Actionneurs et systèmes électromagnétiques I

Corrigé: Inductances propres et mutuelles

1) Schéma magnétique équivalent

Le schéma magnétique équivalent correspondant au circuit magnétique est montré à la Fig. 1. Les sources du flux sont $\Theta_1 = N_1 I_1$, $\Theta_2 = N_2 I_2$ et $\Theta_3 = N_3 I_3$.

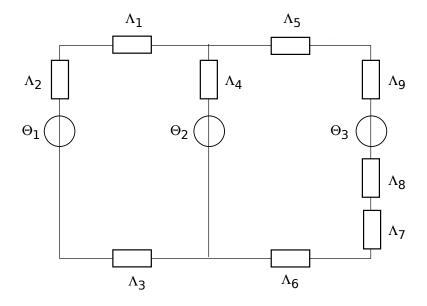


Figure 1: Le schéma magnétique équivalent

Pour déterminer chaque perméance Λ , on applique la formule:

$$\Lambda = \frac{\mu_0 \mu_r S}{l} \tag{1}$$

Afin de déterminer les valeurs des perméances, on peut considérer le parcours moyen du flux dans les parties ferromagnétiques du système. Ce dernier est représenté sur la figure 2 avec des couleurs différentes pour chacune des perméances. Pour calculer la perméance correspondante on remplace la longueur l de (1) par la longueur du segment de couleur considéré.

En groupant les perméances de chaque branche, on obtient le circuit tel que présenté à la Fig. 3a), avec:

$$\Lambda_{\alpha} = \frac{1}{\frac{1}{\Lambda_1} + \frac{1}{\Lambda_2} + \frac{1}{\Lambda_3}} \tag{2}$$

$$\Lambda_b = \Lambda_4 \tag{3}$$

$$\Lambda_{c} = \frac{1}{\frac{1}{\Lambda_{5}} + \frac{1}{\Lambda_{6}} + \frac{1}{\Lambda_{7}} + \frac{1}{\Lambda_{8}} + \frac{1}{\Lambda_{9}}} \tag{4}$$

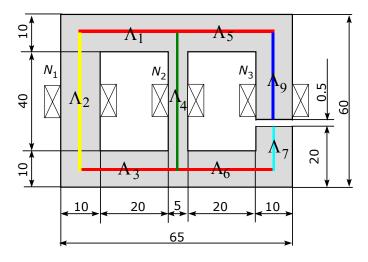


Figure 2: Calcul des perméances du fer

A noter que lorsque la surface et la perméabilité de plusieurs perméances en série sont égales (Λ_1,Λ_2 et Λ_3), (Λ_5 et Λ_9) et (Λ_6 et Λ_7): on peut calculer directement la perméance équivalente en auditionnant les longueurs de leurs éléments ce qui permet de simplifier un peu les calculs.

Les valeurs numériques sont:

$$\begin{split} &\Lambda_1=\Lambda_3=\Lambda_5=\Lambda_6=1.142\cdot 10^{-6}~\text{H, }\Lambda_2=6.283\cdot 10^{-7}~\text{H}\\ &\Lambda_4=3.142\cdot 10^{-7}~\text{H, }\Lambda_7=2.094\cdot 10^{-6}~\text{H}\\ &\Lambda_8=2.513\cdot 10^{-7}~\text{H, }\Lambda_9=9.106\cdot 10^{-7}~\text{H}\\ &\Lambda_\alpha=2.99\cdot 10^{-7}~\text{H, }\Lambda_b=3.142\cdot 10^{-7}~\text{H, }\Lambda_c=1.37\cdot 10^{-7}~\text{H.} \end{split}$$

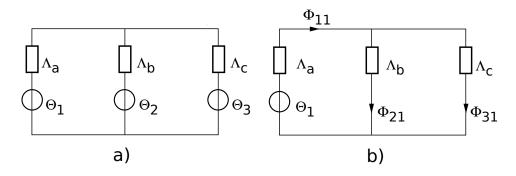


Figure 3: Le schéma magnétique équivalent modifié

2) Inductances propres

Imaginons une bobine m avec un courant I_m . Le flux totalisé traversant la même bobine et créé par I_m est Ψ_{mm} . L'inductance propre de la bobine m est définie comme le quotient du flux Ψ_{mm} par le courant I_m :

$$L_{mm} = \frac{\Psi_{mm}}{I_m} = \frac{N_m \Phi_{mm}}{I_m} \tag{5}$$

Pour déterminer L_{11} , il faut annuler les sources Θ_2 et Θ_3 . Le circuit correspondant est montré à la Fig. 3b).

