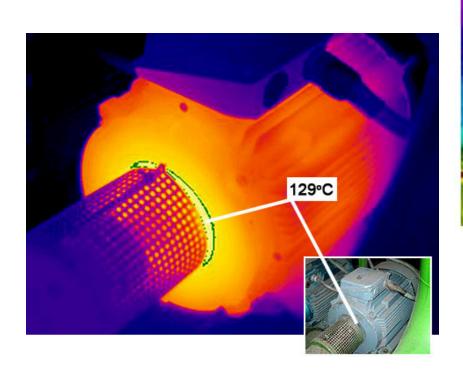
Emission thermique

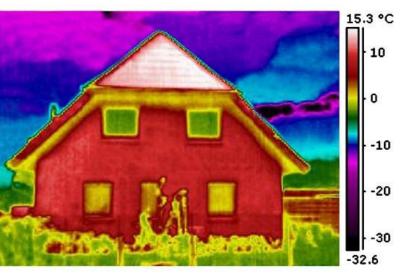
$$B_{\lambda T} = \frac{2hc^2}{\lambda^5 [\exp(hc/\lambda KT) - 1]}$$

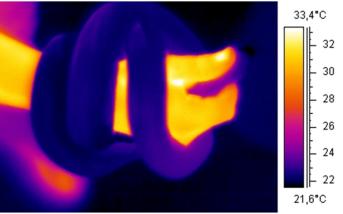
• Intensité intégrée sur le spectre: $I = \sigma T^4$ (loi de Boltzmann)

$$\sigma = 5.669 \cdot 10^{-8} \,\mathrm{W/m^2 K^4}$$

Maximum d'émission:

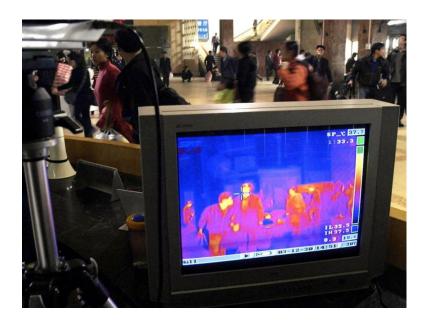

$$\lambda_{\text{max}}T = 2.8978 \cdot 10^{-3} \,\text{m}\,\text{K}$$


Approximations:


$$B_{\lambda T} = \frac{2h\nu^3}{c^2} \exp(-h\nu/KT)$$
 pour $h\nu >> KT$,
 $B_{\lambda T} = \frac{2KT\nu^2}{c^2}$ pour $h\nu << KT$.

Thermographie (infrarouge)

• Permet de mesurer à distance les températures

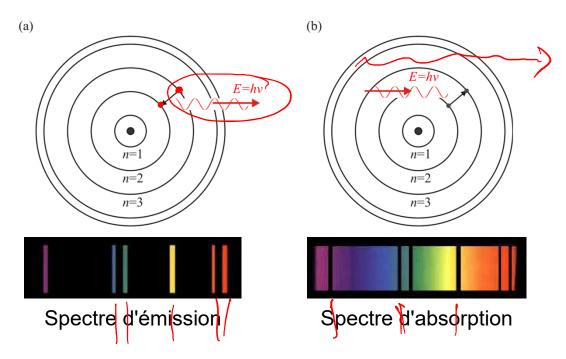


Olivier J.F. Martin

Thermographie (infrarouge)

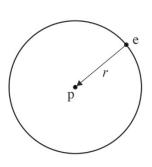
- Très large spectre d'applications:
 - sauvetage, localisation de victimes
 - recherche de foyer incendie ou de feu couvant
 - law enforcement
 - énergétique des bâtiments
 - localisation de court-circuit
 - mise en quarantaine

Ingénierie optique


Semaine 10 – partie 5

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

Niveaux d'énergie – Emission et absorption des photons


- Lorsqu'un électron est excité il peut se désexcité en émettant soit de la fluorescence (désexcitation rapide) soit de la phosphorescence (désexcitation lente)
- L'énergie du photon émis correspond à la différence d'énergie entre les niveaux correspondants
- Si un photon est absorbé, un électron passe vers un niveau d'énergie plus élevé

