

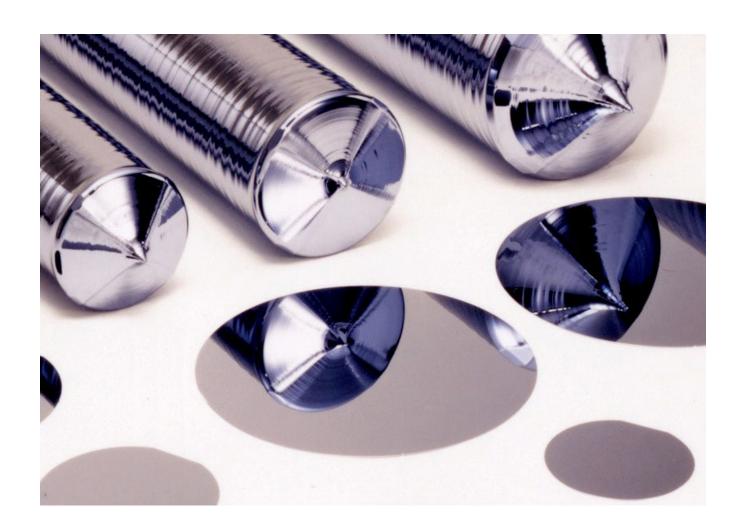
COMPOSANTS SEMI-CONDUCTEURS

I) Formation de bandes

P.A. Besse

EPFL

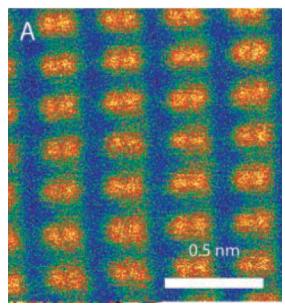
Plaquettes de silicium



Composition et propriétés des plaquettes de silicium ?

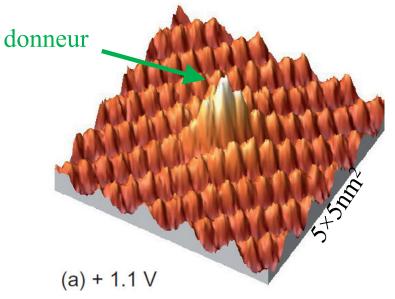
Réseau cristallin: images STM (Scanning Tunnel Microscope)

Silicium [112]-orientation



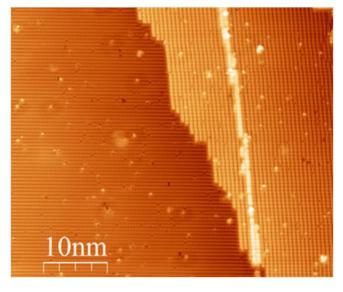
P.D.Nellist et al. « Direct Sub-Angstrom Imaging of a Crystal Lattice», Science, Vol. 305, 2004, p. 1741

N-doped Si (111)-2×1 surface



C.Sürgers et al., «Electronic disorder of P- and B-doped Si at the metal—insulator transition investigated by scanning tunnelling microscopy and electronic transport», New Journal of Physics 15 (2013)

Silicium (100)-surface



http://www.nist.gov/pml/div683/grp02/abdm.cfm

Le silicium et un réseau cristallin, on peut le décrire par des «modes globaux» et interpréter les porteurs libres comme des «paquets d'ondes» dans ce réseau.

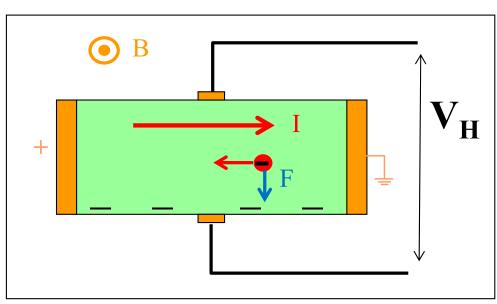
Motivation: Effet Hall →

charges libres positives ou négatives

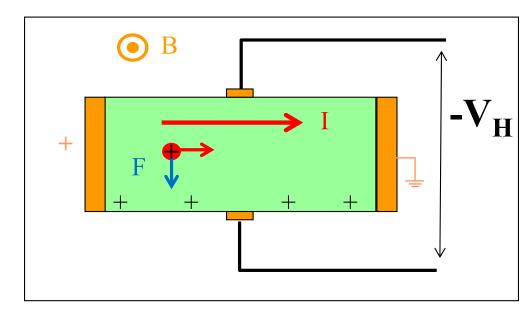
Dopé au phosphore ou à l'arsenic

Dopé au bore

Courant porté par des charges négatives



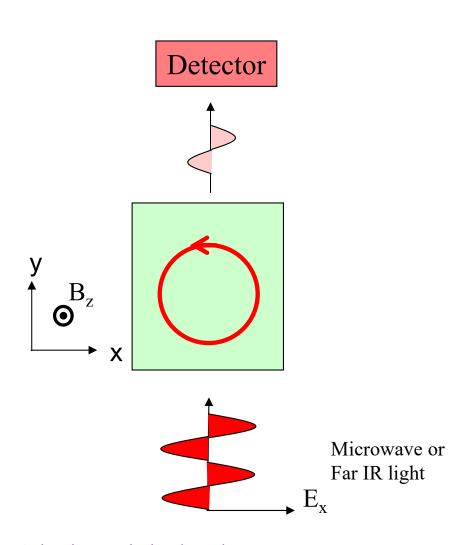
Courant porté par des charges positives



$$\vec{F} = q\vec{v} \times \vec{B} \cong \vec{I} \times \vec{B}$$

Le signe de la tension de Hall V_H dépend des charges porteuses du courant Les deux signes de la tension de Hall sont possibles et dépendent du choix de dopant !!!

Masses des porteurs dans le cristal résonance cyclotronique



Dans une cavité résonante:

- Champ B statique
- Champ E haute fréquence ω_0

Le champ B est varié.

$$\omega_{\rm c} = \omega_0$$
 \rightarrow Résonance

→ Absorption d'énergie à la fréquence de résonance.

La masse effective perpendiculaire à B est déterminée.

Fréquence cyclotron:

$$\omega_c = \frac{qB}{m}$$

Motivation: masses anisotropiques Résonance cyclotronique dans le silicium

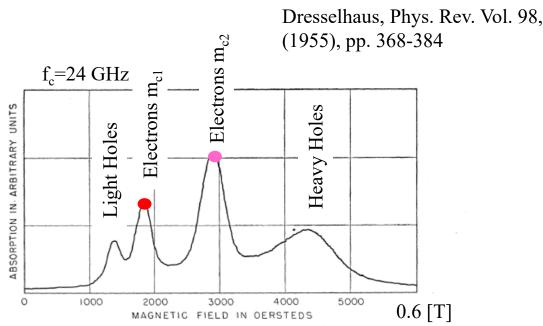


Fig. 3. Typical cyclotron resonance results in silicon near 24 000 Mc/sec and 4°K: static magnetic field orientation in a (110) plane at 30° from a [100] axis.

