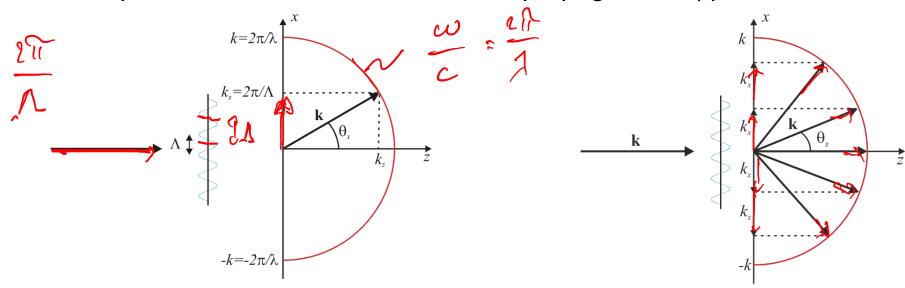
Ingénierie optique

Semaine 6 – partie 1

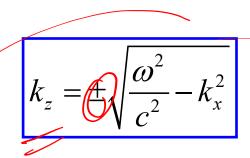
Optique de Fourier

- Une onde se propageant dans une direction donnée a une composante transverse k_x de son vecteur d'onde, qui correspond à une périodicité transverse λ_x : $k_x = \frac{2\pi}{\lambda_x}$
- Un phénomène similaire se produit lorsqu'une onde arrive sur une surface périodique de période Λ : son vecteur d'onde acquiert une composante transverse k_x qui dépend de la périodicité: $k_x = \frac{2\pi}{\Lambda}$
- En fait, une multitude d'ondes diffractées sont ainsi créées, avec chacune un multiple de k_x comme composante transverse du vecteur de propagation \mathbf{k} (qui reste sur le cercle!)



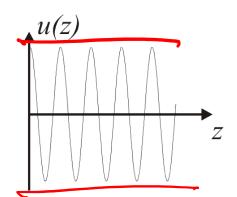
Onde évanescente causée par une grande composante transverse de k 炭

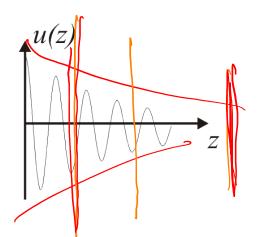
• Or, on doit satisfaire l'équation d'Helmholtz $k_x^2 + k_y^2 + k_z^2 = k_x^2 + k_z^2 = \frac{\omega^2}{c^2}$

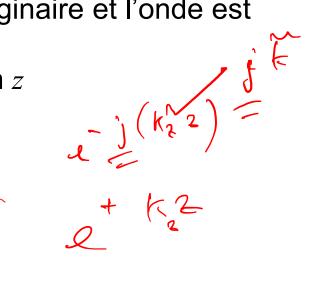


- Lorsque $k_x^2 \le \frac{\omega^2}{c^2}$, k_z est réel et l'onde se propage dans la direction z
- Lorsque $k_x^2 > \frac{\omega^2}{c^2}$, k_z est imaginaire et l'onde est

évanescente dans la direction z

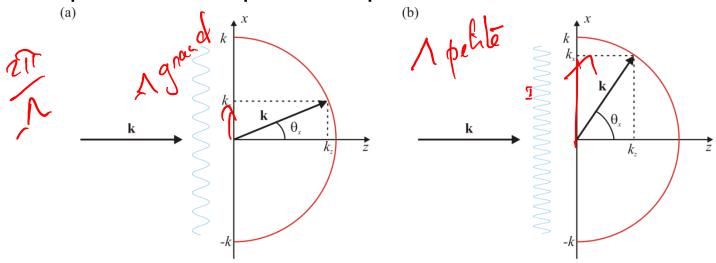






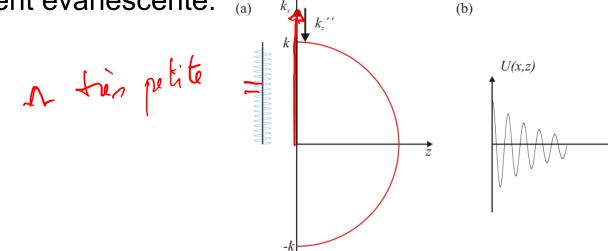
Surface avec un profil particulièrement séré

• Plus la période spatiale est importante, plus l'onde est déviée...



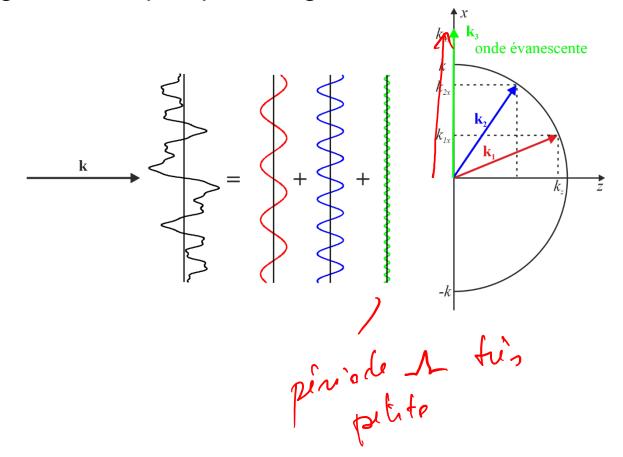
• ... lorsque le profile est trop rapide, il arrive un moment où "on sort du cercle" et

l'onde devient évanescente: (a)



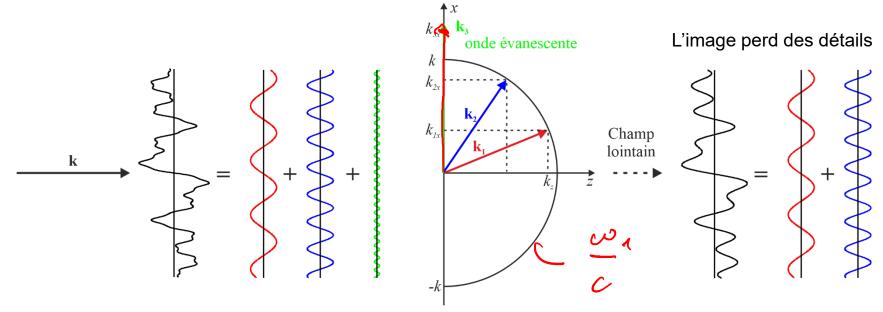
Surface avec un profil arbitraire

- Pour une image arbitraire, on obtient dans le champ lointain la transformée de Fourier, qui correspond aux différentes fréquences spatiales
- Les fréquences spatiales trop rapides sont évanescentes et disparaissent après propagation sur quelques longueurs d'onde, dans le champ lointain



Surface avec un profil arbitraire

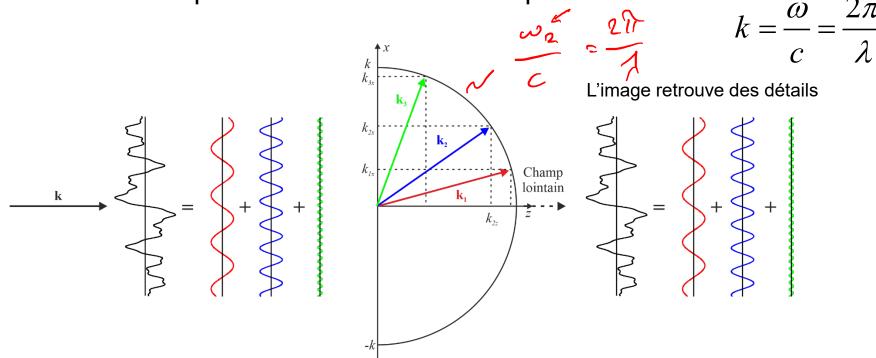
- Pour une image arbitraire, on obtient dans le champ lointain la transformée de Fourier, qui correspond aux différentes fréquences spatiales
- Les fréquences spatiales trop rapides sont évanescentes et disparaissent après propagation sur quelques longueurs d'onde, dans le champ lointain



 On a perdu tous les éléments qui ne peuvent se propager et correspondent aux détails de l'objet

Est-il possible de retrouver les hautes fréquences spatiales?

