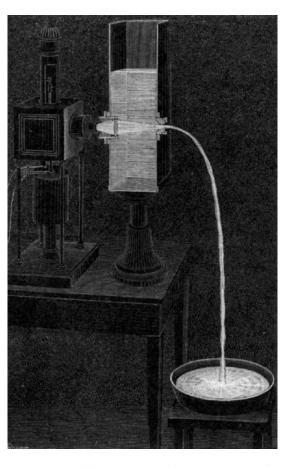
Ingénierie optique

Semaine 8 – partie 1

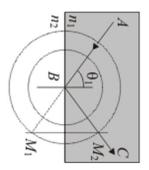
Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

Guides d'ondes et fibres optiques

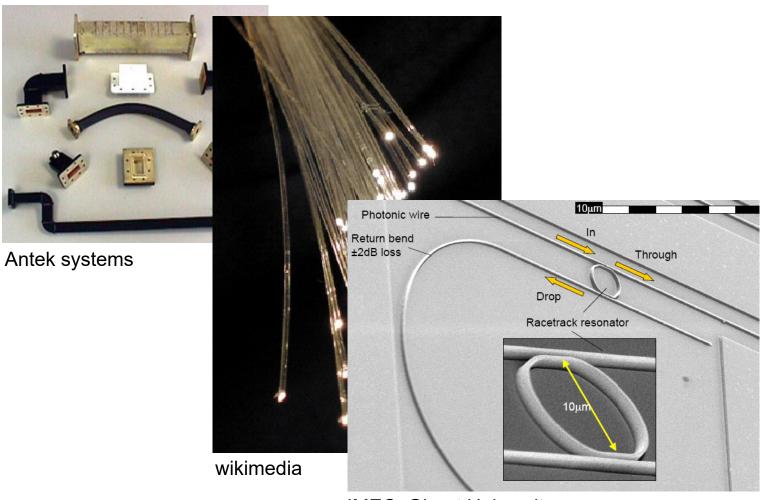


Jean-Daniel Colladon (1802-1893) www.wikipedia.org

Réflexion interne totale



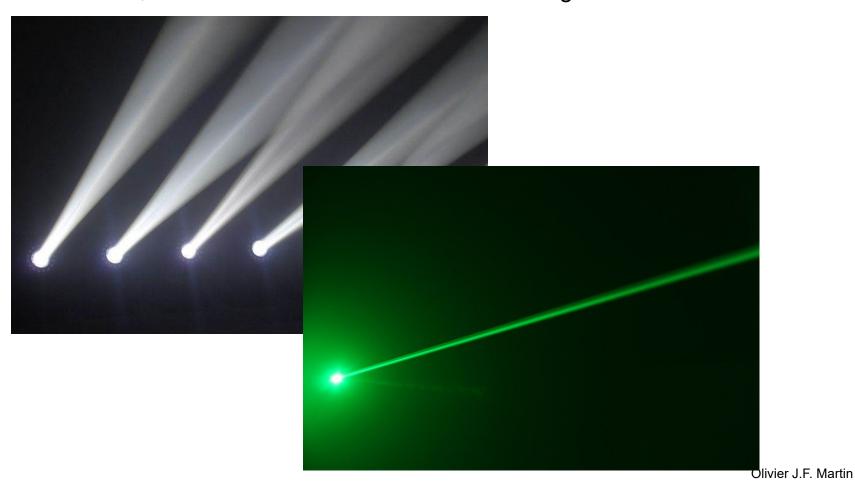
Guides d'ondes



IMEC, Ghent University

Propagation dans l'espace libre

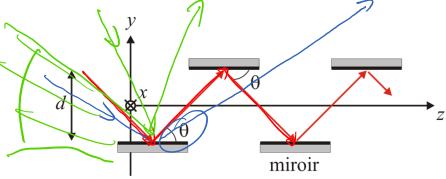
• La lumière diffuse, l'intensité diminue et le faisceau s'élargi



Guides d'onde

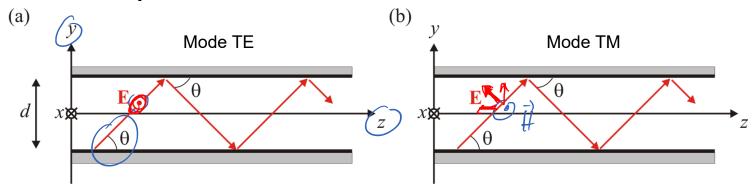
 Il faut confiner la lumière latéralement pour pouvoir la guider sur de grandes distances

Modèle simplifié par réflexions successives:



- Pas tous les angles θ sont propagés (ouverture numérique NA du guide)
- Composants clés des télécommunication optiques... et micro-ondes

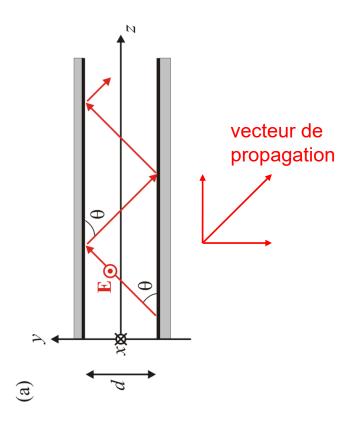
Guides d'onde miroir planaire



- Invariance dans la direction x (guide 1D)
- Propagation dans le plan y-z dans la direction z
- Réflexion parfaite sur chaque miroir
- Deux polarisations:
 - Transverse électrique (TE) (champ E perpendiculaire au plan)
 - Transverse magnétique (TM) (champ H perpendiculaire)
- Guide rempli de matériau d'indice $n_{\rm c}$