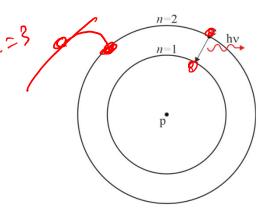
Olivier J.F. Martin

Modèle de Bohr

- Orbite circulaire avec la force de Coulomb: $\frac{mv^2}{r} = \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r^2}$
- Energie totale de l'électron: $E=E_c+E_p=-\frac{1}{8\pi\varepsilon_0}\frac{e^2}{r}$
- Quantification du moment cinétique (L=mvr): $L=n\frac{h}{2\pi}=n\hbar$ $n=1,2,3,\ldots$
- Quantification de la vitesse: $v \Rightarrow \frac{1}{4\pi\varepsilon_0} \frac{e^2}{L} = \frac{1}{4\pi\varepsilon_0} \frac{2\pi e^2}{nh}$
- Et des niveaux d'énergie: $E_n=-\left(\frac{1}{4\pi\varepsilon_0}\right)^2\frac{me^4}{2n^2\hbar^2}$
 Orbites possibles: $r_n=4\pi\varepsilon_0\frac{n^2\hbar^2}{me^2}$ Rayon de Bohr: $a_0=r_1=4\pi\varepsilon_0\frac{\hbar^2}{me^2}\simeq 0.53\,\text{Å}$

Olivier J.F. Martin

Modèle de Bohr - Energie du photon émis


• Energie du photon émis: $\Delta E_{n \to n'} = E_n - E_{n'} = h\nu$

$$\Delta E_{n \to n'} = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{me^4}{2\hbar^2} \left(\frac{1}{n'^2} - \frac{1}{n^2}\right)$$

$$\lambda = \frac{hc_0}{\Delta E_{n \to n'}} = (4\pi\varepsilon_0)^2 \frac{4\pi\hbar^3 c_0}{me^4} \frac{n^2 n'^2}{n^2 - n'^2}$$

- Série de Balmer: $\lambda=\frac{bn^2}{n^2-4}$ $n=3,4,5,\ldots$ $b=3'645.6\,\text{Å}$
- Correspond parfaitement au cas n'=2 et n>2 :

$$\lambda = (4\pi\varepsilon_0)^2 \frac{16\pi\hbar^3 c_0}{me^4} \frac{n^2}{n^2 - 4}$$

Johann Jakob Balmer (1825 – 1898)

Olivier J.F. Martin

wikipedia

Modèle de Bohr - Constante de structure fine

• Rapport de la vitesse de l'électron à la vitesse de la lumière:

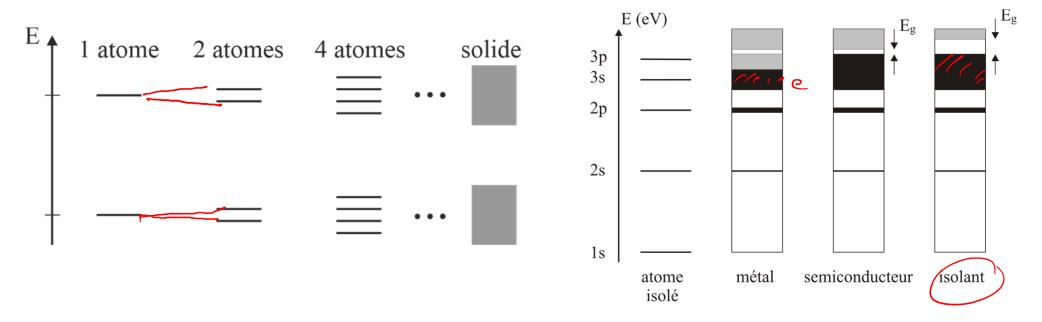
$$\frac{v}{c_0} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{n\hbar c_0}$$