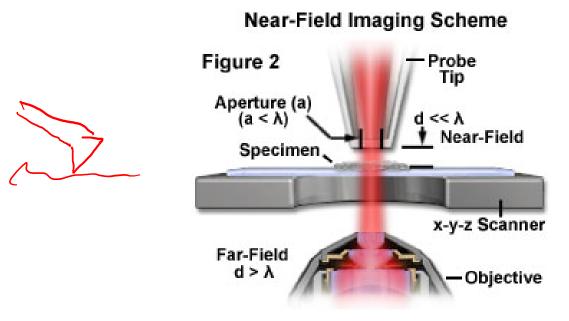
- En utilisant une fréquence plus élevée (ou une longueur d'onde plus courte) on élargit le cercle du vecteur k et des ondes qui étaient évanescentes sont propagées
- On retrouve alors certains petit détails dans le champ lointain

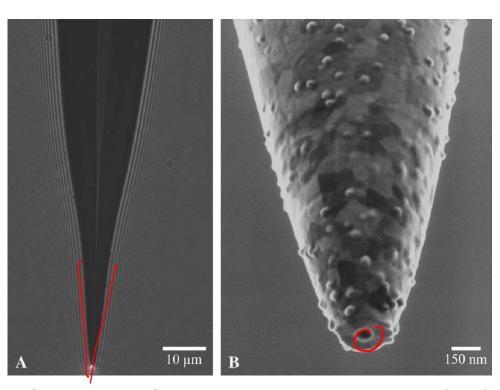


• D'un point de vue pratique, on ne peut pas toujours utiliser une longueur d'onde plus petite

Est-il possible de retrouver les hautes fréquences spatiales?

- En évitant de se propager trop loin → microscope optique de champ proche (scanning near-field optical microscope, SNOM)
- Microscope à force atomique (AFM) utilisant une fibre optique comme sonde

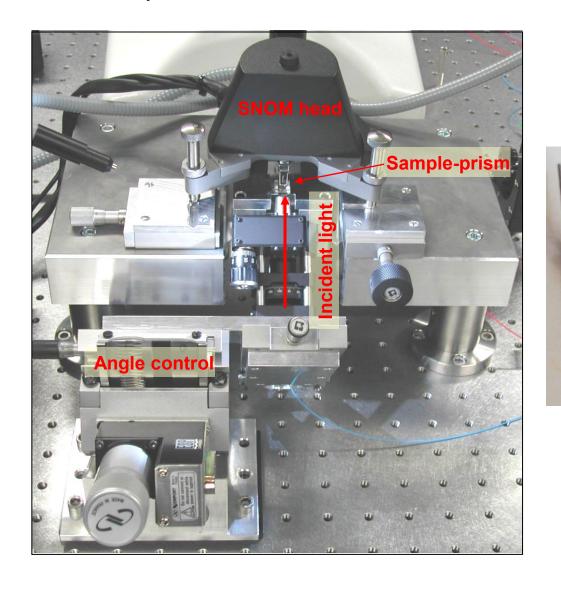


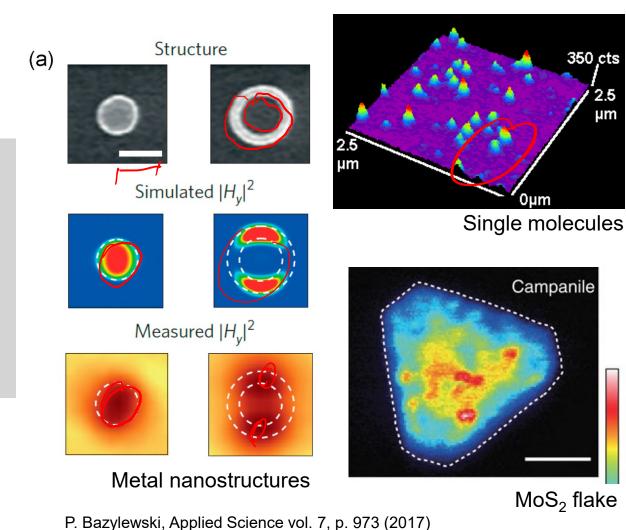


O.L. Mooren, Journal of the Association for Laboratory Automation vol. 11, p. 268 (2006)

Microscope optique de champ proche

On peut obtenir une résolution de l'ordre de $\lambda/10...$ ou mieux...



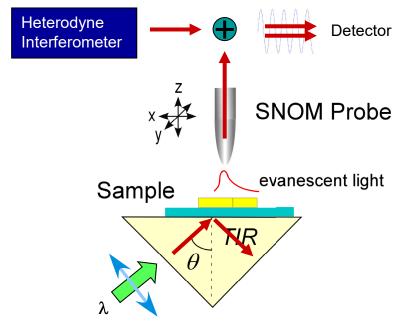


350 cts

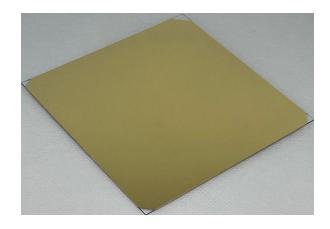
Normalizec

Microscope optique de champ proche

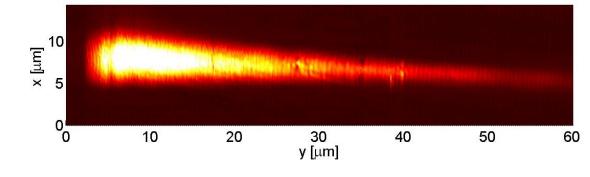
Mesure d'une onde de surface se propageant sur un film d'or (surface plasmon)

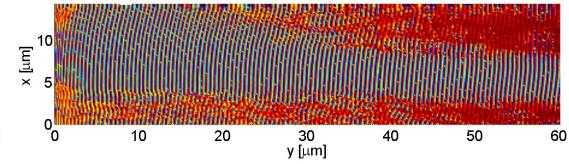


Dans le champ lointain, on ne voit que le film d'or:



Dans le champ proche, on peut mesurer l'amplitude et la phase de l'onde qui se propage à la surface du film d'or:





Ingénierie optique

Semaine 6 – partie 2

Optique de Maxwell

- Que peuvent les équations de Maxwell pour l'optique?
 - Equation d'onde
 - Conditions limites aux interfaces
 - Polarisation de la lumière

Optique de Maxwell

Le champ électromagnétique:

-	Symbole	Champ	Unité SI
→	$\mathbf{E}(\mathbf{r},t)$	champ électrique	V/m
	$\mathbf{H}(\mathbf{r},t)$	champ magnétique	\mathbf{A}/\mathbf{m}
→	$\mathbf{D}(\mathbf{r},t)$	champ de déplacement électrique	$\mathbf{As/m}^2$
	$\mathbf{B}(\mathbf{r},t)$	champ d'induction magnétique	${ m Vs/m}^2$

- Système d'unités MKSA ou SI
- Champs vectoriels, dépendant du système de coordonnées:

$$\mathbf{E}(\mathbf{r},t) = \begin{pmatrix} E_x(x,y,z,t) \\ E_y(x,y,z,t) \\ E_z(x,y,z,t) \end{pmatrix} \mathbf{E}(\mathbf{r},t) = \begin{pmatrix} E_r(r,\theta,\phi,t) \\ E_{\theta}(r,\theta,\phi,t) \\ E_{\phi}(r,\theta,\phi,t) \end{pmatrix} \mathbf{E}(\mathbf{r},t) = \begin{pmatrix} E_{\rho}(\rho,\phi,z,t) \\ E_{\phi}(\rho,\phi,z,t) \\ E_{z}(\rho,\phi,z,t) \end{pmatrix}$$

• Utiliser aussi les formes correspondantes pour ∇ , $\nabla \times$, $\nabla \cdot$ et ∇^2

Equations de Maxwell

En toute généralité:

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t},$$

$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t} + \mathbf{J}(\mathbf{r}, t),$$

$$\nabla \cdot \mathbf{D}(\mathbf{r}, t) = \rho(\mathbf{r}, t),$$

$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0.$$

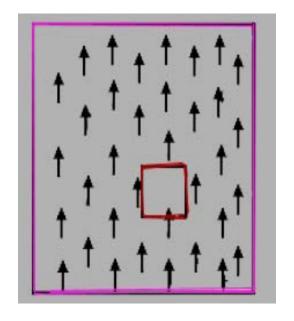
$$\mathbf{D}(\mathbf{r},t) = \epsilon_0 \epsilon_r(\mathbf{r},t) \mathbf{E}(\mathbf{r},t)$$

$$\mathbf{B}(\mathbf{r},t) = \mu_0 \mu_r(\mathbf{r},t) \mathbf{H}(\mathbf{r},t)$$

- Deux termes source:
 - densité de courant J (unités A/m^2)
 - densité de charges ρ (unités $\mathrm{As/m}^3$)

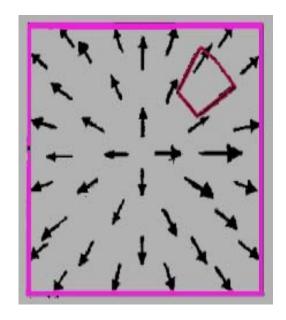
$\nabla \cdot$, $\nabla \times$, etc....