Escalade dans une cheminée

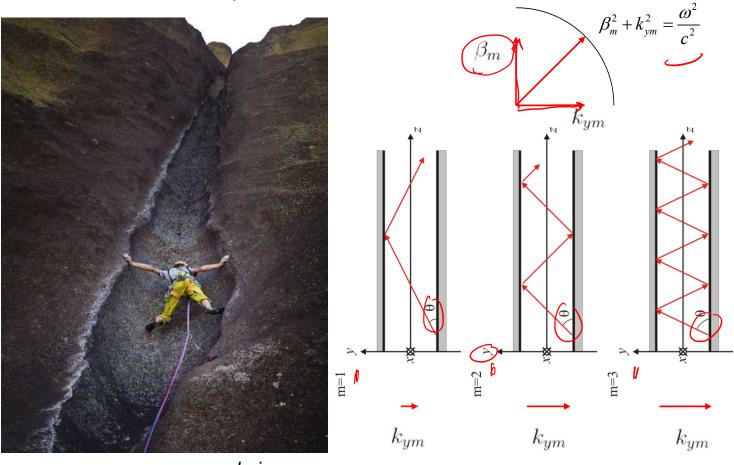
• La largeur des bras fixe la vitesse de progression (mode)



www.kairn.com

Escalade dans une cheminée

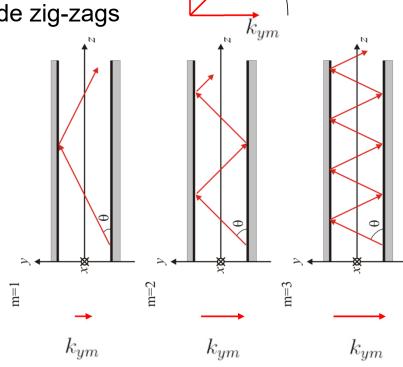
• Chaque mode est caractérisé par un vecteur transverse



www.kairn.com

Propagation des modes

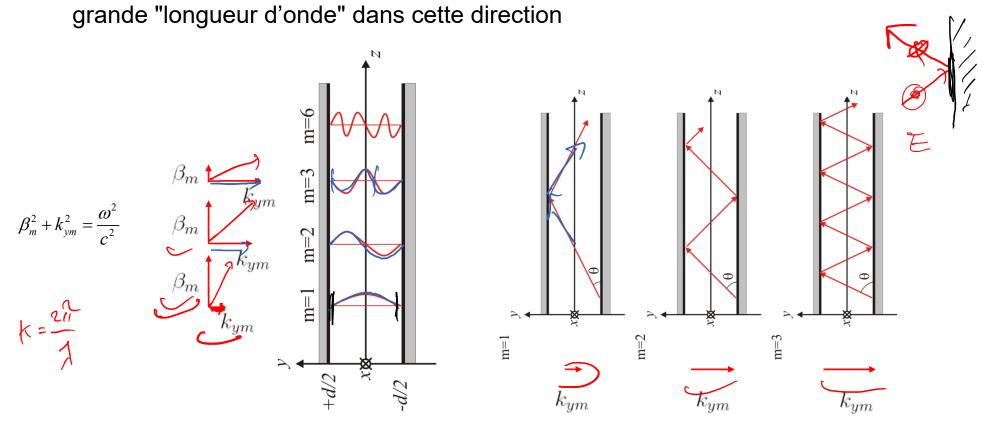
- Chaque mode est caractérisé par un vecteur transverse
- Le mode fondamentale se propage le plus vite dans le guide (zig-zague moins)
- Les modes plus élevés font beaucoup de zig-zags
- Comme $k = \frac{2\pi}{\lambda}$ un petit vecteur k dans la direction transverse correspond à une grande "longueur d'onde" dans cette direction
- Inversement, un grand vecteur
 k dans la direction transverse
 correspond à une petite
 "longueur d'onde"



 $\beta_m^2 + k_{ym}^2 = \frac{\omega^2}{\epsilon^2}$

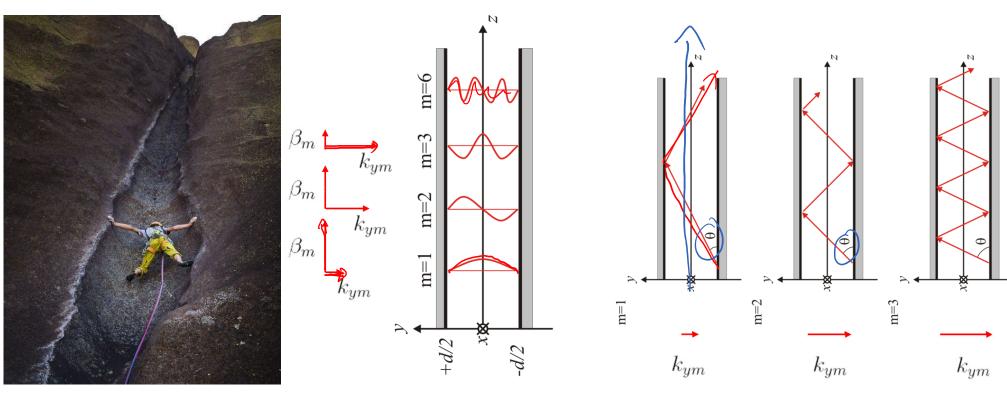
Propagation des modes

• Comme $k = \frac{2\pi}{\lambda}$ un petit vecteur k dans la direction transverse correspond à une



Propagation des modes

• Comme $b = \frac{2\pi}{k}$ un petit vecteur k dans la direction transverse correspond à une grande "longueur d'onde" dans cette direction

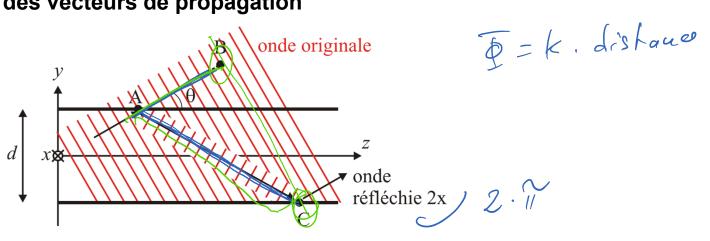


www.kairn.com

Ingénierie optique

Semaine 8 – partie 2

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie



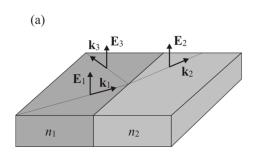
- On se concentre sur les modes TE et on cherche une condition pour avoir un mode guidé
- On impose que l'onde qui zig-zague soit la même que l'onde originale (l'onde ne change pas en se propageant)
- Différence de phase multiple entier de 2π

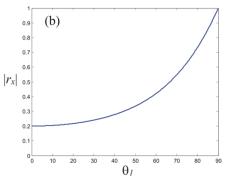
$$\Delta \phi = kAC - 2\pi - kAB = k(AC - AB) - 2\pi = 2\pi q,$$
 $q = 0, 1, 2, \dots$