- Plusieurs résonances
- Masses proches de celle de l'électron
- Masses variables selon l'orientation du wafer dans le champ magnétique

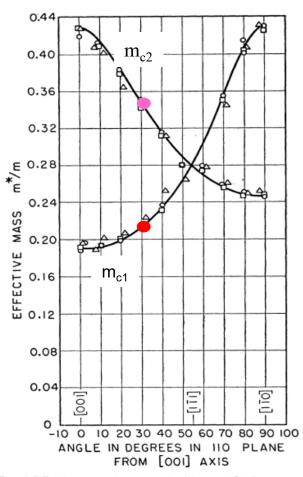


Fig. 6. Effective mass of electrons in silicon at 4°K for magnetic field directions in a (110) plane; the theoretical curves are calculated from Eq. (38), with $m_i = 0.98m$; $m_i = 0.19m$.

Nature de l'électron

Particule

ou/et

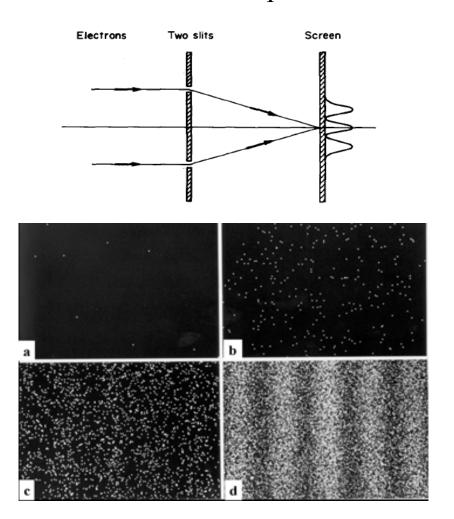
Onde??

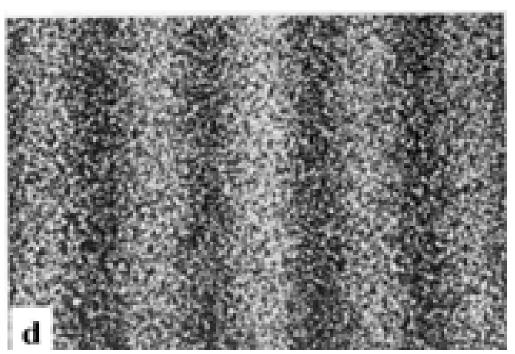
Interférences d'électrons: (fentes de Young électroniques)



Particule / Onde Motivation: interférences d'électrons

Double-slit experiment with single electron





 $\underline{http://www.hqrd.hitachi.co.jp/em/movie/doubleslite-n.wmv}$

A. Tonomura, Am. J. Phys. 57 (2), 1989, pp. 117-120

Physique quantique: principe

Interactions → Particules

Propagation \rightarrow

Fonction d'onde

$$\psi(\vec{x},t) = A \cdot e^{i\vec{K}x} \cdot e^{-i\omega t}$$

Particules:

- Energie E
- Impulsion \vec{P}

« Planck »

$$E = \hbar \cdot \omega$$

$$\vec{P} = \hbar \cdot \vec{K}$$

« De Broglie »

Ondes:

- Fréquence ω = $2\pi\nu$
- Vecteur d'onde \vec{K} $|\vec{K}| = 2\pi / \lambda$

Relation de l'énergie

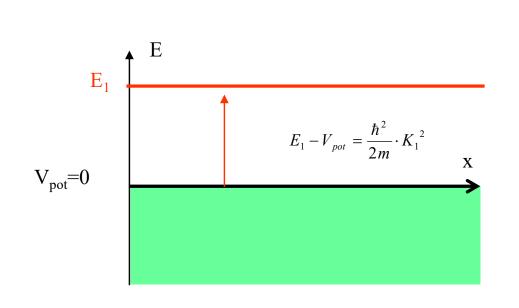
$$E = \frac{P^2}{2m} + V_{pot}$$

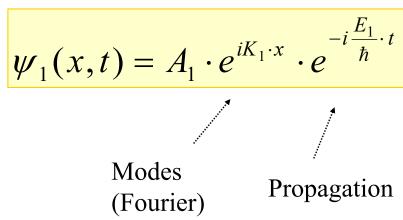
$$\iff$$

$$\hbar\omega = \frac{\left(\hbar K\right)^2}{2m} + V_{pot}$$

Relation de dispersion

Modes oscillatoires dans le vide





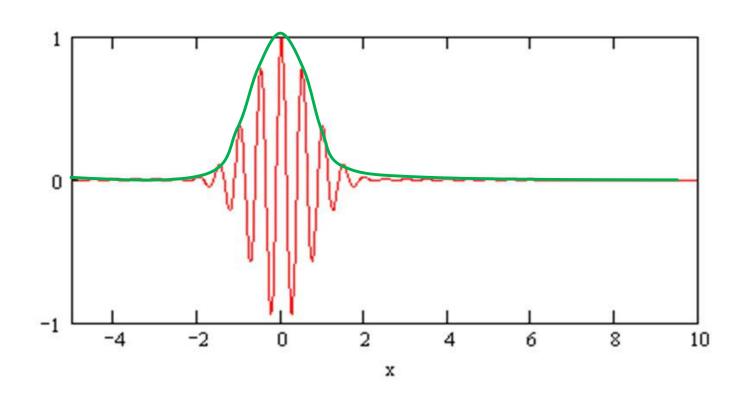
- 1) $E_1 > V_{pot}$
- K₁ est réel

Il existe un continuum d'ondes planes de la forme sinus et cosinus.

 $E_1 < V_{pot}$

K₁ est imaginaire Les ondes sont évanescentes et ne peuvent donc pas se propager.

Electron libre = «bit» = porteuse et son enveloppe



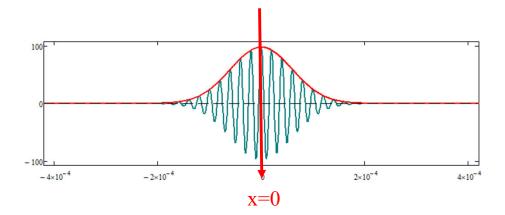
Propagation comme un «paquet d'ondes» autour de la porteuse

Bit électronique

Amplitude en t=0

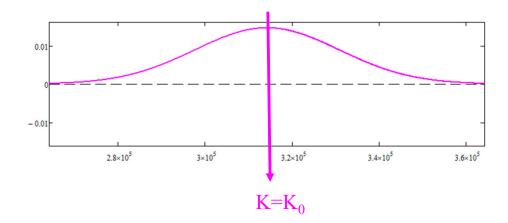
enveloppe

$$\left|\psi_{0}(x)\right\rangle = \left(\frac{1}{\pi \cdot \sigma_{0}^{2}}\right)^{1/4} \cdot e^{-\frac{x^{2}}{2\sigma_{0}^{2}}} \cdot e^{iK_{0}x}$$