• En calculant pour n=1:

$$v/c_0 = 0.007297$$
 $\alpha = 1/137$

Décrit le couplage entre électrons et photons

Au-delà du modèle de Bohr


- Dans le modèle de Bohr, l'énergie ne dépend que du nombre quantique principal $\,n\,$
- Pour chaque nombre quantique principal il existe des nombres quantiques azimutaux $l=0,1,2,\ldots,n-1$ (orbites s,p,d,f,g,\ldots)
- pour chaque nombre quantique azimutal, il existe 2l+1 nombres quantiques magnétiques $m=-l,-l+1,\ldots,-1,0,1,\ldots,l-1,l$
- Finalement, il existe deux valeurs pour le moment angulaire intrinsèque de l'électron (spin) $m_s = \pm 1/2$
- Pour une valeur du nombre quantique principal, il y a donc $2n^2$ niveaux possibles

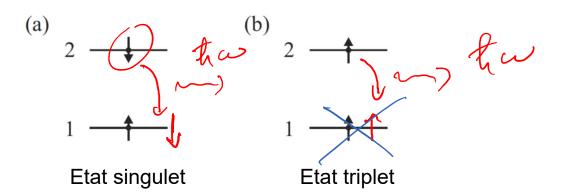
Olivier J.F. Martin

Niveaux d'énergie: de l'atome au solide

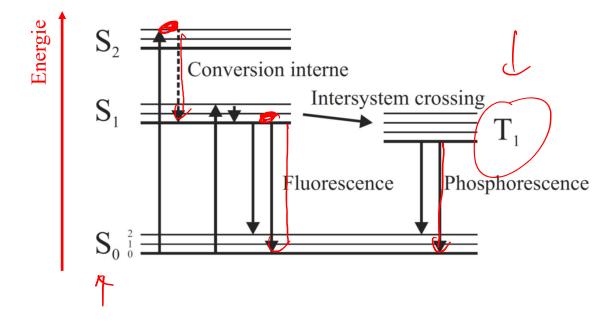
- Le principe d'exclusion de Pauli interdit que deux électrons se trouvent dans le même état (avec exactement les mêmes nombres quantiques)
- En augmentant le nombre d'atomes, on augmente le nombre d'états électroniques, jusqu'à l'apparition de bandes d'énergie pour les solides (au lieu de niveaux discrets)

Bande de valence, de conduction, bandgap, dopants

Ingénierie optique


Semaine 10 – partie 6

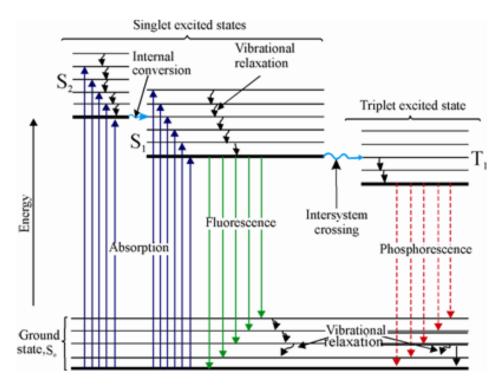
Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie


Etat triplet et singulet

- Le principe d'exclusion de Pauli interdit à deux électrons d'être dans le même état quantique (i.e. d'avoir la même énergie **et** le même spin)
- Ainsi, si l'électron excité a le même spin que l'électron se trouvant au niveau fondamental, il est très peu probable qu'il se désexcite (car alors les deux électrons se retrouveraient dans le même état quantique)
- La désexcitation est tout de même possible mais prendra beaucoup de temps

Fluorescence et phosphorescence

- Lorsqu'un électron est excité, il se retrouve généralement dans un état d'énergie élevé et passe par plusieurs niveaux d'énergie successifs avant de retomber au niveau fondamental en émettant de la lumière
- Chaque niveau électronique peut se décomposer en plusieurs niveaux vibrationnels; il existe donc plusieurs chemins de désexcitation possibles (élargissement des lignes spectrales)