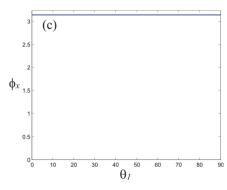
Résumé d'un épisode précédent

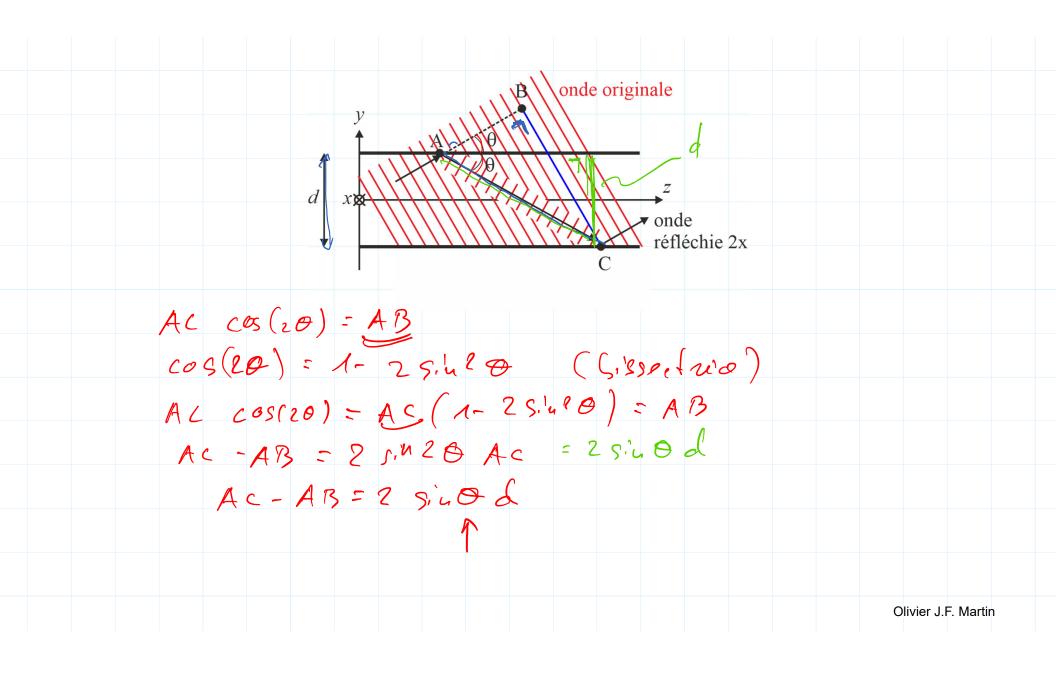
Réflexion externe TE

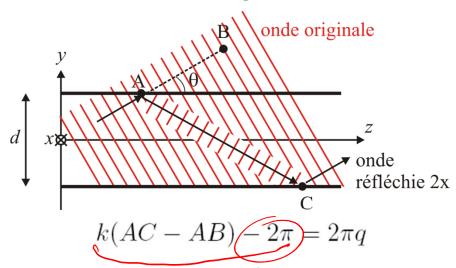
$$(n_1 < n_2)$$











- On peut choisir le signe du saut de phase $\pm\pi$ à chaque réflexion
- "Un peu de géométrie" donne $AC-AB=2d\sin\theta$
- Donc

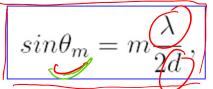
$$k2d\sin\theta = 2\pi(q+1) \qquad q = 0, 1, 2, \dots$$

Et finalement

$$k2d\sin\theta = 2\pi m, \qquad m = 1, 2, 3, \dots$$

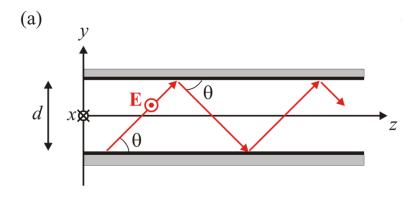
(= 21/1)

Pour être guidé (i.e. se propager sans changement) un mode doit satisfaire:

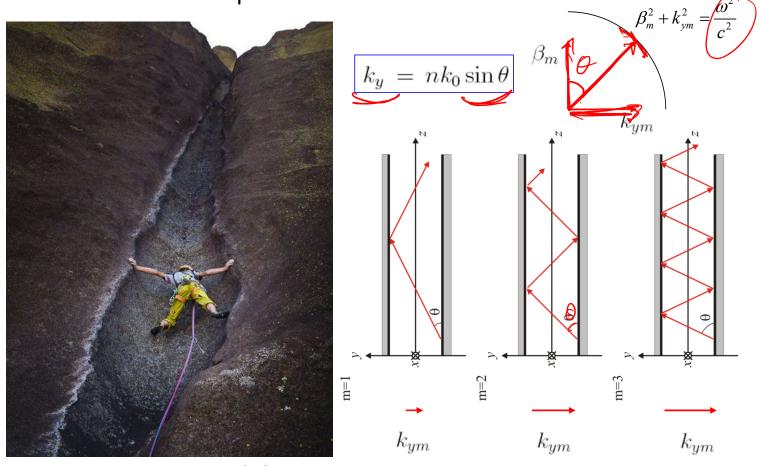


$$m=1,2,3,\ldots.$$

- Quantification des modes
- Seuls des angles de propagation spécifiques $\,\theta_m\,$ sont possibles
- Pour le autres valeurs de θ l'onde ne se propage pas de façon invariante



Chaque mode est caractérisé par un vecteur transverse



www.kairn.com

- Vecteur transverse $k_y=nk_0\sin\theta$ $\sin\theta=m\frac{\lambda}{2d}$ $k_0=\frac{2\pi}{\lambda}$ Valeurs possibles (données par l'angle): $k_{ym}=m\frac{\pi}{d}\ln m=1,2,3,\ldots$ (dans le vide, n=1)

$$k_{ym} = m \frac{\pi}{d}$$

$$m=1,2,3,\ldots$$
 (dans le vide, $n=1$)