• Les opérateurs vectoriels ont un sens physique concret:



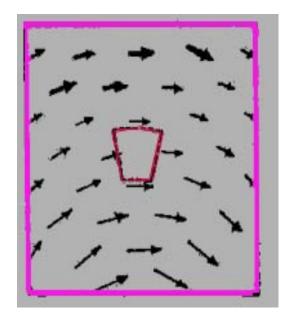
$$\nabla \cdot \boldsymbol{F} = ? = 0$$

$$\nabla \times \boldsymbol{F} = ? = 0$$



$$\nabla \cdot \boldsymbol{F} = ? \neq 0$$

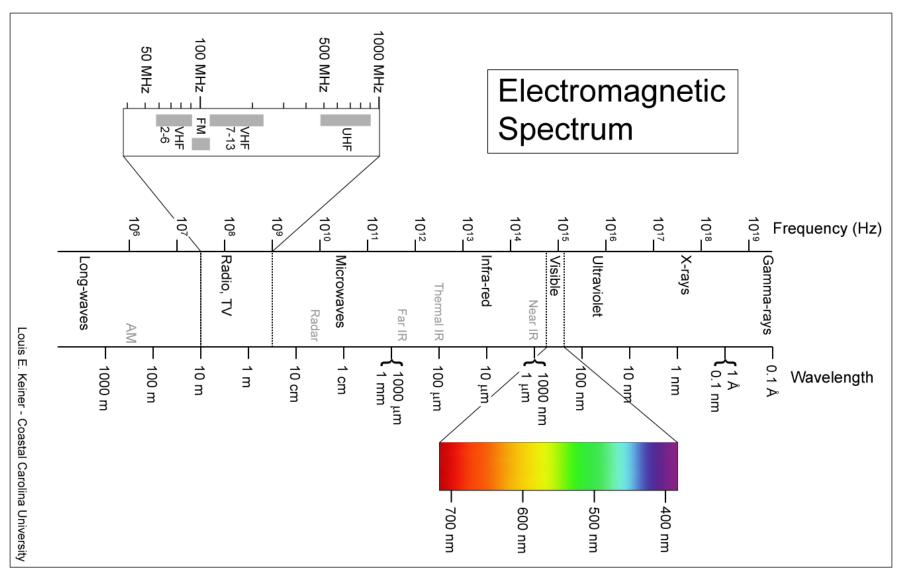
$$\nabla \times \boldsymbol{F} = ? = 0$$



$$\nabla \cdot \boldsymbol{F} = ? = 0$$

$$\nabla \times \boldsymbol{F} = ? \neq \mathbf{0}$$

Les équations de Maxwell sont valables sur l'entier du spectre électromagnétique



Equations de Maxwell

En optique, on utilise les équations de Maxwell sans source:

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\mu_0 \frac{\partial \mathbf{H}(\mathbf{r}, t)}{\partial t},$$

$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \epsilon_0 \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t}, \qquad \mathbf{D}(\mathbf{r}, t) = \epsilon_0 \mathbf{E}(\mathbf{r}, t),$$

$$\nabla \cdot \mathbf{E}(\mathbf{r}, t) = 0, \qquad \mathbf{B}(\mathbf{r}, t) = \mu_0 \mathbf{H}(\mathbf{r}, t).$$

$$\nabla \cdot \mathbf{H}(\mathbf{r}, t) = 0;$$

 La permittivité et la perméabilité sont reliées à la vitesse de la lumière (dans le système d'unités MKSA):

me d'unités MKSA):
$$\epsilon_0 = \frac{10^7}{4\pi c_0^2} \simeq 8.8541878 \cdot 10^{-12} \, \mathrm{F/m}, \qquad \epsilon_0 = 4\pi \cdot 10^{-7} \, \mathrm{H/m}.$$

Equation d'onde dans le vide

- Se déduit directement des équations de Maxwell
- Equation vectorielle!

$$\nabla^2 \mathbf{E} - \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

Une équation par composante du champ:

$$\nabla^2 E_y - \frac{1}{c_0^2} \frac{\partial^2 E_y}{\partial t^2} = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu_0 \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} \qquad \nabla \times \mathbf{H}(\mathbf{r},t) = \epsilon_0 \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} \qquad \nabla \cdot \mathbf{E}(\mathbf{r},t) = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu_0 \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} \qquad \nabla \cdot \mathbf{E}(\mathbf{r},t) = 0$$

$$\nabla \times \mathbf{E}(\mathbf{r},t) = -\mu_0 \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} \qquad \nabla \cdot \mathbf{E}(\mathbf{r},t) = 0$$

$$\nabla \times \mathbf{E}($$

Equation d'onde dans un milieu different du vide

• Si $(\epsilon_r \neq 1 \text{ et/ou } \mu_r \neq 1)$

$$\nabla^2 \mathbf{E} - \frac{\epsilon_r \mu_r}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

Vitesse dans le milieu:

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad c = \frac{1}{\sqrt{\epsilon \mu}} = \frac{1}{\sqrt{\epsilon_0 \epsilon_r \mu_0 \mu_r}} = \frac{c_0}{\sqrt{\epsilon_r \mu_r}}$$

- En général pour l'optique: $(\mu_r = 1, \text{ soit } \mu = \mu_0)$

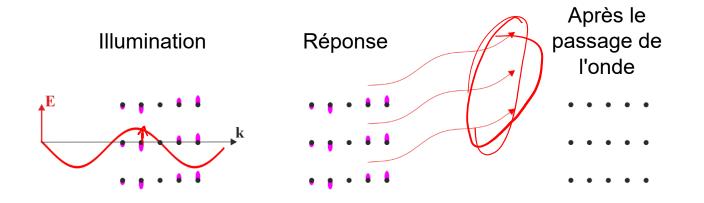
$$n = \sqrt{\frac{\epsilon}{\epsilon_0}} = \sqrt{\epsilon_r}$$

Propriétés optiques d'un milieu

C'est le terme D qui contient la réponse du milieu et caractérise ses propriétés:

$$\mathbf{D}(\mathbf{r},t) = \epsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t) = \epsilon_0 \epsilon_r(\mathbf{r},t) \mathbf{E}(\mathbf{r},t) = \epsilon_0 (1 + \chi(\mathbf{r},t)) \mathbf{E}(\mathbf{r},t)$$

- La polarisation P représente la réponse du milieu au champ (lumière) incident
- Il existe un modèle très usité pour cette polarisation: le modèle de Lorentz qui représente la matière comme une collection d'oscillateurs harmoniques
- Lorsque de la lumière est incidente sur la matière, le nuage d'électrons autour de chaque atome se déplace légèrement sous l'action du champ électrique associé à l'onde lumineuse, ce mouvement crée la réponse de la matière

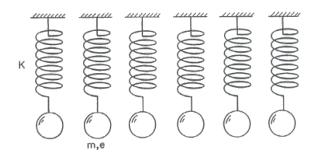


Propriétés optiques d'un milieu

• C'est le terme D qui contient la réponse du milieu et caractérise ses propriétés:

$$\mathbf{D}(\mathbf{r},t) = \epsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t) = \epsilon_0 \epsilon_r \mathbf{r}, t) \mathbf{E}(\mathbf{r},t) = \epsilon_0 (1 + \chi(\mathbf{r},t)) \mathbf{E}(\mathbf{r},t)$$