Transformée de Fourier en t=0

$$\left|\tilde{\psi}_0(K)\right\rangle = \left(4\pi\sigma_0^2\right)^{1/4} \cdot e^{-\frac{\sigma_0^2(K-K_0)^2}{2}}$$



Variance en x: $\sigma_r^2 = \sigma_0^2$

Variance en K: $\sigma_K^2 = 1/\sigma_0^2$

$$\sigma_K^2 = 1/\sigma_0^2$$

Propagation du bit électronique

Propagation dans l'espace de Fourier

$$\left|\tilde{\psi}(K,t)\right\rangle = \left(4\pi\sigma_0^2\right)^{1/4} \cdot e^{-\frac{\sigma_0^2(K-K_0)^2}{2}} \cdot e^{-i\omega t}$$

$$\hbar\omega = \frac{(\hbar K)^2}{2m}$$

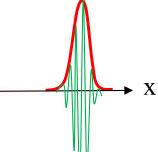
Retour dans l'espace x par transformée de Fourier inverse:

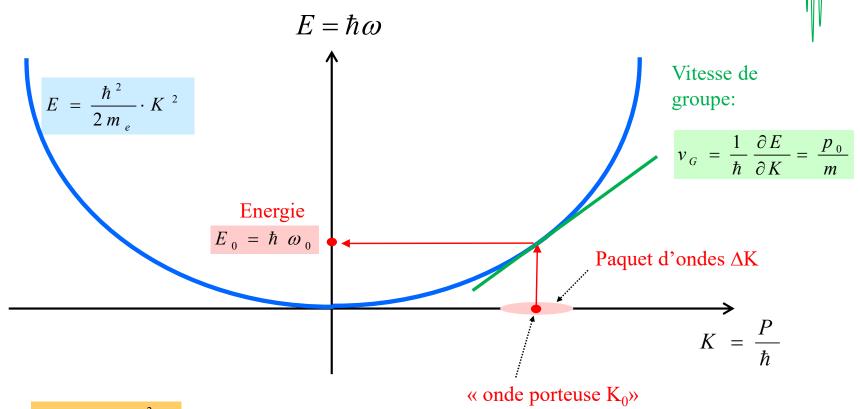
$$|\psi(x,t)\rangle \approx \left(\frac{1}{\pi \cdot \sigma^2}\right)^{1/4} \cdot e^{-\frac{(x-v_G t)^2}{2\sigma^2}}$$

Vitesse de groupe:
$$v_G = \frac{1}{\hbar} \frac{\partial E}{\partial K} \Big|_{K=K_0} = \frac{\hbar K_0}{m} = \frac{p_0}{m}$$

Dispersion:
$$\sigma = \sigma_0 \cdot \sqrt{1 + (\hbar t / m \sigma_0^2)^2}$$

Relation de dispersion dans le vide



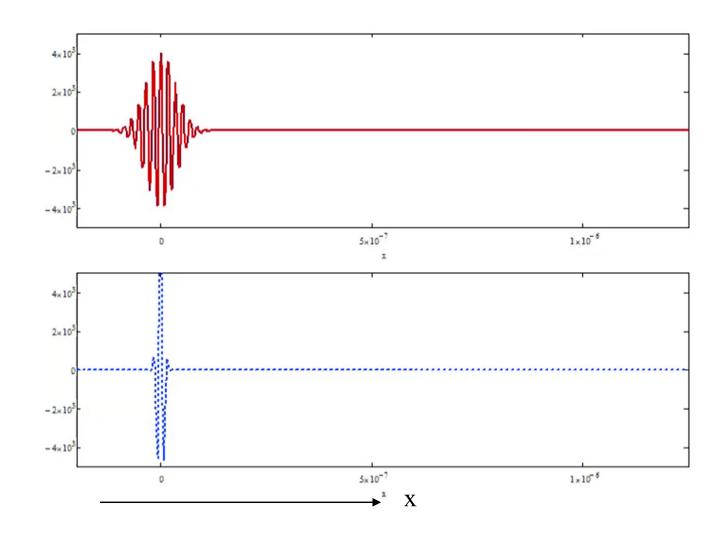


Masse:

$$\frac{1}{m_e} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial K^2}$$

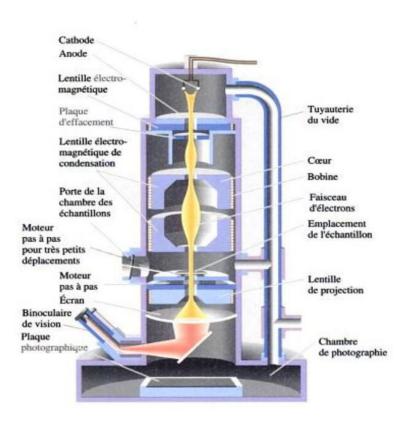
Impulsion:
$$P_0 = \hbar K_0$$

Vitesse de phase et vitesse de groupe



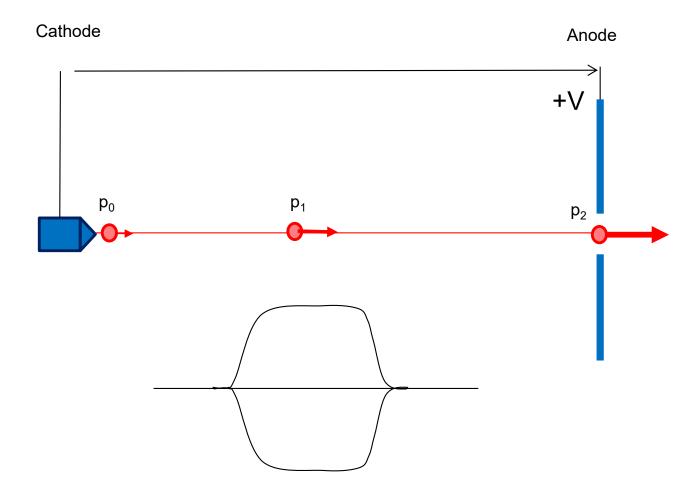
Exercice

TEM principle

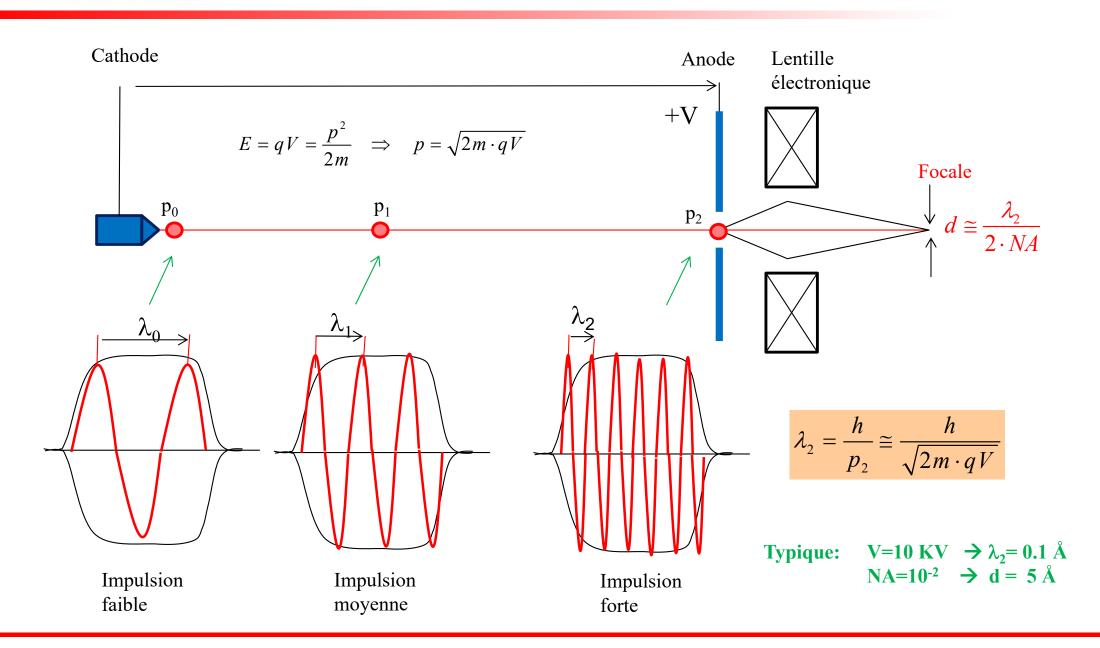


Eugene Hecht, « Physique », p. 1171

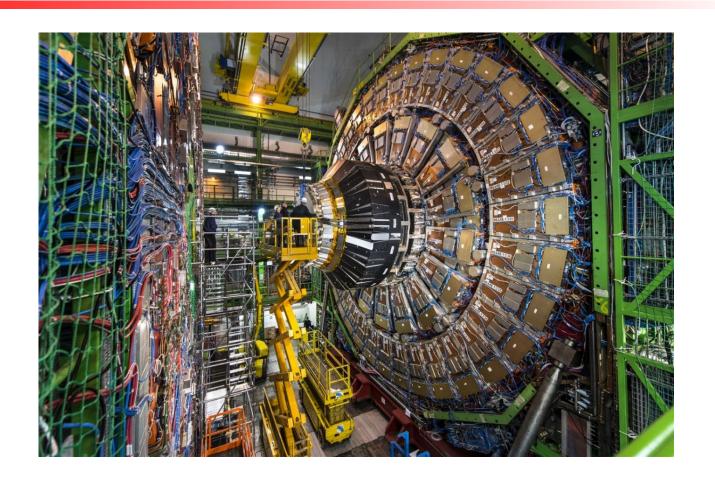
Canon à électrons simplifié



EPFL Microscope électronique: canon à électrons



Quel est le «microscope» le plus puissant au monde ?



... le LHC (Large Hardron Collider)

$$\lambda_2 = \frac{h}{p_2} \cong \frac{h}{\sqrt{2m \cdot qV}}$$

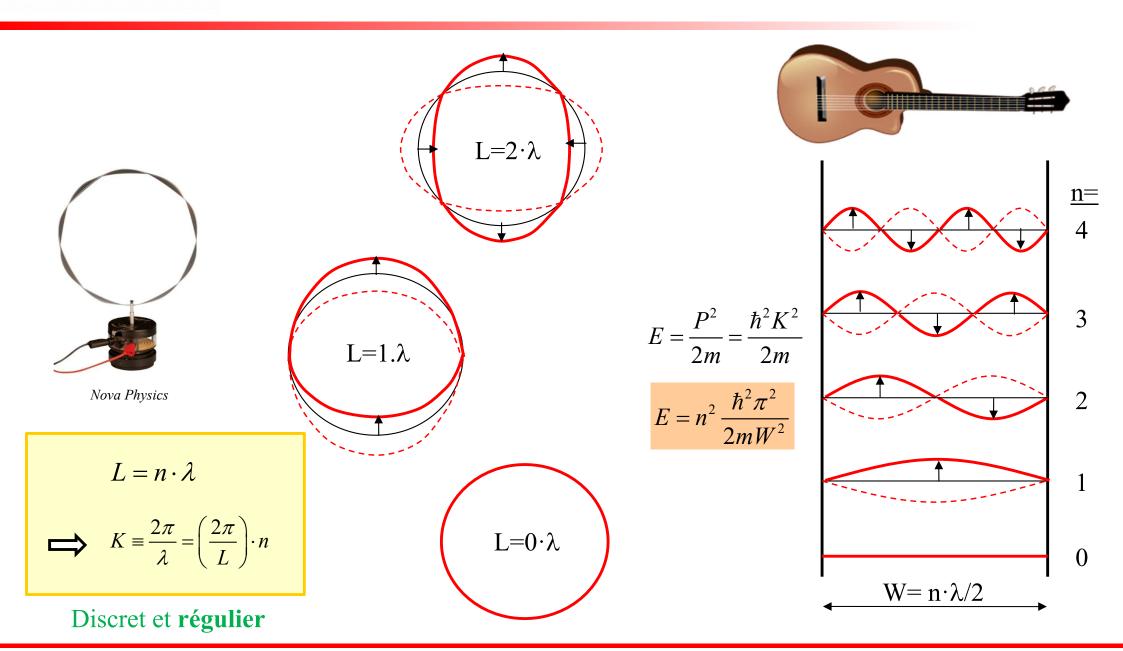
Atomes

Orbitales

et

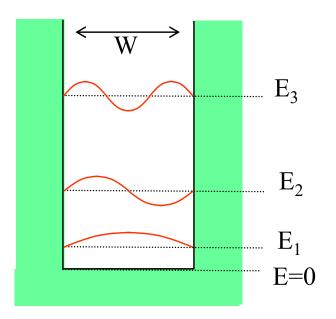
Niveaux discrets d'énergie

Ondes stationnaires



Atome isolé = puits de potentiel

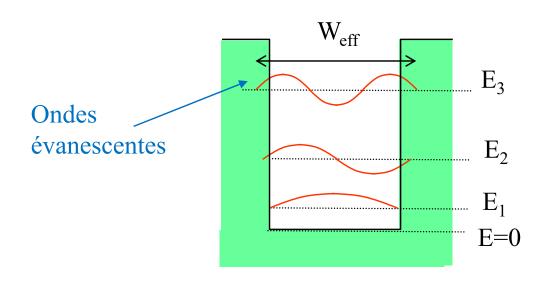
Puits infini



$$n\,\frac{\lambda}{2}=W$$

$$E_n = \frac{\hbar^2 K^2}{2m} = n^2 \cdot \frac{\hbar^2 \pi^2}{2m W^2}$$

Puits fini



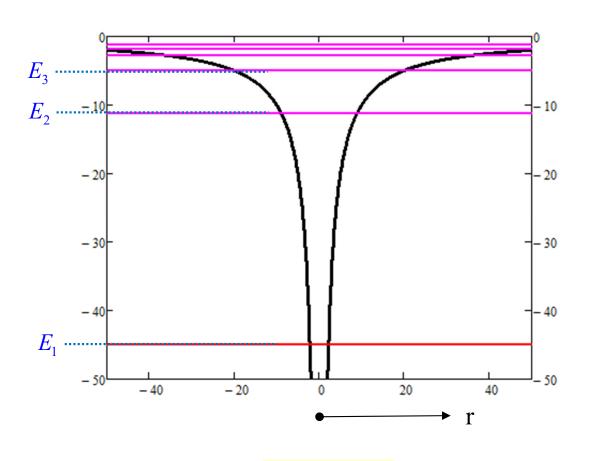
Pénétration latérale surtout pour états supérieurs