Vecteur de propagation $\beta_m = k \cos \theta_m$

$$\beta_m = k \cos \theta_m$$

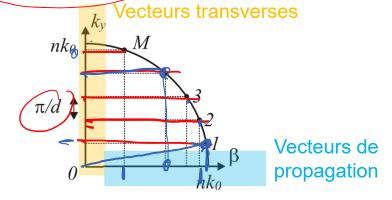
$$\beta_m^2 = k^2 (1 - \sin^2 \theta_m)$$

Valeurs possibles:

$$\beta_m^2 = k^2 - \frac{m^2 \pi^2}{d^2} \,,$$

$$m=1,2,3,\ldots$$
 (dans le vide, $n=1$)

Construction géométrique:

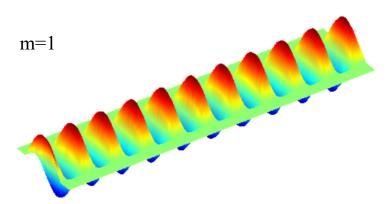


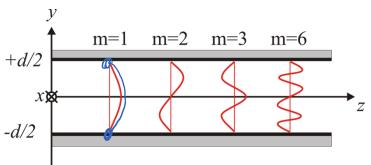
Ingénierie optique

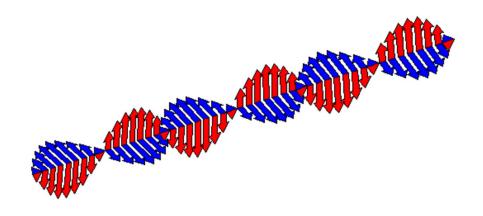
Semaine 8 – partie 3

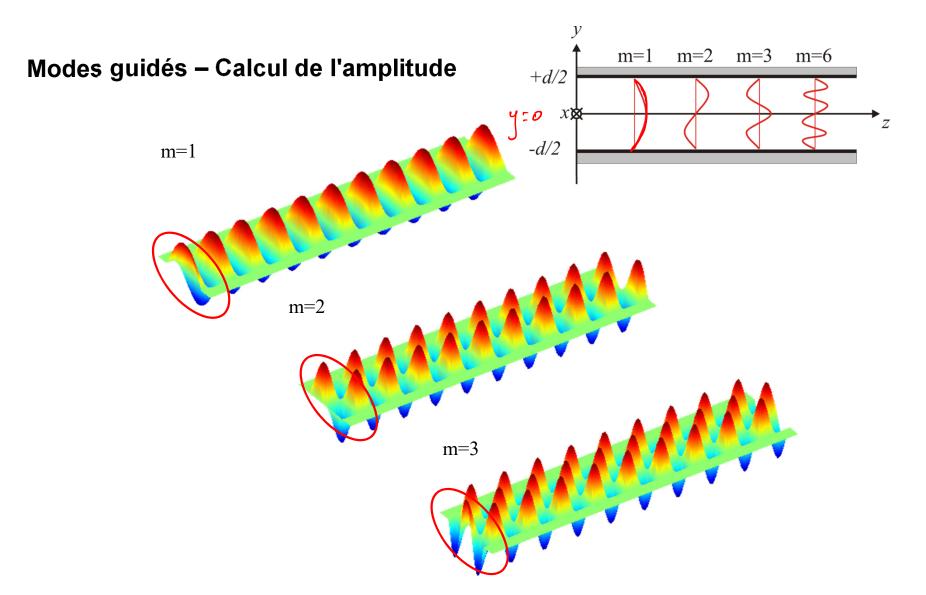
Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

Modes guidés - Calcul de l'amplitude





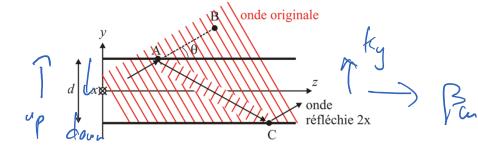




Modes guidés - Calcul de l'amplitude

- Superposition de deux ondes
 - up $k_{\uparrow}=(k_y,k_z)=(\underline{k_{ym}},\beta_m)$

$$E_{x\uparrow}(y,z) = A_m e^{-jk_{ym}y - j\beta_m z}$$



$$-\operatorname{down} k_{\downarrow} = (k_{y}, k_{z}) = (-k_{ym}, \beta_{m})$$

$$E_{x\uparrow}(y, z) = A_{m}e^{-jk_{ym}y - j\beta_{m}z}$$

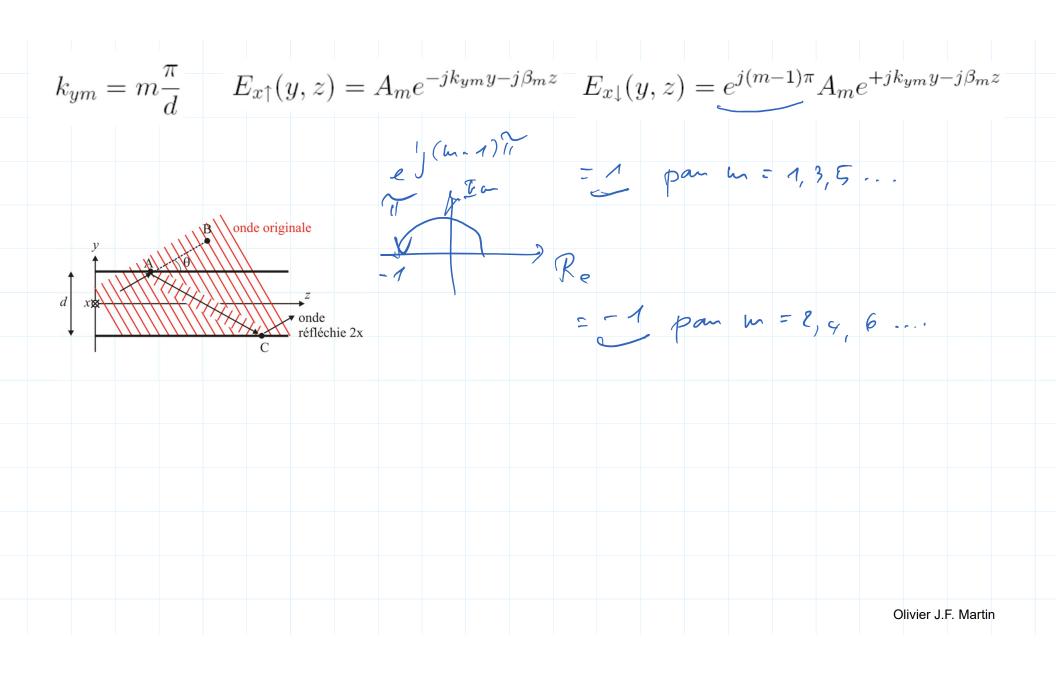
$$E_{x\downarrow}(y, z) = e^{j(m-1)\pi}A_{m}e^{+jk_{ym}y - j\beta_{m}z}$$