• Bien que la réponse de chaque atome soit très petite, comme on a un nombre extrêmement élevé d'atomes dans la matière ($N_{\rm avogadro} = 6.022 \ 10^{23} \ {\rm mol^{-1}}$), leurs contributions s'additionnent pour produire la réponse totale (polarisation **P**), dont on peut déduire la permittivité ε_r (grandeur complexe: $\varepsilon_r = \varepsilon_r' + j \varepsilon_r''$)

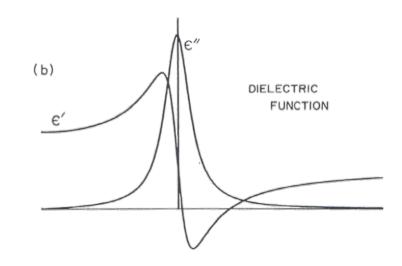


$$m\ddot{\mathbf{x}} + b\dot{\mathbf{x}} + K\mathbf{x} = e\mathbf{E}$$

$$\mathbf{P} = \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\gamma\omega} \varepsilon_0 \mathbf{E}$$

Réponse Lorentzienne:

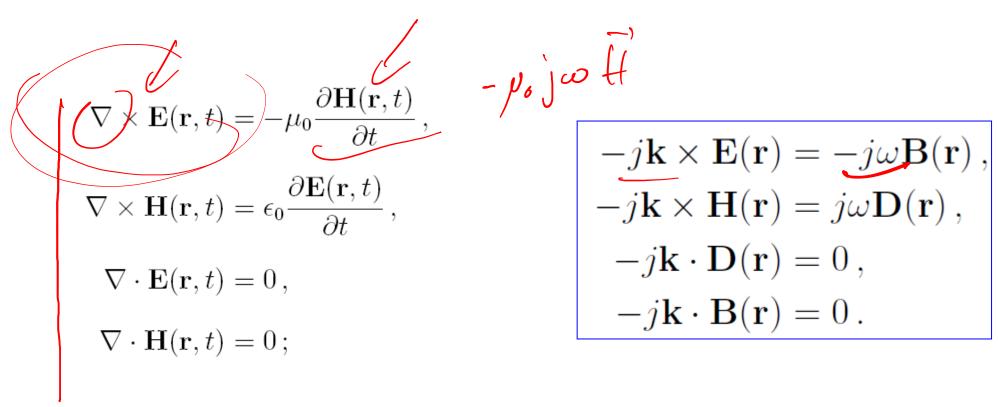
$$\varepsilon_r = 1 + \chi = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\gamma\omega}$$

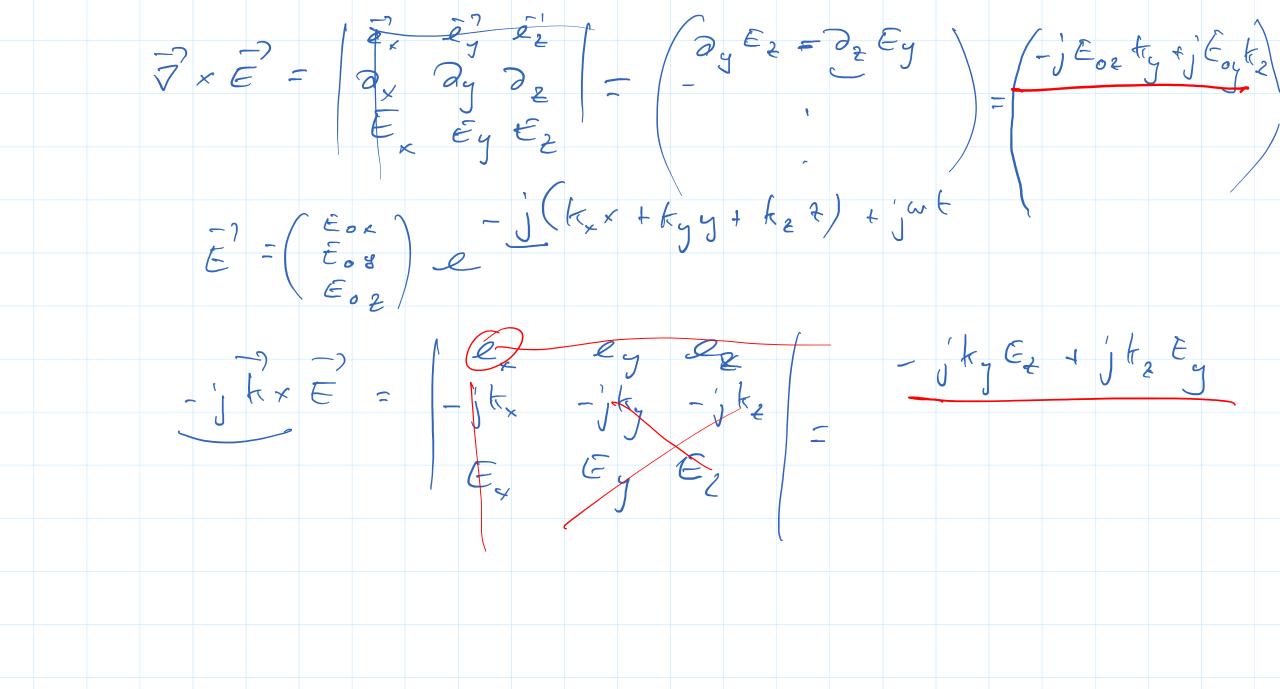


Onde plane monochromatique

 Forme particulière des équations de Maxwell (sans source) pour une onde plane harmonique monochromatique:

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{-j\mathbf{k}\cdot\mathbf{r}+j\omega t}$$
$$\mathbf{H}(\mathbf{r},t) = \mathbf{H}_0 e^{-j\mathbf{k}\cdot\mathbf{r}+j\omega t}$$





Olivier J.F. Martin

Onde plane monochromatique

On a de plus pour les amplitudes:

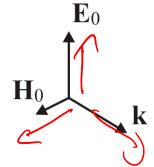
$$\mathbf{k} \times \mathbf{E}_0 = \omega \mu \mathbf{H}_0 ,$$
$$\mathbf{k} \times \mathbf{H}_0 = -\omega \epsilon \mathbf{E}_0 .$$

- $\mathbf{E}, \mathbf{H} \ \mathrm{et} \ \mathbf{k}$ forment un triplet droitier
- Impédance (rapport des champs E/H): $\eta = \sqrt{\frac{\mu_0 \mu_r}{\epsilon_0 \epsilon_r}}$

Le vide oppose une certaine résistance à la propagation des ondes

électromagnétiques

$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \simeq 376.6 \,\Omega$$



Vecteur de Poynting

Le vecteur de Poynting donne le flux d'énergie par unité de temps et de surface:

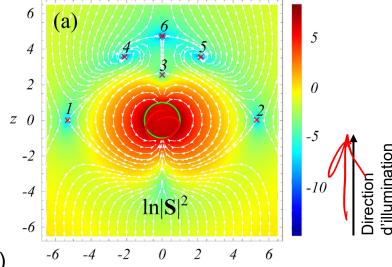
$$S = E \times H$$

• Pour des champs harmoniques ($e^{j\omega t}$), on calcule en général la moyenne temporelle (sur une période) du vecteur de Poynting:

$$\langle \mathbf{S} \rangle = \frac{1}{2} \mathbf{E} \times \mathbf{H}^*$$

Le flux d'énergie peut être très complexe (diffusion de la lumière sur une sphère

métallique dans le vide):



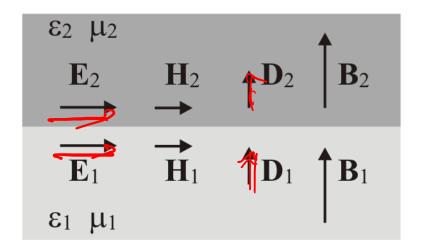
Nanomaterials vol. 12, p. 1878 (2022)

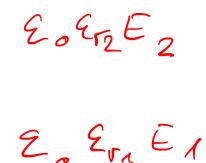
Ingénierie optique

Semaine 6 – partie 3

Conditions d'interface

 Ces conditions sont le moteur de la plupart des phénomènes observés en optique et permettent de déduire les coefficients de Fresnel