« Etats discrets »

$$E_n \cong n^2 \cdot \frac{\hbar^2 \pi^2}{2m W_{eff}^2}$$

Potentiel de Coulomb en 1/r

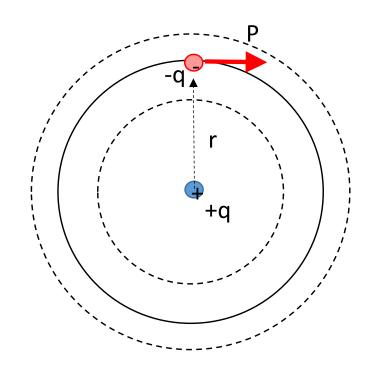
Potentiel en 1/r



$$E_n \approx -\frac{1}{n^2}$$

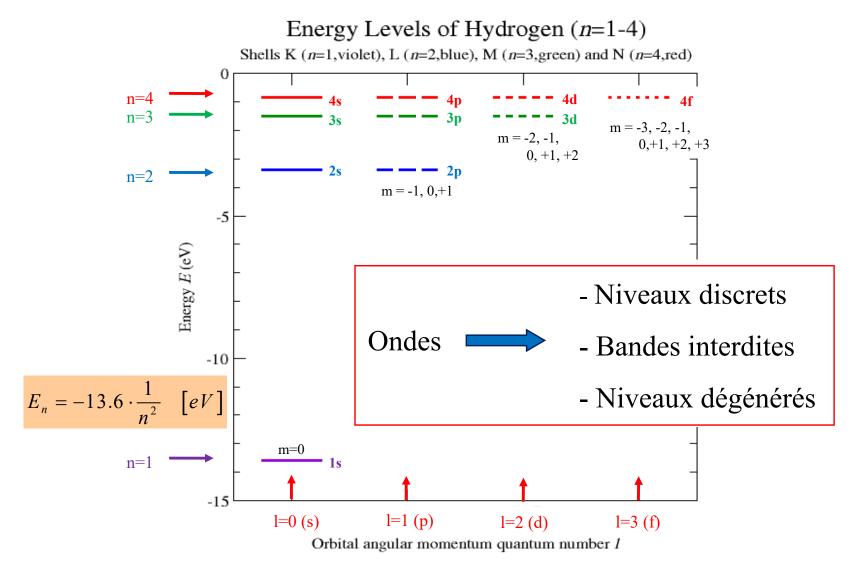
Centrifuge = Coulomb
$$\frac{v^2}{r} \approx \frac{1}{r^2}$$

Onde stable
$$K = \frac{2\pi}{\lambda} = \left(\frac{2\pi}{L}\right) \cdot n$$



Orbitales discrètes dans l'atome d'hydrogène

Niveaux d'énergie de l'hydrogène



http://en.wikipedia.org/wiki/Laplace-Runge-Lenz vector

Liaisons covalentes

et

Formation de bandes

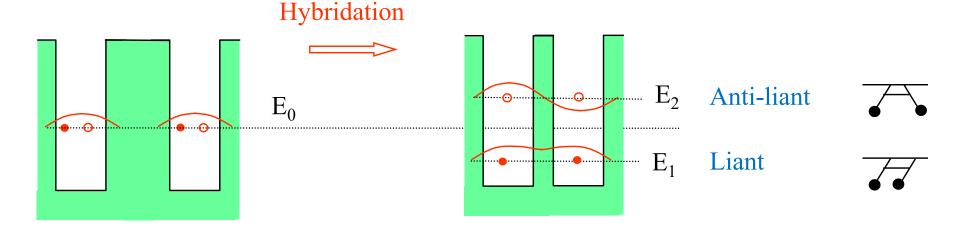
Deux atomes: états liants et anti-liants

Atomes H

Deux atomes séparés avec 1 électron chacun

Molécule H₂

Deux atomes proches avec 1 électron chacun



Deux états identiques:

- localisés
- deux spins possibles par état
- un électron dans chaque puits

Etat « liant »:

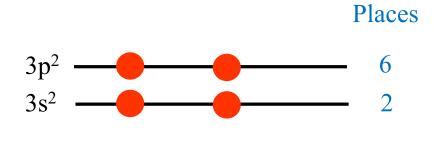
- énergie profonde, occupé par un électron de chaque atome.

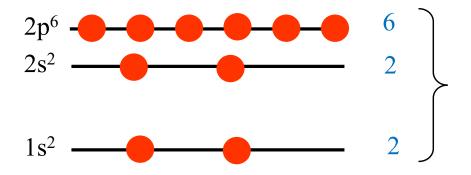
Etat « anti-liant »:

- énergie supérieure, libre à basse température

Atome de silicium

Structure électronique d'un atome isolé.





Chaque atome apporte:

- 8 places et
- 4 électrons

dans les couches élevées.

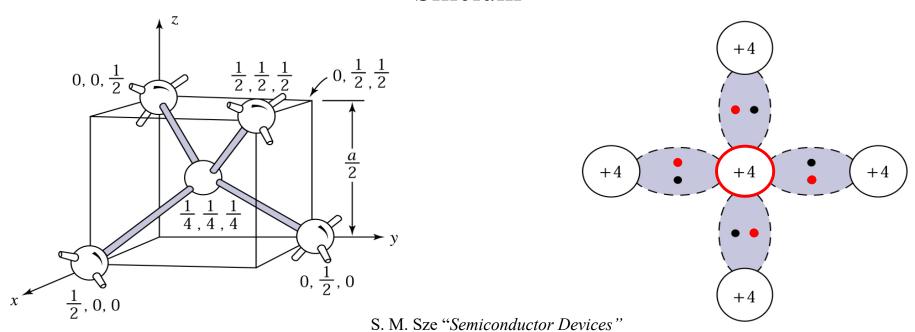
10 places toujours occupées ne participent pas à la conduction.

