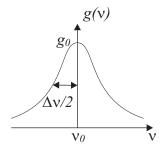
Ingénierie optique, série d'exercices 12, du 9 décembre 2024

Exercice 1

On considère un milieu actif caractérisé par un coefficient de pertes $\alpha = 0.05 \, \mathrm{cm}^{-1}$ et un gain $\gamma = 0.3 \, \mathrm{cm}^{-1}$. Quelle longueur L de ce milieu faut-il utiliser pour amplifier un signal par un facteur de $30 \, \mathrm{dB}$?

Exercice 2



Pour réaliser une cavité laser, on considère un milieu actif avec un gain $g(\nu)$ qui est une fonction lorentzienne de la fréquence, dont la formule

$$g(\nu) = g_0 \frac{(\Delta \nu/2)^2}{(\nu - \nu_0)^2 + (\Delta \nu/2)^2}$$
 (1)

est illustrée sur la figure ci-dessus.

Le gain maximal est $g_0 = 50 \text{ cm}^{-1}$ pour une fréquence de $\nu_0 = 460 \, \text{THz}$ et une largeur à mi-hauteur de $\Delta \nu = 30 \, \text{THz}$. La cavité d'indice de réfraction n = 1 et de longueur d est constituée à ses extrémités de miroirs avec une réflectivité parfaite R = 1.

- a) Donner l'intervalle de fréquence ν_F entre deux modes résonnant à l'intérieur de la cavité. Par quel moyen peut-on faire varier cet espacement?
- b) On désire fabriquer avec cette cavité un laser à la longueur d'onde 650 nm de seuil $g_0/2$, on supposera que le matériau dans la cavité a un indice de réfraction n=1. Donner la longueur de la cavité pour être certain qu'un seul mode lase. La fréquence ν de ce mode est telle que $g(\nu)$ est au-dessus du seuil.

Exercice 3

- a) Le coefficient d'absorption du ruby à l'équilibre thermique (i.e. sans pompage) à $T=300^{\circ}$ K, au centre de la résonance à $\lambda=694.3$ nm, vaut $\alpha(\nu_0)\equiv -\gamma(\nu_0)\approx 0.2$ cm⁻¹. Si la concentration d'ions Cr³⁺ qui sont responsables de cette transition d'absorption est de $N_a=1.58\times 10^{19}$ cm⁻³, déterminer la section efficace de transition $\sigma_0=\sigma(\nu_0)$.
- b) Un laser à ruby utilise un barreau de ruby (indice de réfraction n=1.76) de 10 cm de long ayant une section de 1 cm² et fonctionne à la transition correspondant à $\lambda=694.3$ nm. Les deux extrémités du barreau ont une réflectance de 80%. En supposant que le seul mécanisme de perte soit l'absorption susmentionnée, déterminer le coefficient

- de perte α_r du résonateur ainsi que le temps de vie $\tau_p=1/(\alpha_r c)$ d'un photon dans le résonateur.
- c) Quand le laser est pompé, $\gamma(\nu_0)$ augmente et passe de sa valeur initiale de $-0.2~{\rm cm}^{-1}$ à une valeur positive qui correspond donc à un gain. Déterminer le seuil d'inversion de population $N_{\rm t}$ pour lequel on obtient une oscillation laser.

Exercice 4

On considère un cristal de rubis avec deux niveaux d'énergie 1 et 2 séparés par une différence d'énergie correspondant à une longueur d'onde dans le vide $\lambda_0 = 694.3 \,\mathrm{nm}$ et une une ligne spectrale de forme Lorentzienne avec une largeur $\Delta\nu = 330 \,\mathrm{THz}$. La durée de vie pour l'émission spontanée est $t_{sp} = 3 \,\mathrm{ms}$ et l'indice de réfraction du rubis est n = 1.76. Si $N_1 + N_2 = N_a = 10^{22} \,\mathrm{cm}^{-3}$, calculer la différence de population $N = N_2 - N_1$ et le coefficient de gain $\gamma(\nu_0)$ à l'équilibre thermique à une température $T = 300^{\circ} \,\mathrm{K}$ (on suppose que la distribution de Boltzmann illustrée Fig. 6.14 est valable).

Quelle devrait être la différence de population N pour obtenir un coefficient de gain $\gamma(\nu_0) = 0.5 \,\mathrm{cm}^{-1}$? Quelle devrait être dans ce cas la longueur du crystal pour obtenir un gain de 4 à la fréquence centrale ν_0 ?