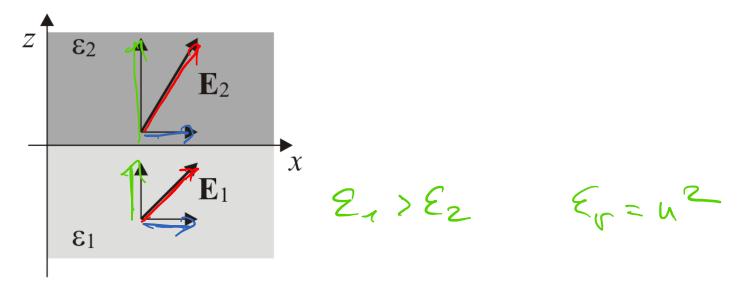


_	Champ	Composante continue
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E	parallèle
·	\mathbf{H}	parallèle
->	D	perpendiculaire
_	В	perpendiculaire

Conditions d'interface

Construction du champ dans le deuxième milieu en le connaissant dans le premier

milieu:



$$\mathbf{E}_{1} = (E_{1x}, 0, E_{1z}) \longrightarrow \mathbf{E}_{2} = (E_{1x}, 0, E_{2z})$$

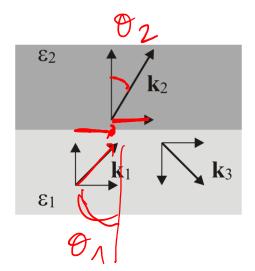
$$\mathbf{D}_{1} = (\epsilon_{1}E_{1x}, 0, \epsilon_{1}E_{1z}) \longrightarrow E_{2z} = \epsilon_{1}E_{1z}/\epsilon_{2}$$

$$\mathbf{D}_{2} = (\epsilon_{2}E_{2x}, \epsilon_{2}E_{2x}, \epsilon_{2}E_{2z}) \longrightarrow E_{2z} = \epsilon_{1}E_{1z}/\epsilon_{2}$$

$$\mathbf{E}_{2} = (E_{1x}, 0, \epsilon_{1}E_{1z}/\epsilon_{2})$$
Olivier J.F. Martin

Conditions d'interface - Réfraction

La loi de Snell se déduit aussi des équations de Maxwell



$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$k_1 = n_1 k_0$$

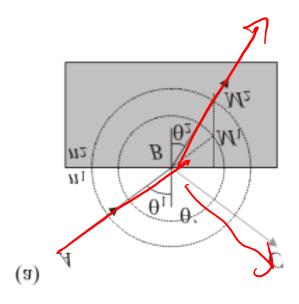
$$k_2 = n_2 k_0$$

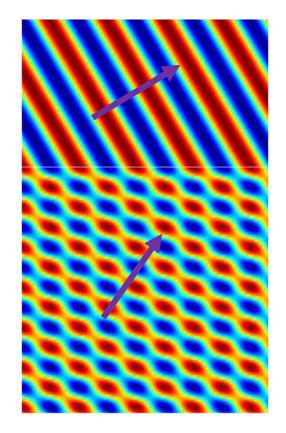
$$n_1 k_0 \sin \theta_1 = n_2 k_0 \sin \theta_2$$

- Continuité de la composante parallèle à l'interface du vecteur d'onde
- Conservation de la quantité de mouvement

Différence optique géométrique – optique de Maxwell

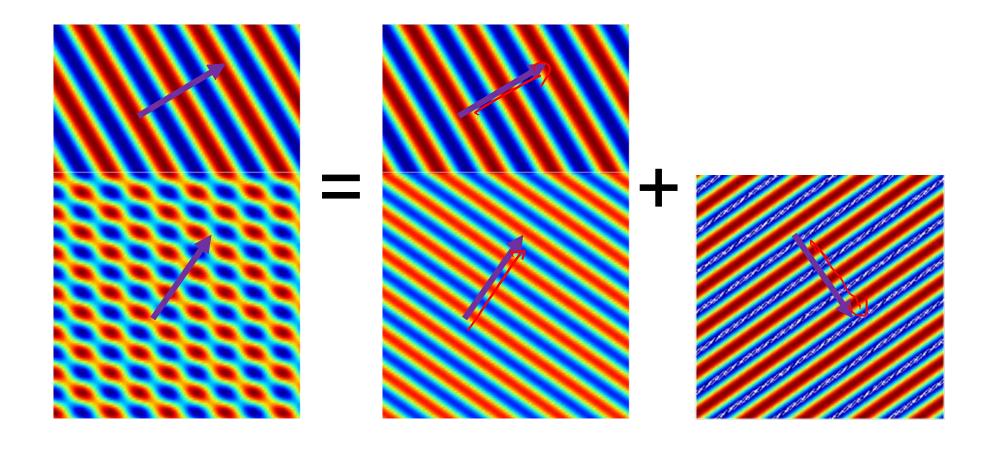
- Loi de Snell (détermine seulement les directions)
- Coefficients de Fresnel (déterminent aussi les amplitudes des différentes ondes)





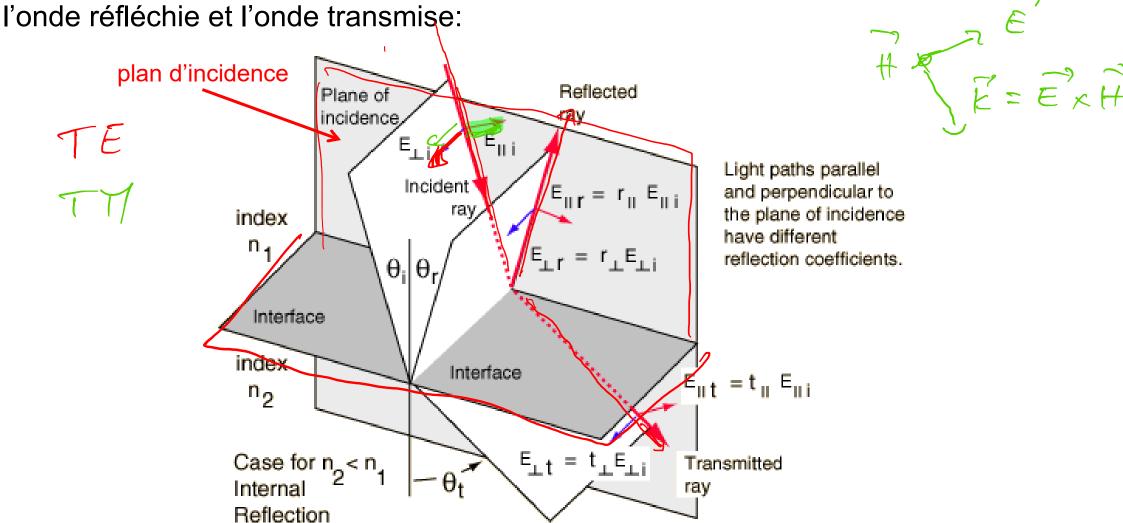
Optique de Maxwell

• Champ total = Incident + Réfléchi



Coefficients de Fresnel

• Le vecteur de propagation de l'onde incidente définit un plan dans lequel se trouve

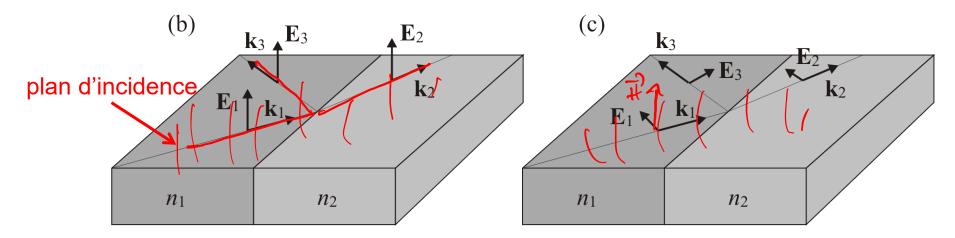


Coefficients de Fresnel

Deux polarisations distinctes définies par rapport au plan d'incidence:

Transverse électrique TE ou s (senkrecht)