Hybridation: Liaisons covalentes

2 atomes = 8 électrons 16 places

→ 4 états liants sp³ (8 places occupées par 8 électrons) 4 états anti-liants sp³ (8 places libres à basse température)

Silicium



Semi-conducteurs IV et III-V

J. Singh: "Semiconductor Devices"

IV Semiconductors

C
$$1s^2 2s^2 2p^2$$

Si
$$1s^2 2s^2 2p^6 3s^2 3p^2$$

Ge
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$$

III-V Semiconductors

Ga
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$$

As
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$$

Ga

$$4s^2$$

$$3s^2$$

$$1s^2$$

As

$$4p^3$$

$$3s^2$$

$$2s^2$$

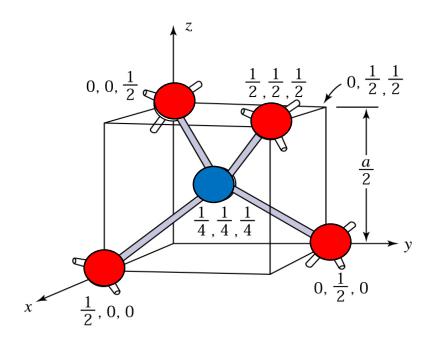
$$1s^2$$

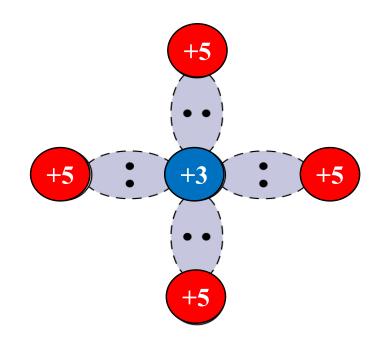
Si = 2 atomes = 8 électrons à placer sur les 4 liaisons tétraédriques

GaAs = 2 atomes = 8 électrons à placer sur les 4 liaisons tétraédriques

Semi-conducteurs III-V

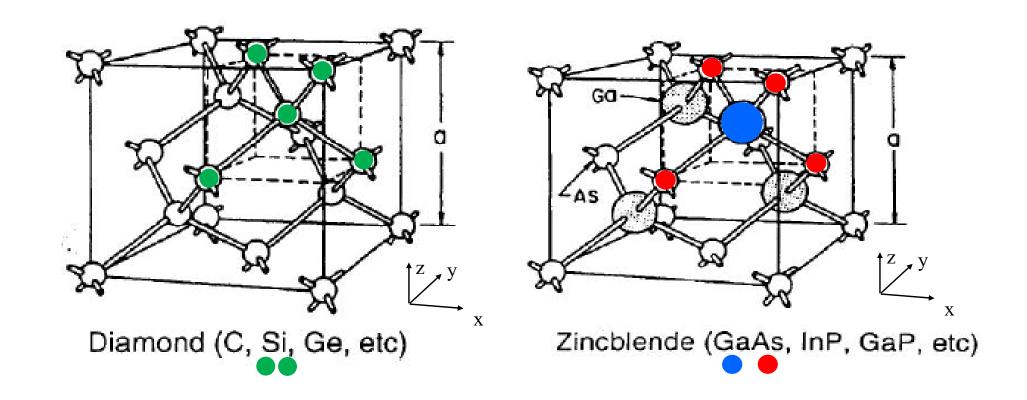
GaAs , InP , InGaAs , InGaAsP , ...





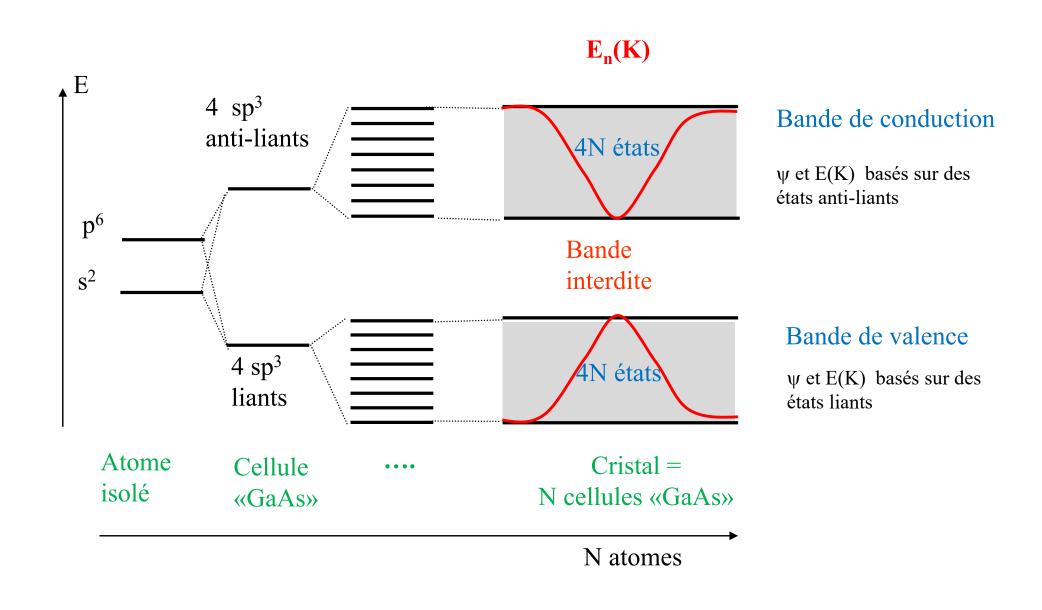
S. M. Sze "Semiconductor Devices"

