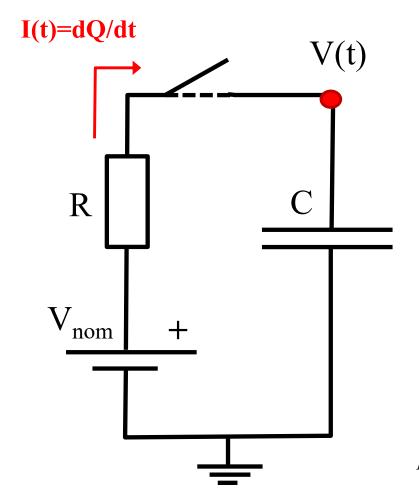


Exercice E.14.1: Transfert d'énergie vers une capacité


Considérez le schéma ci-contre:

- 1) Calculez la charge Q_0 transférée sur la capacité C à l'équilibre final.
- 2) Calculez l'énergie E_{pile} de cette charge Q_0 lorsqu'elle est encore stockée dans la pile.
- 3) Calculez l'énergie E_{capa} de cette charge Q_0 après son transfert sur la capacité.
- 4) Calculez l'énergie E_{ohm} dissipée dans la résistance R lors du transfert.

Exercice:

Transfert d'énergie vers une capacité

1) Charge Q_0 transférée à l'équilibre final.

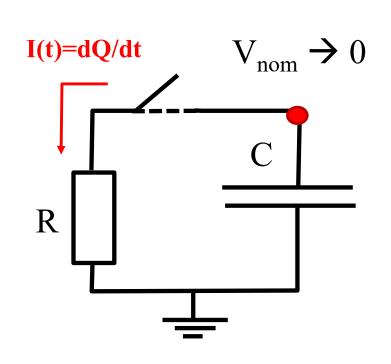
$$Q_0 = C \cdot V_{nom}$$

2) Energie au départ dans la pile pour cette charge Q_0

$$E_{Pile} = Q_0 \cdot V_{nom} = CV_{nom}^2$$

3) Energie finale dans la capacité pour cette charge Q_0

$$E_{capa} = \int_{0}^{\infty} V \cdot \frac{dQ}{dt} dt = \int_{0}^{Q_{0}} \frac{Q}{C} dQ = \frac{1}{2} \frac{Q_{0}^{2}}{C} = \frac{1}{2} C V_{nom}^{2}$$


4) Energie dissipée dans la résistance R

$$E_{ohm} = \int_{0}^{\infty} \left[V_{nom} - V(t) \right] \cdot \frac{dQ}{dt} dt = \int_{0}^{Q_0} \left[V_{nom} - \frac{Q}{C} \right] dQ = V_{nom} Q_0 - \frac{1}{2} \frac{Q_0^2}{C} = \frac{1}{2} C V_{nom}^2$$

Quelle que soit R, la moitié de l'énergie est stockée dans C, l'autre moitié est dissipée !!

Exercice: Perte d'énergie lors de la décharge de la capacité

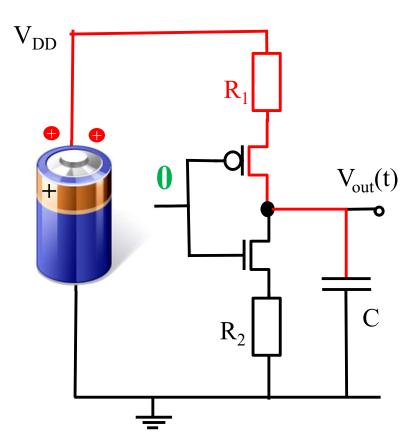
1) Calcul implicite:

$$E_{ohm} = \int_{0}^{\infty} V(t) \cdot \frac{dQ}{dt} dt = \int_{0}^{Q_0} \frac{Q}{C} dQ = \frac{1}{2} C V_{nom}^2$$

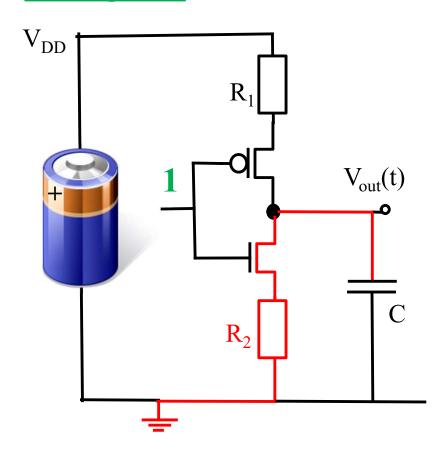
2) Calcul explicite:

$$I = \frac{V}{R} = -\frac{dQ}{dt} = -C \cdot \frac{dV}{dt} \implies \frac{dV}{dt} = -\frac{1}{RC} \cdot V$$

$$V(t) = V_{nom} \cdot e^{-\frac{t}{RC}}$$
 et $I(t) = \frac{V_{nom}}{R} \cdot e^{-\frac{t}{RC}}$


$$\Rightarrow E_{ohm} = \int_{0}^{\infty} V \cdot I \, dt = \frac{V_{nom}^{2}}{R} \cdot \int_{0}^{\infty} e^{-\frac{2t}{RC}} dt = \frac{1}{2} C V_{nom}^{2}$$