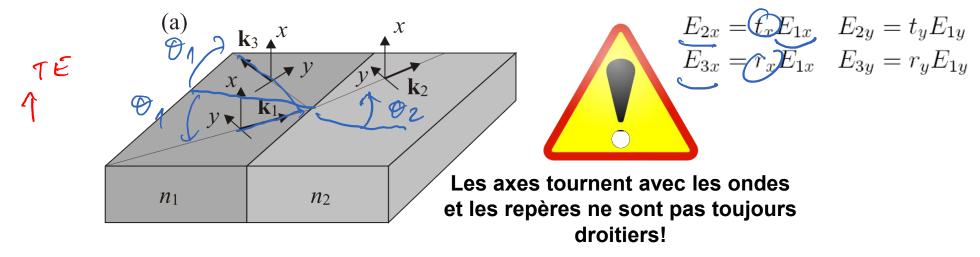
Transverse magnétique TM ou p (parallel)



- Tout champ incident peut (doit) être décomposé en TE et TM.
- Chaque composante est conservée (par exemple, un champ incident TE donne lieu à des champs transmis (réfractés) et réfléchis TE)
- Les coefficients de Fresnel donnent les amplitudes des champs transmis et réfléchis

Coefficients de Fresnel

- Sont complexes (amplitude et phase)
- Relient les champs transmis et réfléchis au champ incident:



Cas particulier pour l'optique (non-magnétique, pas de perte):

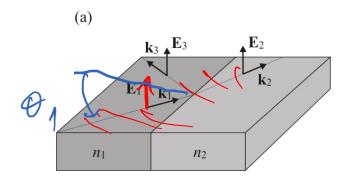
$$\int \int \int \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \quad \underbrace{t_x} = 1 + r_x \qquad \text{polarisationTE}$$

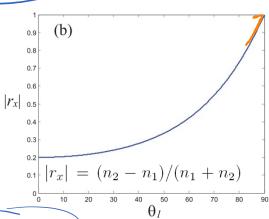
$$r_y = \frac{n_1 \sec \theta_1 - n_2 \sec \theta_2}{n_1 \sec \theta_1 + n_2 \sec \theta_2} \quad t_y = (1 + r_y) \frac{\cos \theta_1}{\cos \theta_2} \qquad \text{polarisationTM}.$$

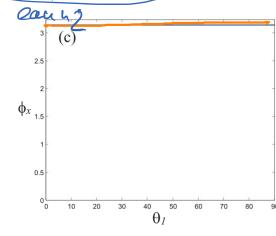
 $\sec = \cos^{-1}$

Coefficients de Fresnel – Champ TE

• Réflexion externe $(n_1 < n_2)$



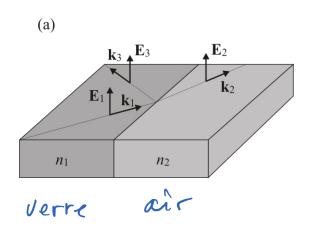


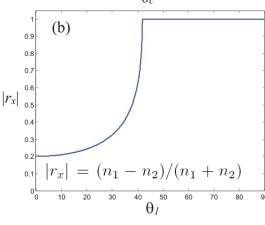


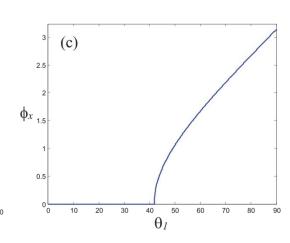
ain hi

charlotte-mouttier.com

• Réflexion interne (

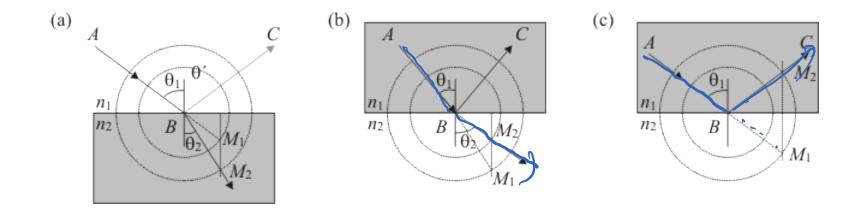






Réflexion interne totale

Il existe un angle limite au-delà duquel l'onde est entièrement réfléchie

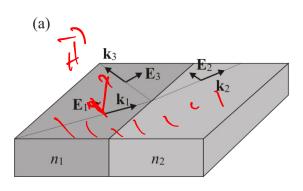


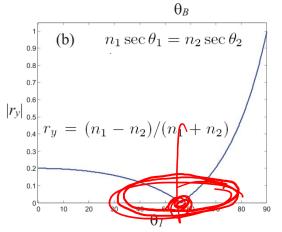
$$n_1 sin\theta_1 = n_2 \sin \theta_2$$

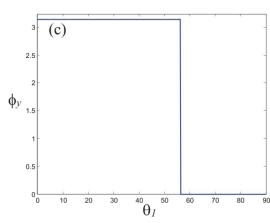
$$\theta_c = \arcsin\left(n_2/n_1\right)$$

Coefficients de Fresnel – Champ TM

• Réflexion externe $(n_1 < n_2)$

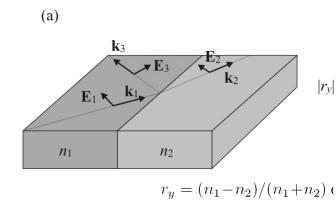


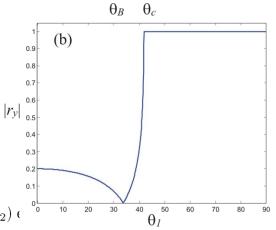


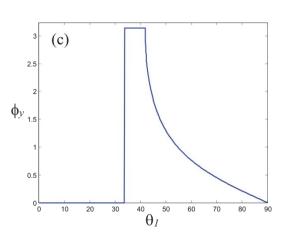


• Réflexion interne $(n_1 > n_2)$

Angle de Brewster

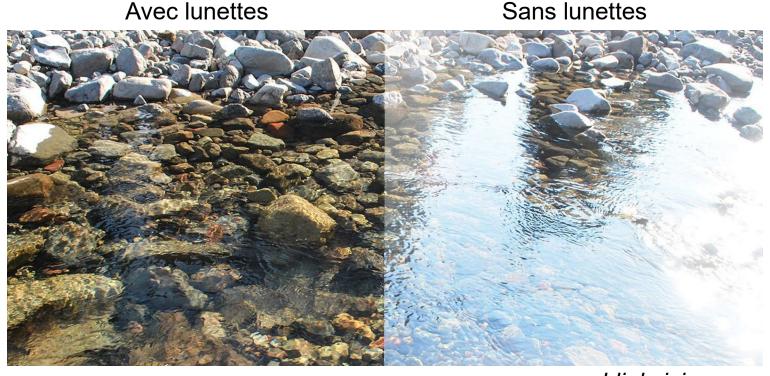






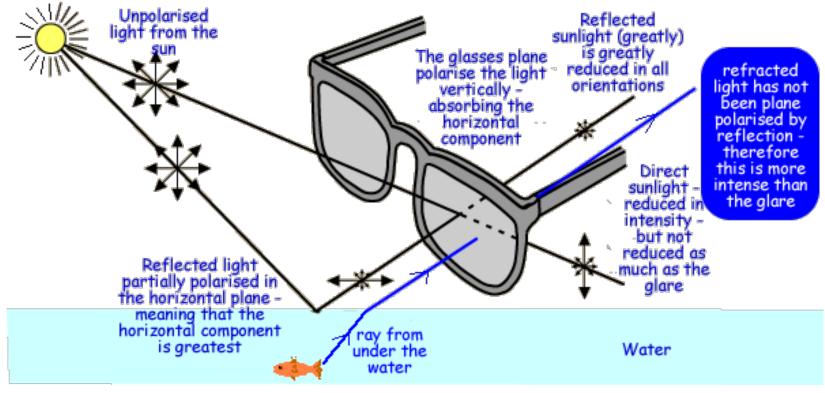
Angle de Brewster et polarisation

- La lumière réfléchie par une surfaces horizontale est polarisée préférentiellement parallèlement à cette surface
- Des lunettes polarisantes permettent d'éliminer cette polarisation, donc de diminuer ces réflexions parasites et d'augmenter le contraste