Selon le circuit, les perméances Λ_b et Λ_c sont connectées en parallèle, et en série avec Λ_a , donc:

$$\Phi_{11} = \Theta_1 \frac{\Lambda_a(\Lambda_b + \Lambda_c)}{\Lambda_a + \Lambda_b + \Lambda_c} \tag{6}$$

et:

$$L_{11} = \frac{N_1 \Phi_{11}}{I_1} = N_1^2 \frac{\Lambda_a (\Lambda_b + \Lambda_c)}{\Lambda_a + \Lambda_b + \Lambda_c} \tag{7}$$

et par analogie:

$$L_{22} = \frac{N_2 \Phi_{22}}{I_2} = N_2^2 \frac{\Lambda_b (\Lambda_a + \Lambda_c)}{\Lambda_b + \Lambda_a + \Lambda_c}$$
 (8)

$$L_{33} = \frac{N_3 \Phi_{33}}{I_3} = N_3^2 \frac{\Lambda_c (\Lambda_a + \Lambda_b)}{\Lambda_c + \Lambda_a + \Lambda_b} \tag{9}$$

Les valeurs numériques sont:

 $L_{11} = 179.8 \text{ mH}, L_{22} = 45.7 \text{ mH}, L_{33} = 28.0 \text{ mH}.$

3) Inductances mutuelles

Imaginons deux bobines: m sans courant, et n avec un courant I_n . Le flux totalisé traversant la bobine m et créé par I_n est Ψ_{mn} . L'inductance mutuelle entre les bobines m et n est définie comme le quotient du flux Ψ_{mn} par le courant I_n :

$$L_{mn} = \frac{\Psi_{mn}}{I_n} = \frac{N_m \Phi_{mn}}{I_n} \tag{10}$$

Par analogie, on peux écrire:

$$L_{nm} = \frac{\Psi_{nm}}{I_m} = \frac{N_n \Phi_{nm}}{I_m} \tag{11}$$

Dans les systèmes linéaires, $L_{mn} = L_{nm}$.

Selon le circuit de la Fig. 2b), $\Phi_{11} = \Phi_{21} + \Phi_{31}$ et on a une division de flux:

$$\Phi_{21} = \Phi_{11} \frac{\Lambda_b}{\Lambda_b + \Lambda_c} = \Theta_1 \frac{\Lambda_a \Lambda_b}{\Lambda_a + \Lambda_b + \Lambda_c}$$
 (12)

$$\Phi_{31} = \Phi_{11} \frac{\Lambda_c}{\Lambda_b + \Lambda_c} = \Theta_1 \frac{\Lambda_a \Lambda_c}{\Lambda_a + \Lambda_b + \Lambda_c}$$
 (13)

et:

$$L_{21} = \frac{N_2 \Phi_{21}}{I_1} = N_2 N_1 \frac{\Lambda_a \Lambda_b}{\Lambda_a + \Lambda_b + \Lambda_c}$$
 (14)

$$L_{31} = \frac{N_3 \Phi_{31}}{I_1} = N_3 N_1 \frac{\Lambda_a \Lambda_c}{\Lambda_a + \Lambda_b + \Lambda_c}$$
 (15)

Finalement, par analogie:

$$L_{23} = \frac{N_2 \Phi_{23}}{I_3} = N_2 N_3 \frac{\Lambda_b \Lambda_c}{\Lambda_a + \Lambda_b + \Lambda_c}$$
 (16)

Les valeurs numériques sont:

$$L_{12} = L_{21} = 62.6 \text{ mH}, L_{13} = L_{31} = 27.3 \text{ mH}, L_{23} = L_{32} = 14.3 \text{ mH}.$$