Structure cristalline

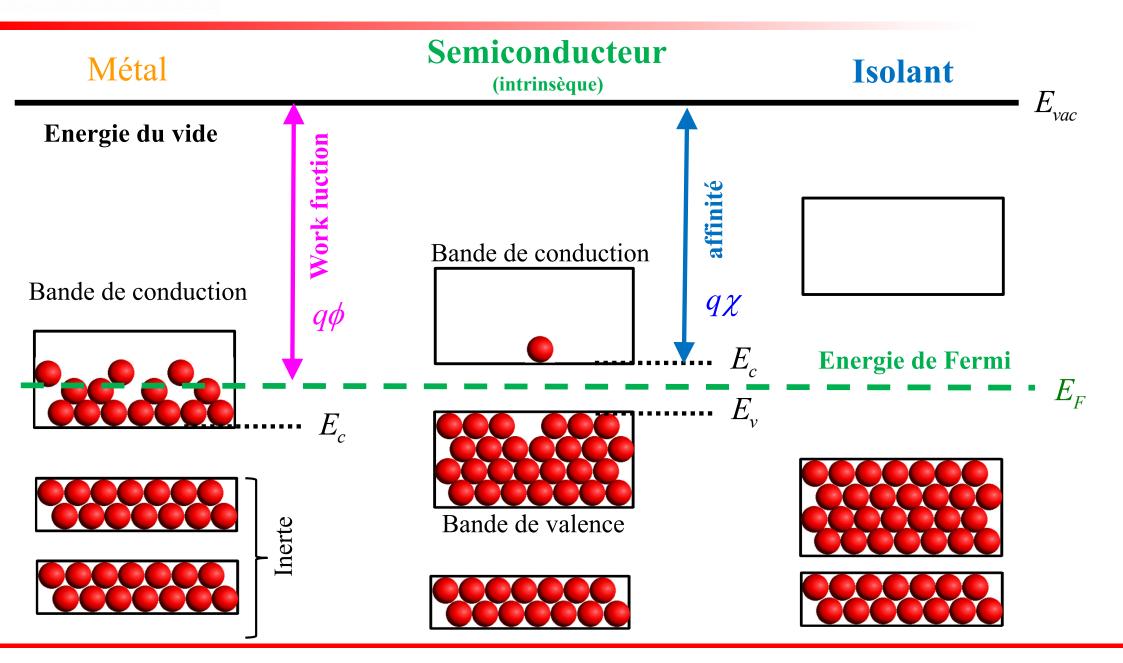


S. M. Sze "Physics of semiconductor devices"

Formation de bandes



Métal, semi-conducteur, isolant



Cas spécifique: silicium à température ambiante

$$E_{g,Si} \equiv E_C - E_V \cong 1.1 [eV]$$

$$U_{th} \equiv \frac{kT}{q} \cong 25 \left[meV \right]$$
 à température ambiante

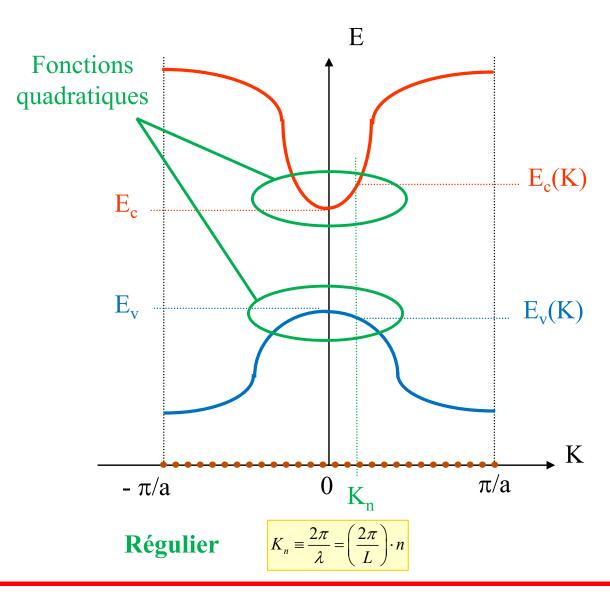
$$E_{g,Si} \gg U_{th}$$

Le silicium non-dopé à T=300K est un isolant Il doit être dopé pour devenir semi-conducteur

Rem:

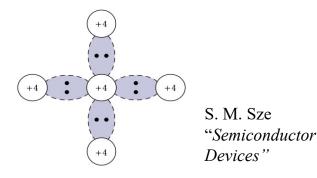
$$n_i \cong 10^{10} \left[cm^{-3} \right] \ll N_{dopage} \cong 10^{18} \left[cm^{-3} \right] \ll N_{atomes} \cong \left(10^8 \right)^3 = 10^{24} \left[cm^{-3} \right]$$

Semicondeteurs: relation de dispersion E(K)



Bande de conduction basée sur des états libres (anti-liants)

Bande de valence basée sur des liaisons tétraédriques



Approximation des relations de dispersion: Masses effectives et vitesse de groupe

Développement de Taylor

$$E \cong E_c + \frac{\hbar^2}{2} \overrightarrow{K} \cdot \frac{1}{m_n^*} \cdot \overrightarrow{K}$$

Masse effective de la bande de conduction

$$E \cong E_v - \frac{\hbar^2}{2} \vec{K} \cdot \frac{1}{m_p^*} \cdot \vec{K}$$

Masse effective de la bande de valence

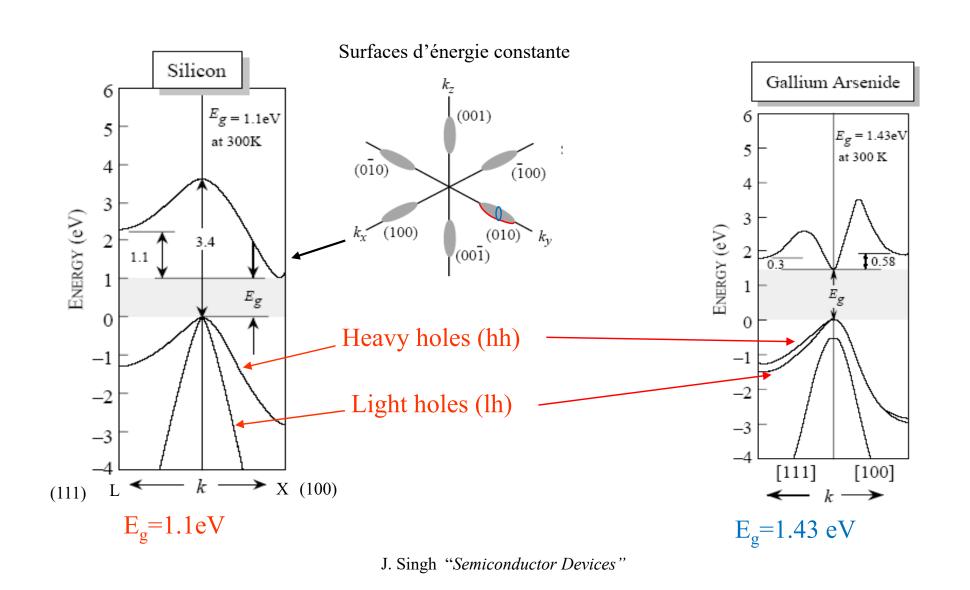
$$\overrightarrow{v_G} = \frac{1}{\hbar} \cdot \overrightarrow{grad_K}(E)$$

Accélération due à une force F:

$$\vec{a} = \frac{d\vec{v_G}}{dt} = \left(\frac{1}{m^*}\right) \cdot \vec{F} \quad avec \quad \left(\frac{1}{m^*}\right) \equiv \frac{1}{\hbar^2} \frac{\partial^2}{\partial K^2} E$$

$$\left(\frac{1}{m^*}\right) \equiv \frac{1}{\hbar^2} \frac{\partial^2}{\partial K^2} E$$

Exemples: Si et GaAs



Masses effectives et bandgaps (1)

Material	Bandgap (eV)	Relative Dielectric Constant
С	5.5, I	5.57
Si	1.124, I	11.9
Ge	0.664, I	16.2
SiC	2.416, I	9.72
GaAs	1.424, D	13.18
AlAs	2.153, I	10.06
InAs	0.354, D	15.15
GaP	2.272, I	11.11
InP	1.344, D	12.56
InSb	0.230, D	16.8
CdTe	1.475, D	10.2
A1N	6.2, D	9.14
GaN	3.44, D	10.0
ZnSe	2.822, D	9.1
ZnTe	2.394, D	8.7