En faisant la somme on obtient des sinus et des cosinus:

$$E_x(y,z) = a_m u_m(y) e^{-j\beta_m z}$$

$$u_m(y) = \begin{cases} \sqrt{\frac{2}{d}} \cos\left(m\pi \frac{y}{d}\right), & m = 1, 3, 5, \dots \\ \sqrt{\frac{2}{d}} \sin\left(m\pi \frac{y}{d}\right), & m = 2, 4, 6, \dots, \end{cases}$$

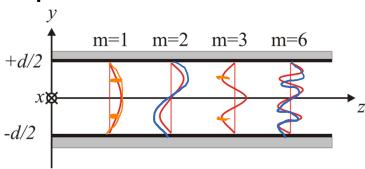
 $a_m = \sqrt{2d}A_m$ pour m impaire $a_m = j\sqrt{2d}A_m$ pour m paire vier J.F. Martin

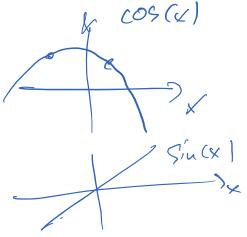


 $k_{ym} = m\frac{\pi}{d} \qquad E_{x\uparrow}(y,z) = A_m e^{-jk_{ym}y - j\beta_m z} \qquad E_{x\downarrow}(y,z) = e^{j(m-1)\pi} A_m e^{+jk_{ym}y - j\beta_m z}$ $k_{yj} = \frac{\pi}{d} \qquad e^{-jk_{ym}y - j\beta_m z} \qquad e^{-jk_{ym}y - j\beta_m z} \qquad e^{-jk_{ym}y - j\beta_m z}$ $k_{yj} = \frac{\pi}{d} \qquad e^{-jk_{ym}y - j\beta_m z} \qquad e^{-jk_{ym}y - j\beta_m z} \qquad e^{-jk_{ym}y - j\beta_m z}$ Olivier J.F. Martin

 $k_{ym} = m\frac{\pi}{d} \qquad E_{x\uparrow}(y,z) = A_m e^{-jk_{ym}y - j\beta_m z} \qquad E_{x\downarrow}(y,z) = e^{j(m-1)\pi} A_m e^{+jk_{ym}y - j\beta_m z}$ m = 2 $kyz = \frac{2\pi}{6}$ $e^{j(m-1)\pi}$ e jkg2g + jkg2 e tjkg2g cos(-x)+jsin(-x)-cos(x)-jsin(x)
- 2 jsin(ty23) cos(x) Q - j Pa 2 Olivier J.F. Martin

Modes guidés - Calcul de l'amplitude





 Séparation des parties longitundinales z et transverses y (le mode est invariant dans la direction x):

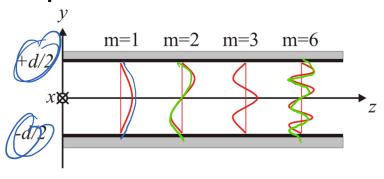
 $E_x(y,z) = a_m u_m(y) e^{-j\beta_m z}$

- Modes d'ordres plus élevés:
 - L'angle de propagation et la complexité transverse augmentent
 - Symétrie: m impaire: mode symétrique $(u_m(y) = u_m(-y))$ m paire: mode antisymétrique $(u_m(y) = -u_m(-y))$

m=3m=2m=1m=6Modes guidés - Calcul de l'amplitude +d/2*-d/2* m=1m=2 m=3

Olivier J.F. Martin

Modes guidés - Calcul de l'amplitude

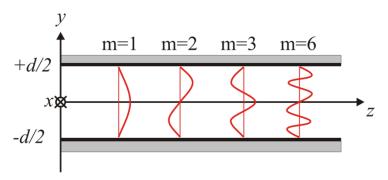


$$E_x(y,z) = a_m u_m(y) e^{-j\beta_m z}$$

Propriété d'orthogonalité

$$\int_{-d/2}^{d/2} u_l(y) u_m(y) dy = 0, \quad \text{si } l \neq m.$$

Fréquence de coupure



• Nombre de modes:

$$M = \frac{2d}{\lambda}$$

• si $d \le \lambda/2$ alors

$$M = 0$$

$$k = \frac{\omega}{c} = \frac{2\pi v}{c} = \frac{1}{d} = 0$$

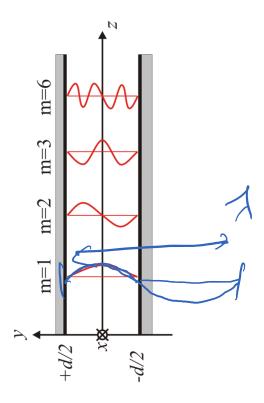
• Fréquence de coupure

$$\nu_c = \frac{c}{2d}$$

Dépend de l'indice du milieu dont le guide est rempli

Fréquence de coupure

• Il faut que la cheminée soit au moins assez large pour laisser passer le corps!



www.kairn.com

Résumé de l'episode precedent: Vitesse de groupe

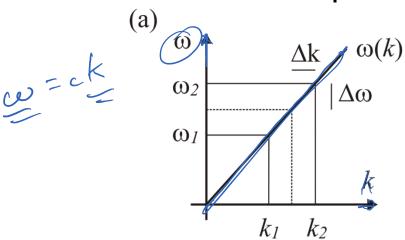
- Comment définir la vitesse d'un pulse?
- Vitesse à laquelle l'information (l'enveloppe ou la modulation) est transmise:

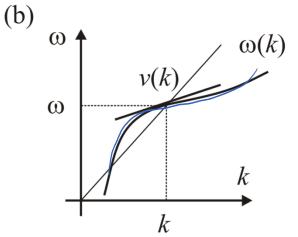
$$v = rac{\partial \omega}{\partial k}$$
 Vitesse de groupe

$$c=rac{\omega}{k}$$
 Vitesse de phase

Milieu non dispersif:

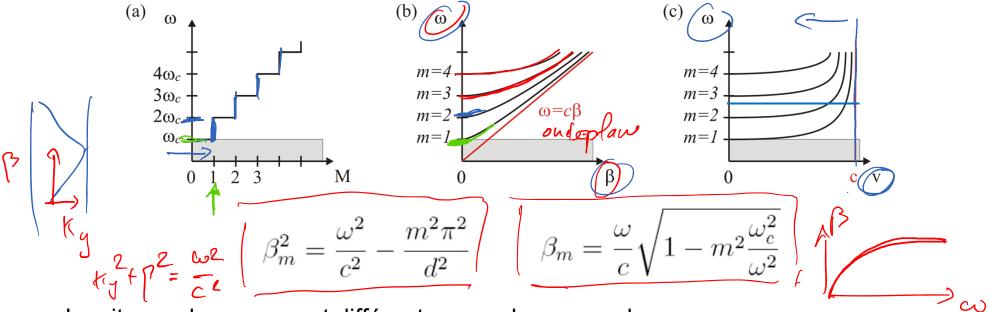
Milieu dispersif:





 Dans les milieux dispersifs, la vitesse de groupe est différente de la vitesse de phase

Nombre de modes, relation de dispersion, vitesse de groupe

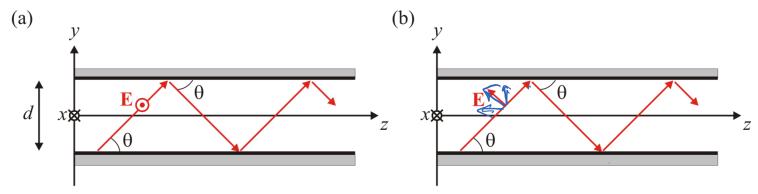


La vitesse de groupe est différente pour chaque mode:

$$v_m = d\omega/d\beta_m$$
 $v_m = \frac{c^2 \beta_m}{\omega} = c\sqrt{1 - m^2 \frac{\omega_c^2}{\omega^2}}$

- v_m diminue avec le numéro du mode (à fréquence fixe)
- Limitation de la bande passante d'un guide multimode!

Modes TM



• En composantes:

$$E_{z}(y,z) = \begin{cases} a_{m}\sqrt{\frac{2}{d}}\cos\left(m\pi\frac{y}{d}\right)e^{-j\beta_{m}z}, & m = 1,3,5,\dots\\ a_{m}\sqrt{\frac{2}{d}}\sin\left(m\pi\frac{y}{d}\right)e^{-j\beta_{m}z}, & m = 2,4,6,\dots, \end{cases}$$

$$E_{y}(y,z) = \begin{cases} a_{m}\sqrt{\frac{2}{d}}\cot\theta_{m}\cos\left(m\pi\frac{y}{d}\right)e^{-j\beta_{m}z}, & m = 1,3,5,\dots\\ a_{m}\sqrt{\frac{2}{d}}\cot\theta_{m}\sin\left(m\pi\frac{y}{d}\right)e^{-j\beta_{m}z}, & m = 2,4,6,\dots, \end{cases}$$

avec $a_m = \sqrt{2d}A_m$ pour m impaire et $a_m = j\sqrt{2d}A_m$ pour m paire.

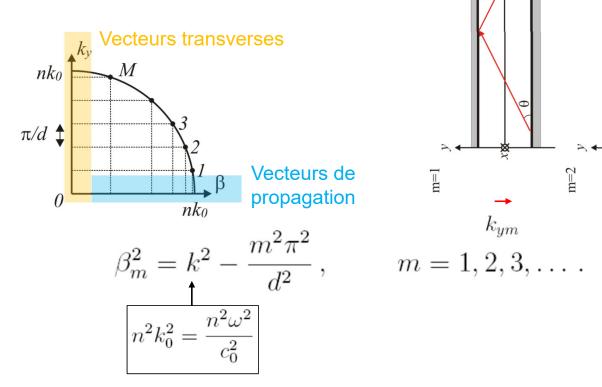
Ingénierie optique

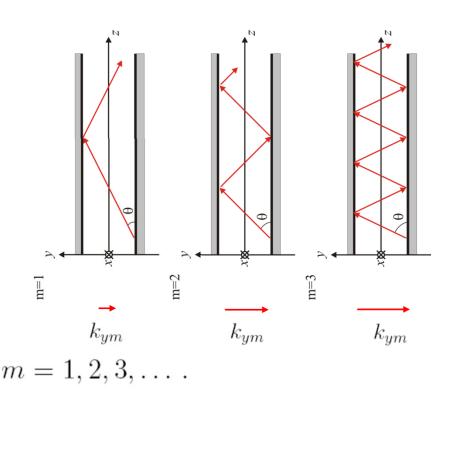
Semaine 8 – partie 4

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

Guide d'onde miroir (guide 1D)

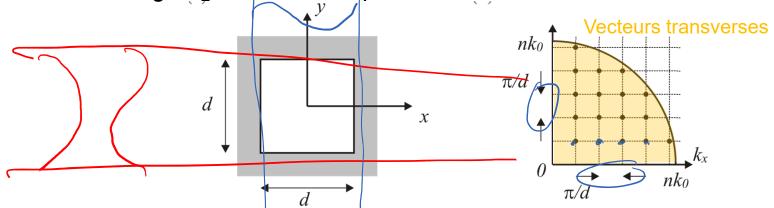
Les modes zig-zagent dans un plan





Guide d'onde miroir carré (guide 2D)