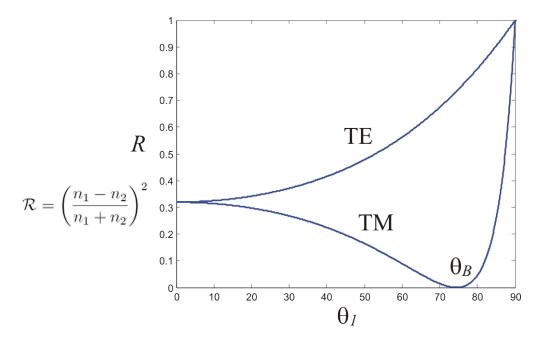
Angle de Brewster et polarisation

- La lumière réfléchie par une surfaces horizontale est polarisée préférentiellement parallèlement à cette surface
- Des lunettes polarisantes permettent d'éliminer cette polarisation, donc de diminuer ces réflexions parasites et d'augmenter le contraste



Réflectance et transmittance

- Jusqu'à présent, on a étudié l'amplitude des ondes transmises/rélfléchies;
 maintenant, on s'intéresse au <u>flux d'énergie optique</u>
- On définit d'abord la réflectance: $(\mathcal{R}) = |\mathcal{F}|^2$
- Et la transmittance par conservation de l'énergie (milieu sans perte): $\mathcal{T}=1-\mathcal{R}$
- Par exemple entre l'air et un semiconducteur:

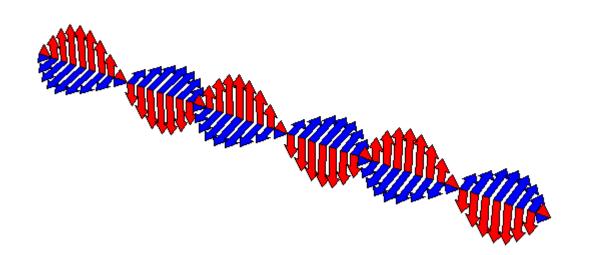


Ingénierie optique

Semaine 6 – partie 4

Polarisation de la lumière

- La polarisation linéaire est un cas très particulier, où l'extrémité du vecteur du champ électrique décrit une ligne
- En général, la polarisation est elliptique: l'extrémité du champ électrique décrit une ellipse
- On peut décomposer cette ellipse selon deux axes → <u>deux composantes du champ</u> <u>électrique</u>



Polarisation de la lumière

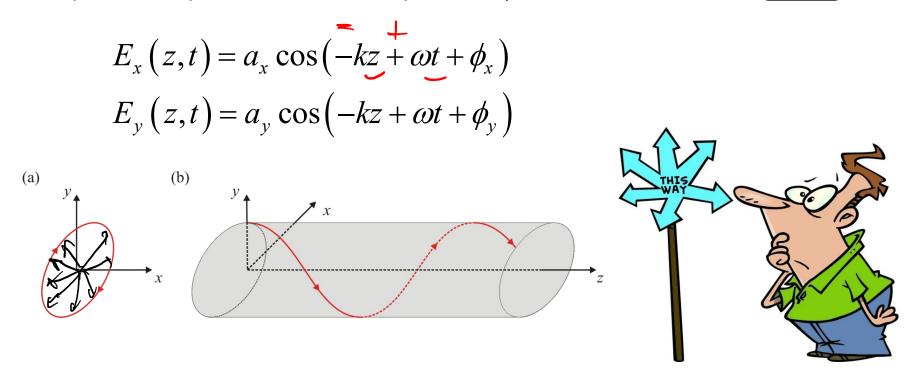
Les deux composantes du champ électrique s'écrivent:

$$\mathbf{E}(z,t) = \begin{pmatrix} E_{x}(z,t) \\ E_{y}(z,t) \end{pmatrix} = \mathbf{A} e^{-jkz} e^{j\omega t} = \begin{pmatrix} \tilde{a}_{x} \\ \tilde{a}_{y} \end{pmatrix} e^{-jkz} e^{j\omega t} = \begin{pmatrix} a_{x}e^{j(-kz+\omega t+\phi_{x})} \\ a_{y}e^{j\phi_{y}} \end{pmatrix} e^{-jkz} e^{j\omega t} = \begin{pmatrix} a_{x}e^{j(-kz+\omega t+\phi_{x})} \\ a_{y}e^{j(-kz+\omega t+\phi_{y})} \end{pmatrix}$$

- En prenant les parties réelles: $E_x(z,t) = a_x \cos(-kz + \omega t + \phi_x)$ $E_y(z,t) = a_y \cos(-kz + \omega t + \phi_y)$
- Les phases ϕ_x et ϕ_y sont constantes et ce qui va être déterminant est la différence de phase $\phi = \phi_y \phi_x$
- Une composante est en avance ou en retard par rapport à l'autre et dans un milieu isotrope les deux composantes vont à la même vitesse (l'avance ou le retard <u>est</u> <u>constant</u> la polarisation ne change pas)
- Le sens de rotation est différent dans le temps et l'espace (signe différent pour le temps et l'espace dans l'équation d'onde)!

Polarisation de la lumière

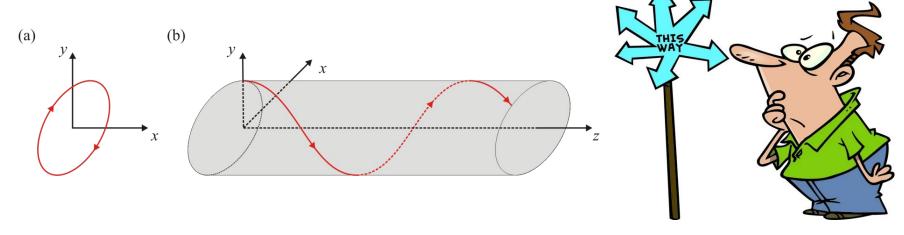
- Le vecteur du champ électrique tourne
- Son sens de rotation est différent dans le temps et dans l'espace (signes différents pour le temps et l'espace dans les équations)



depositphotos.com

Polarisation à droite ou à gauche?

- On se place en un endroit fixe (par exemple en z = 0)
- On regarde l'onde <u>venir vers nous</u> et on regarde comment elle tourne <u>dans le</u> temps:
 - Rotation dans le sens des aiguilles d'une montre → polarisation à droite
 - Rotation dans le sens contraire des aiguilles d'une montre → polarisation à gauche



depositphotos.com

• Cette convention dépend du choix que nous avons fait pour $e^{\pm j\omega t}$

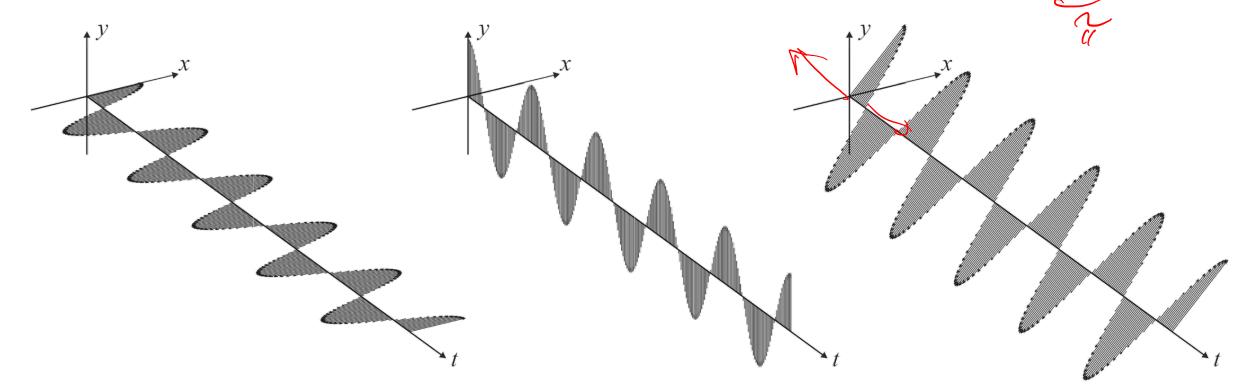
Onde polarisée linéairement (évolution dans le temps)

• Différentes possibilités:

$$a_x = 1, \ a_y = 0, \ \phi = 0$$

$$a_x = 0, a_y = 1, \phi = 0$$

$$a_x = 1, a_y = 1, \phi = 0$$



Onde polarisée circulairement

• Condition $\phi = \pm \pi/2$ et $a_x = a_y = a_0$,

$$E_{x}(z,t) = a_{0}\cos(-kz + \omega t + \phi_{x})$$

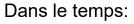
$$E_{y}(z,t) = a_{0}\cos(-kz + \omega t + \phi_{y})$$

