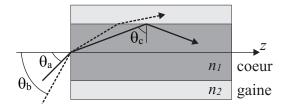

Ingénierie optique, série d'exercices 9, du 18 novembre 2024

Exercice 1 Compréhension immédiate du cours

A l'entrée d'une fibre on injecte une puissance $P_1 = 10^{-6}$ W. Au bout d'un kilomètre on mesure une puissance $P_2 = 10^{-7}$ W. Calculer le coefficient d'atténuation de la fibre et la puissance P_3 transmise pour une longueur de fibre totale de 2.5 km.

Exercice 2

L'indice n d'un point du coeur d'une fibre optique dépend de la distance à l'axe r de la façon suivante :

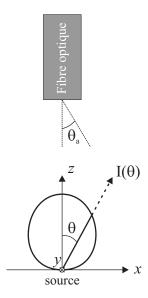

$$n(r) = n_1 \left(1 - \delta \left(\frac{r}{a} \right)^{\alpha} \right) . \tag{1}$$

Dans la gaine l'indice vaut n_2 et on définit les paramètres suivants : α l'exposant du profil d'indice, $\delta = (n_1 - n_2)/n_1$ la différence d'indice et a le rayon du coeur de la fibre.

Montrer que:

- pour $\alpha = 1$ le profile est triangulaire;
- pour $\alpha = 2$ le profile est parabolique;
- pour $\alpha \to \infty$ on a une fibre à saut d'indice.

Exercice 3



On considère une fibre à saut d'indice avec $n_1 = 1.5$ pour le coeur et $\Delta = (n_1^2 - n_2^2)/(2n_1^2) = 10^{-2}$.

En regardant la figure, on remarque que certains rayons peuvent se propager par réflexions successives sur l'interface coeur—gaine (c'est le cas du rayon incident avec l'angle θ_a ; par contre le rayon incident θ_b n'est pas réfléchi et ne peut donc pas propager pas dans la fibre). On souhaite calculer l'angle θ_{max} tel que si l'angle d'incidence θ est inférieur à θ_{max} , la lumière

se propage dans la fibre par réflexions successives. Commencer par calculer θ_{max} en utilisant la réfraction à l'entrée de la fibre ainsi que la condition de réflexion totale θ_c entre l'interface coeur-gaine. Vérifier ensuite que vous obtenez la même valeur en utilisant l'approximation Eq. (5.26) du cours : NA = $\sin \theta_{\text{max}} = n_1 \sqrt{2\Delta}$.

Exercice 4

On considère une source lumineuse Lambertienne de puissance P dont l'intensité lumineuse $I(\theta)$ dépend de l'angle d'émission θ selon la formule

$$I(\theta) = \frac{P}{\pi} \cos \theta \,, \tag{2}$$

comme illustré sur la figure ci-dessus.

On souhaite coupler cette source dans une fibre optique d'ouverture numérique NA. Montrer que la puissance dans la fibre vaut $(NA)^2P$.

Indications : l'ouverture numérique d'une fibre correspond au sinus de l'angle maximal des rayons qui peuvent pénétrer dans la fibre : $NA = \sin \theta_a$, comme indiqué Fig. 5.16 du polycopié. La source émet dans l'espace à trois dimensions.