Les modes zig-zaguent dans l'espace



La démarche est la même, mais avec deux composantes transverses:

$$\mathbf{k} = (k_x, k_y, k_z) = (k_x, k_y, \beta)$$

$$\underbrace{k_x^2 + k_y^2 + \underline{\beta^2}}_{=} = n^2 k_0^2 = \frac{n^2 \omega^2}{c_0^2}$$

$$2k_x d = 2\pi m_x \,,$$

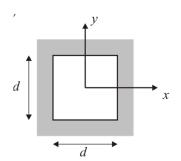
$$m_x = 1, 2, 3, \dots$$

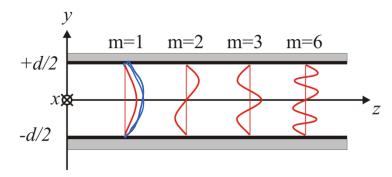
$$2k_y d = 2\pi m_y$$

$$2k_x d = 2\pi m_x$$
, $m_x = 1, 2, 3, ...$
 $2k_y d = 2\pi m_y$, $m_y = 1, 2, 3, ...$

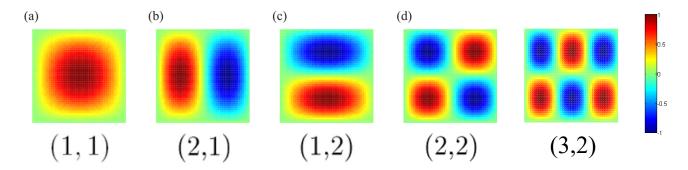
Guide d'onde miroir carré (guide 2D)

 On peut voir les modes 2D comme le produit de deux modes 1D:



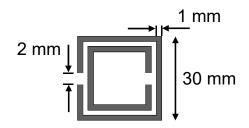


• Les modes 2D sont caractérisés par les indices $\,(l,m)\,$

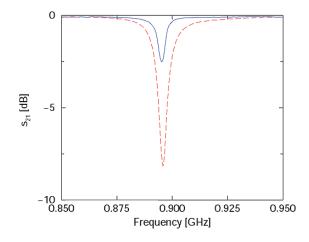


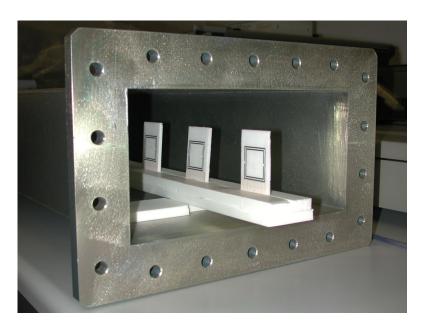
Guide d'onde miroir carré (guide 2D)

Très utilisé pour les fréquences micro-onde:



- 5 μm thick AI foil
- Rohacell substrate (ϵ =1.07)

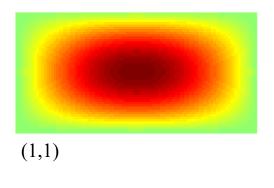


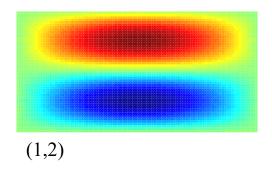


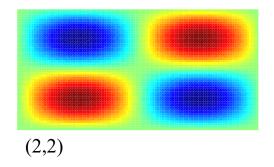
• SRRs in R9 waveguide, TE₁₀ excitation:

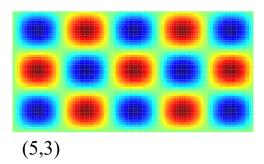
Guide d'onde miroir rectangulaire (guide 2D)

 Le principe reste le même avec les produits de modes 1D différents, selon les largeurs différentes du guide:









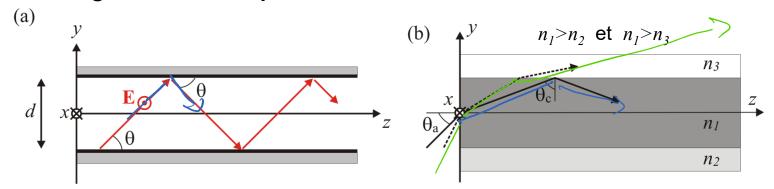
Olivier J.F. Martin

Ingénierie optique

Semaine 8 – partie 5

Olivier J.F. Martin Laboratoire de Nanophotonique et Métrologie

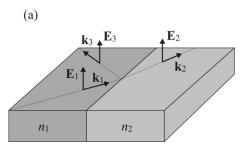
Guides miroirs – guides diélectriques

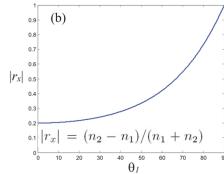


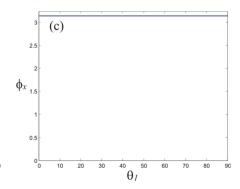
- Un miroir parfait est très difficile à réaliser à large échelle aux fréquences optiques
- Il est par contre possible de déposer des couches diélectriques avec une précision atomique
- Le guidage se fait par réflexion interne totale
- Configuration symétrique ou asymétrique
- Il existe un angle limite d'entrée dans le guide θ_a au-delà duquel les rayons ne se propagent pas

Coefficients de Fresnel – Champ TE

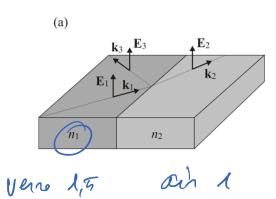
• Réflexion externe $(n_1 < n_2)$

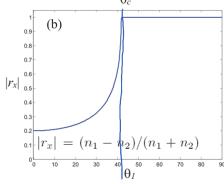


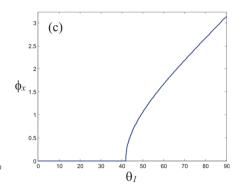




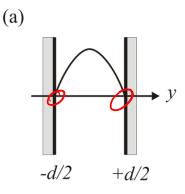
• Réflexion interne $(n_1 > n_2)$

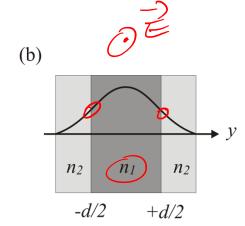






Guides miroirs – guides diélectriques

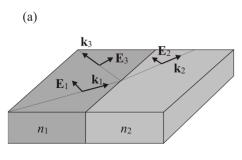


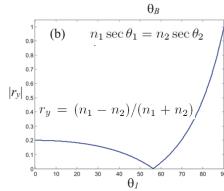


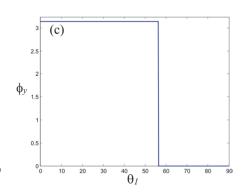
- Comme pour le guide miroir les conditions d'interfaces déterminent les modes
- Dans le cas du guide miroir:
 - le champ s'annule au bord du guide
- Dans le cas du guide diélectrique:
 - le champ s'annule à l'infini
 - continuité de certaines composantes du champ électromagnétique