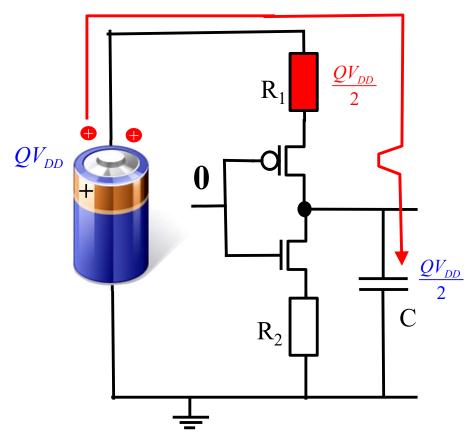
L'énergie, stockée dans C, est toute dissipée dans R, quelles que soient leurs valeurs !!



Exercice E 14.2: Pertes dynamiques dans un inverseur CMOS

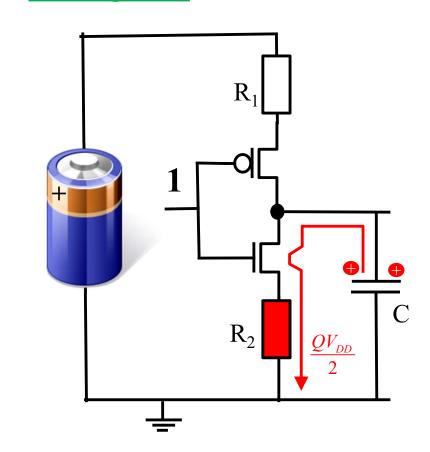
Chargement

Déchargement


Appliquez les résultats pour la consommation d'énergie d'un inverseur CMOS

- 5) Combien et quand l'énergie est-elle dissipée ?
- 6) Quelle est l'influence de R₁ et R₂ ?

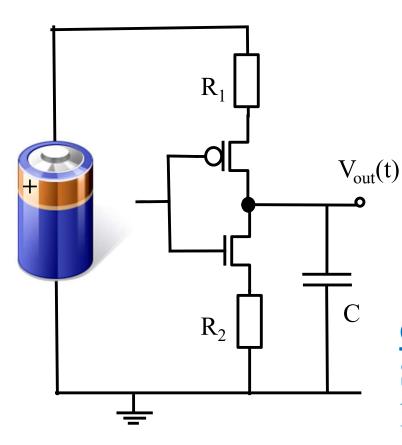
Pertes dynamiques dans un inverseur CMOS


Chargement

La charge Q₀ est stockée sur C

- → La moitié de l'énergie est transférée sur C
- \rightarrow L'autre moitié est dissipée dans R_1 .

Déchargement

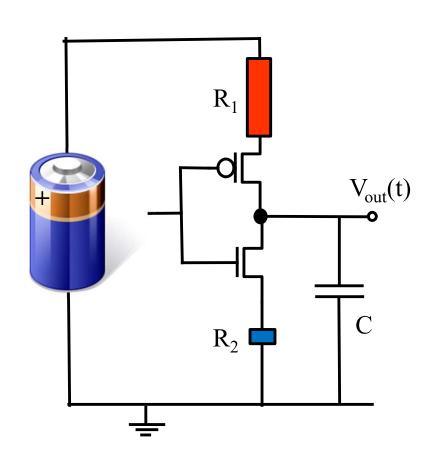


La charge Q_0 est sortie de C vers la masse

→ L'énergie encore stockée sur C est dissipée dans R₂.

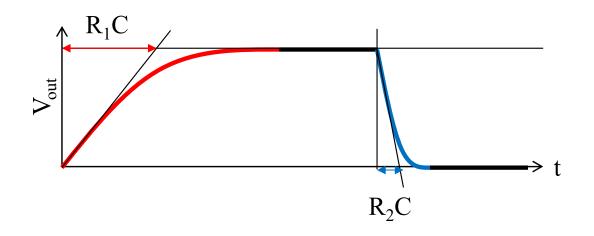
Pertes dynamiques dans un inverseur CMOS

Les valeurs de R_1 et R_2 ne jouent-elles vraiment aucun rôle?


Elles influencent les temps RC de charge et de décharge

Question complémentaire:

Supposons que le PNOS et le NMOS aient les mêmes dimensions, esquissez le comportement temporel de $V_{out}(t)$



Pertes dynamiques dans un inverseur CMOS

Les trous sont moins mobiles (facteur 2-3) que les électrons libres

- →La résistance du PMOS est plus grande
- → Le temps R₁C de charge est plus long que celui de décharge R₂C