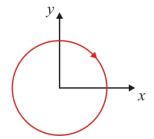
$$\phi = \phi_{y} - \phi_{x}$$

$$E_{y}(z,t) = a_{0}\cos(-kz + \omega t + \phi_{y})$$

$$\phi = \pi/2$$

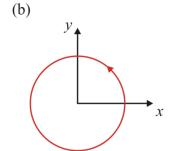
Polarisation à droite

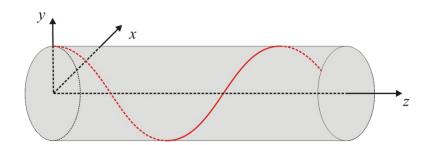




$$\phi = -\pi/2$$

Polarisation à gauche



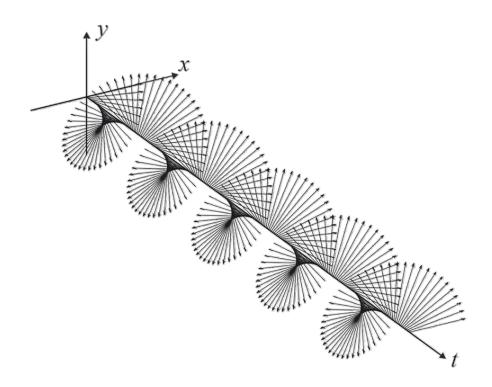


Onde polarisée circulairement (évolution dans le temps)

Différentes possibilités:

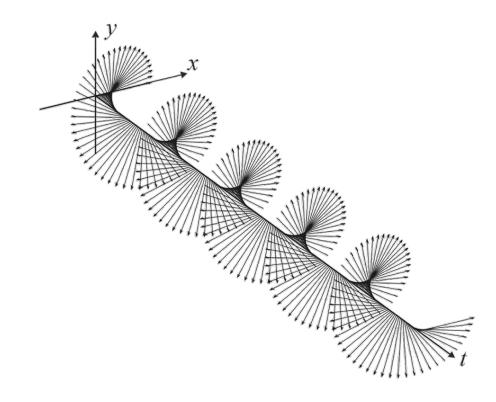
$$a_x = 1$$
, $a_y = 1$, $\phi = \pi / 2$

(rotation dans le temps dans le sens des aiguilles d'une montre → polarisation à droite)



$$a_x = 1$$
, $a_y = 1$, $\phi = -\pi/2$

(rotation dans le temps dans le sens contraire des aiguilles d'une montre → polarisation à gauche)



Onde polarisée elliptiquement (évolution dans le temps)

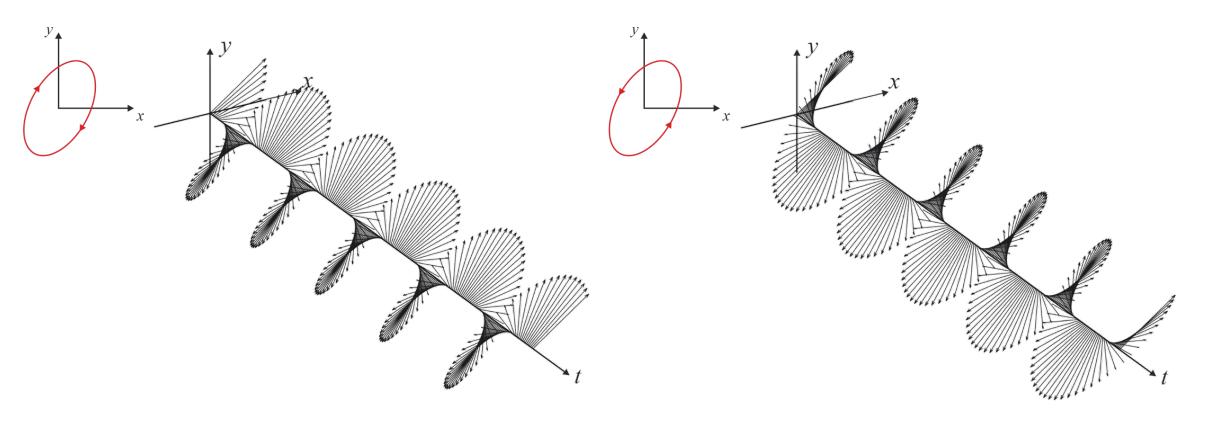
Le champ électrique décrit une ellipse

$$a_x = 1, a_y = 1, \phi = \pi / 4$$

(rotation dans le temps dans le sens des aiguilles d'une montre → polarisation à droite)

$$a_x = 1$$
, $a_v = 1$, $\phi = -\pi / 4$

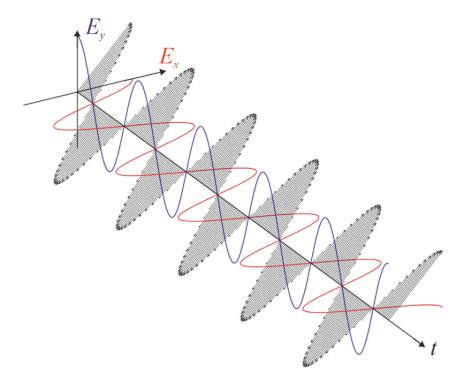
(rotation dans le temps dans le sens contraire des aiguilles d'une montre → polarisation à gauche)



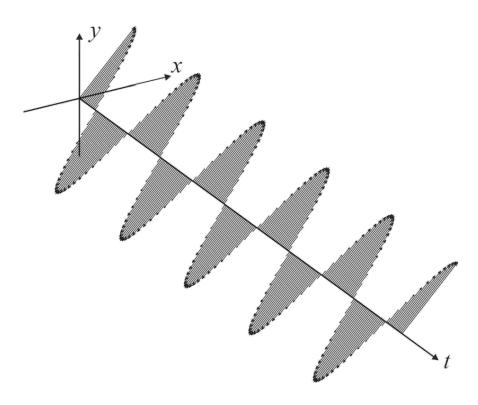
Onde polarisée linéairement (évolution dans le temps)

• Il est intéressant d'observer l'évolution de chaque composante du champ:

$$a_x = 1, a_y = 1, \phi = 0$$



$$a_x = 1, a_y = 1, \phi = 0$$



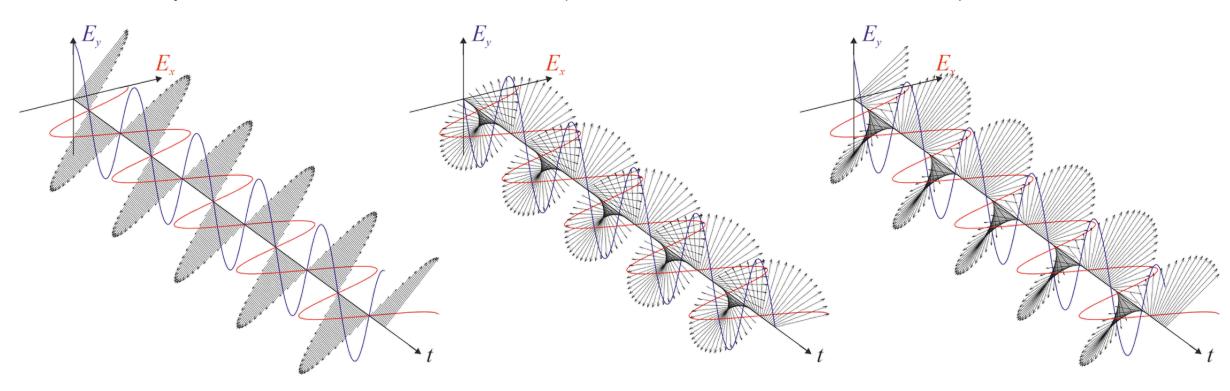
Onde polarisée linéairement (évolution dans le temps)

Il est intéressant d'observer l'évolution de chaque composante du champ:

$$a_x = 1, a_y = 1, \phi = 0$$

$$a_x = 1, a_y = 1, \phi = \pi / 2$$

$$a_x = 1, a_y = 1, \phi = \pi / 4$$



Polarisation linéaire à 45°

Polarisation circulaire à droite (rotation dans le sens des aiguilles d'une montre)

Polarisation elliptique à droite (rotation dans le sens des aiguilles d'une montre)