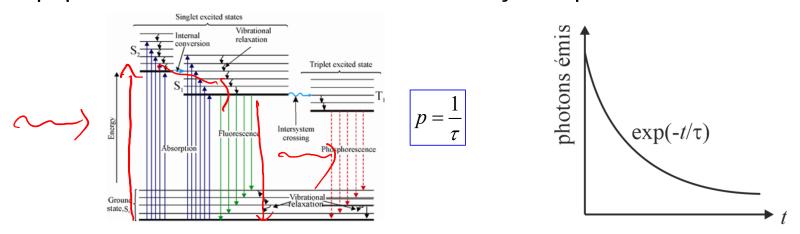

Diagramme de Jablonski

• Permet de déterminer toutes les transitions optiques possibles, en tenant compte de

tous les niveaux énergétiques

Table 1: Average timescales	for radiative and	I non-radiative processes
Table 1. Average unlescales	ioi raaiative ana	i non-taalative brocesses

Transition	Time Scale	Radiative Process?
Internal Conversion	10 ⁻¹⁴ - 10 ⁻¹¹ s	no
Vibrational Relaxation	10 ⁻¹⁴ - 10 ⁻¹¹ s	no
Absorption	10 ⁻¹⁵ s	yes
Phosphorescence	10 ⁻⁴ - 10 ⁻¹ s	yes
Intersystem Crossing	10 ⁻⁸ - 10 ⁻³ s	no
Fluorescence	10 ⁻⁹ - 10 ⁻⁷ s	yes



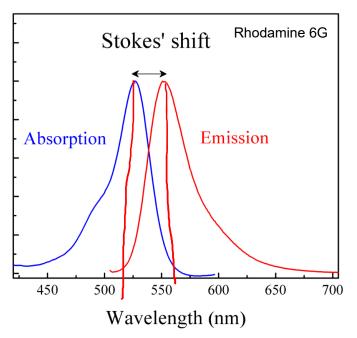
www.quora.com

Taux d'émission: Fluorescence ~108 s-1, Phosphorescence entre 1 et 103 s-1

Durée de vie et taux d'émission

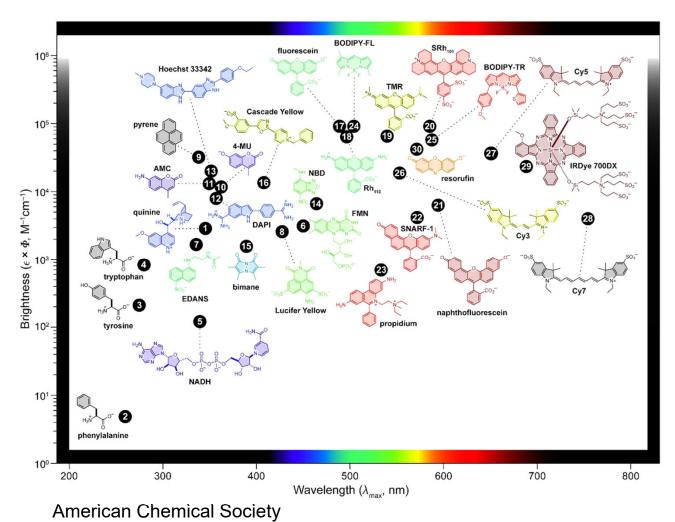
- On caractérise une transition optique soit par sa durée de vie τ (unités [s]) soit par son taux de transition p (unités [s-1]), écrit aussi parfois γ ou Γ
- La population du niveau excité décroît de façon exponentielle:

 Si un état excité a plusieurs canaux de dé-excitation, on additionne les taux de chaque canal pour avoir le taux de transition total (comme pour les résistances en parallèle):


$$U \downarrow Q \qquad I = I_1 + I_2 \qquad \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Spectres d'absorption et d'émission

• Il y a toujours une différence d'énergie entre l'absorption et l'émission (fluorescence ou phosphorescence), on parle de Stokes'shift


George Gabriel Stokes (1819 – 1903)

• On introduit aussi l'efficacité quantique q_0 (quantum yield) qui exprime le nombre de photons émis (par fluorescence) pour un photon absorbé; en général $q_0 \approx 1$

Fluorescence

• Une immense variété de molécules fluorescentes existe

Olivier J.F. Martin