Coefficients de Fresnel – Champ TM

Réflexion externe $(n_1 < n_2)$

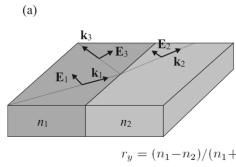


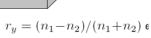


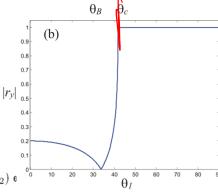


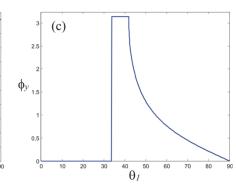
Réflexion interne

$$(n_1 > n_2)$$





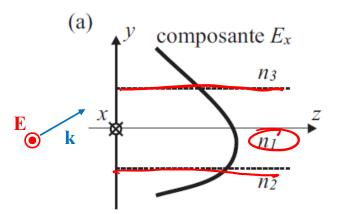




Olivier J.F. Martin

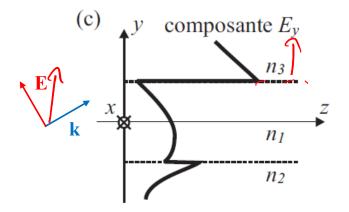
Guides diélectriques

- Conditions d'interface imposées par les équations de Maxwell:
- Modes TE:
 - composante E_x



Les composantes E_x et E_z sont continues

- Modes TM:
 - composante E_y dominante
 - petite composante E_z

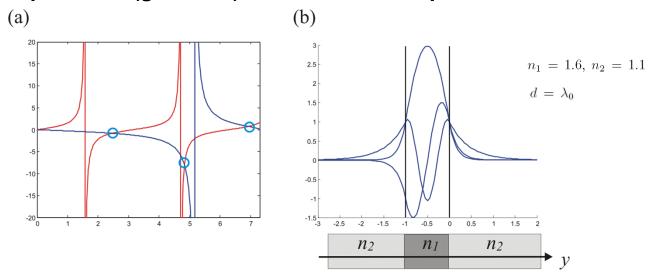


La composante E_y n'est pas continue

$$\varepsilon_1 E_{1,y} = \varepsilon_2 E_{2,y}$$

$$n_1^2 E_{1,y} = n_2^2 E_{2,y}$$

Guides diélectriques planaires (guide 1D) - Profile du champ



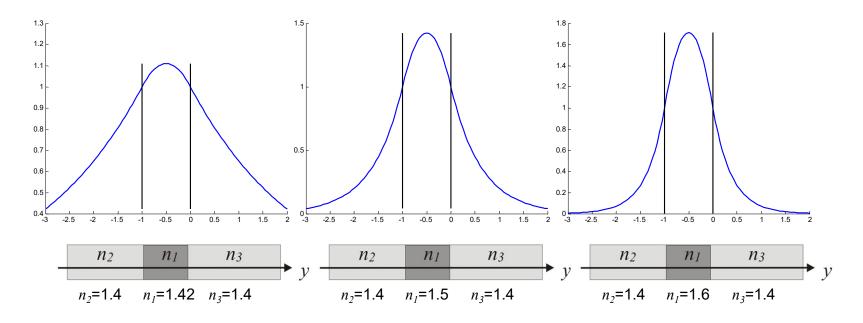
Les modes doivent satisfaire une équation transcendante de la forme

$$\arctan \beta = \frac{1}{\sqrt{(\beta - \gamma)}}$$

 Résolution numérique seulement → détermination du vecteur de propagation et de la forme du champ

Guides diélectriques planaires (guide 1D) - Profile du champ

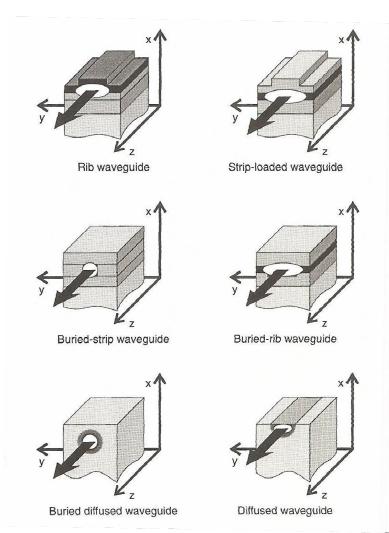
Pour un guide symétrique, il existe toujours un mode TE



- Le nombre de modes augmente avec l'épaisseur du guide ou avec le contraste d'indice
- La lumière est guidée dans la région d'indice élevé

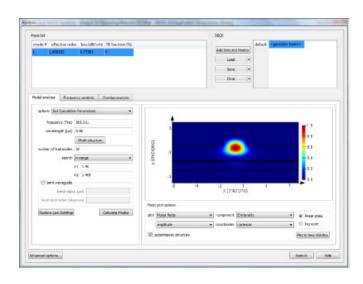
Guides diélectriques 2D

- Le principe est toujours le même: on crée un région d'indice élevé, dans laquelle la lumière est guidée
- Des géométries variées existent qui permettent un confinement de la lumière dans les deux directions transverses

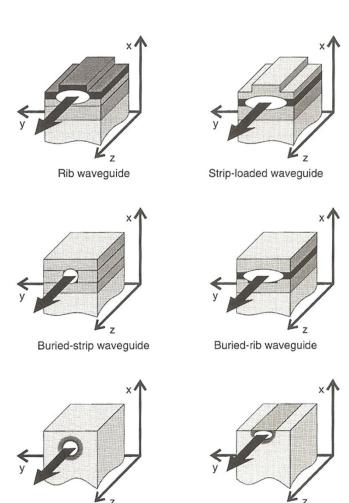


Guides diélectriques 2D

 On ne peut plus calculer les modes (semi)-analytiquement, il faut utiliser des méthodes numériques sur un maillage de la section du guide



www.lumerical.com



Diffused waveguide

Buried diffused waveguide

Olivier J.F. Martin