Masses effectives en unité: $m_0=0.911.10^{-30}$ Kg

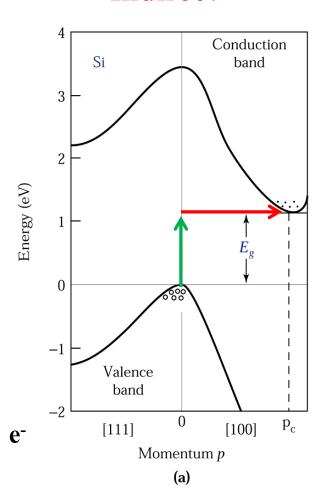
PROPERTY	SI	GAAs
Electron	$m^*_l = 0.98$	m* = 0.067
effective mass	$m_{t}^{*} = 0.19$	
(m_0)	$m^*_{dos} = 1.08$	
	$m^*_{\sigma} = 0.26$	
	_	
Hole	$m^*_{hh} = 0.49$	$m^*_{hh} = 0.45$
effective mass	$m^*_{lh} = 0.16$	$m^*_{lh} = 0.08$
(m_0)	$m^*_{dos} = 0.55$	$m^*_{dos} = 0.47$
	$m_{\sigma}^* = 0.37$	$m_{\sigma}^* = 0.34$
Bandgap	1.17 - 4.37 x 10 ⁻⁴ T ²	1.519 - <u>5.4 x 10⁻⁴ T²</u>
(eV)	T + 636	T + 204
Electron affinity	4.01	4.07
(eV)		

For Si: m^*_{dos} : To be used in calculating density of states, position of Fermi level m^*_{σ} : To be used in calculating response to electric field, e.g., in mobility

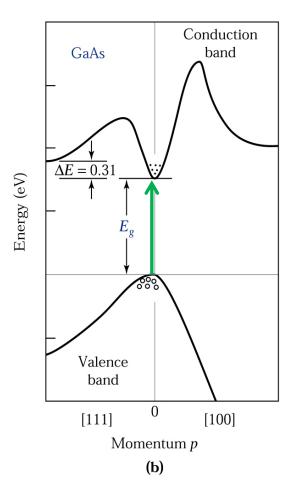
J. Singh "Semiconductor Devices"

Semi-conducteurs directs et indirects

Indirect

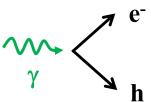


Direct

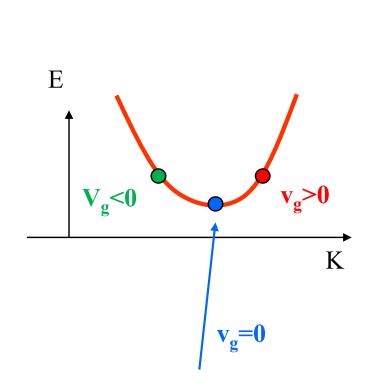


S. M. Sze "Semiconductor Devices"

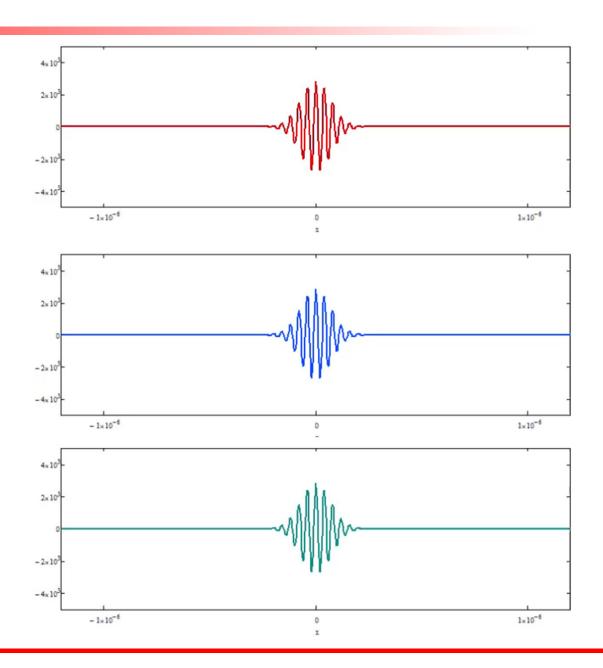
Un semi-conducteur indirect doit utiliser des phonons (vibrations du cristal) pour conserver l'impulsion.



Minima de la bande de conduction



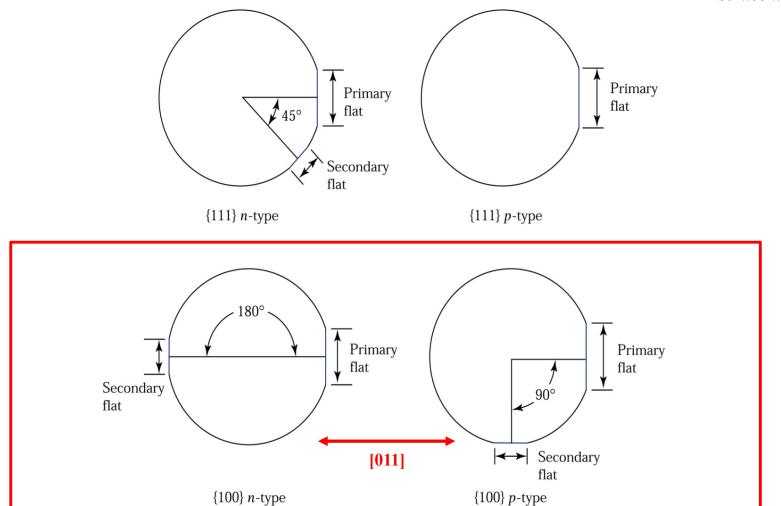
Impulsion non-nulle mais vitesse de groupe nulle !!



Défauts ponctuels

Substitution	Impureté interstitielle	
Vacance	Défaut de Frenkel	
	S. M. Sze "Semiconductor Devices"	

Identification de wafer



Exercice E1.1: donnée

Des questions de réflexion sont en fin de chaque script. Elles couvrent les notions fondamentales de chaque chapitre et vous aident à préparer l'examen oral final.

Répondez aux questions 1.1, 1.2 et 1.5

1.1	Qu'appelle-t-on la relation de dispersion d'une particule ? Exprimez-la pour une particule dans le vide. Comment peut-on déterminer graphiquement la vitesse de groupe et la masse effective de la particule à partir de cette relation ?
1.2	Considérez un atome « A » avec trois électrons sur deux niveaux d'énergie. Dessinez le schéma d'énergie de la cellule « AA » contenant deux atomes « A ». Expliquez la formation de bandes dans un monocristal basé sur cette cellule « AA ».
1.5	À l'aide du schéma d'énergie, expliquez l'absorption optique dans un gaz et dans un semi- conducteur monocristallin.