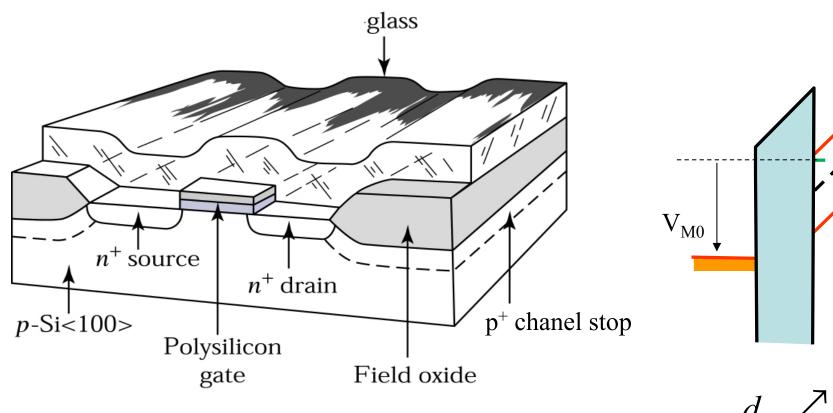
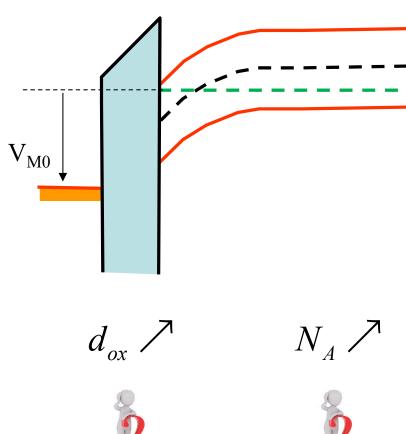


Exercice E11.1: Contrôle de la tension de threshold V_{M0}


- a) Dessinez le schéma de bande d'une jonction MOS sur substrat p le long d'une droite verticale au milieu du gate à la tension $V_G=V_{M0}$.
- b) Considérons une augmentation de l'épaisseur de l'oxyde, tout en maintenant la structure au threshold:
 - Comment varient le potentiel de surface, les charges d'espace dans la zone de déplétion, ainsi que le champ électrique dans l'oxyde.
 - Comment varie la tension de threshold appliquée sur le gate ?
- c) Repartons de la situation a) et considérons maintenant une augmentation du dopage p du substrat, tout en maintenant la structure au threshold. Négligez la variation de ψ_B .
 - Comment varient le potentiel de surface, les charges d'espace dans la zone de déplétion, le champ à l'interface semi-conducteur/oxyde ainsi que le champ électrique dans l'oxyde.
 - Comment varie la tension de threshold appliquée sur le gate ?

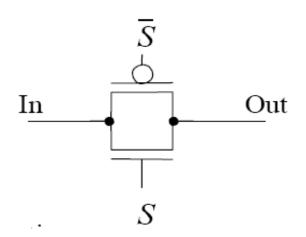
 <u>Idée:</u> Commencez votre analyse pour b) et c) à partir de la profondeur du substrat.
- d) Comparez vos résultats avec le cours chapitre 11!



Exercice E11.1: Contrôle de la tension de threshold V_{M0}

Semiconductor Devices, 2/E by S. M. Sze

$$V_{M0} = V_{fb} + 2\psi_B \left(1 + 2 \frac{C_{B,th}}{C_{ox}} \right)$$

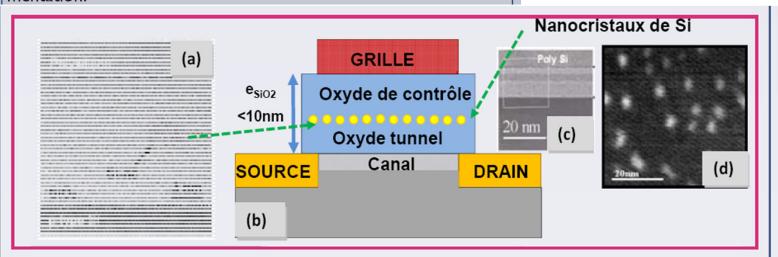


Exercices E11.2

E11.3: Transmission gate

- Considérez le circuit ci-contre. Les signaux sont digitaux. Trouvez la table de vérité donnant la sortie « out » en fonction de l'entrée « in » et du signal de contrôle « S ». « S » est l'inverse binaire de « S ».
- Pourquoi le PMOS est-il nécessaire ?

Exercice 11.4: "Nanocrystals inside"

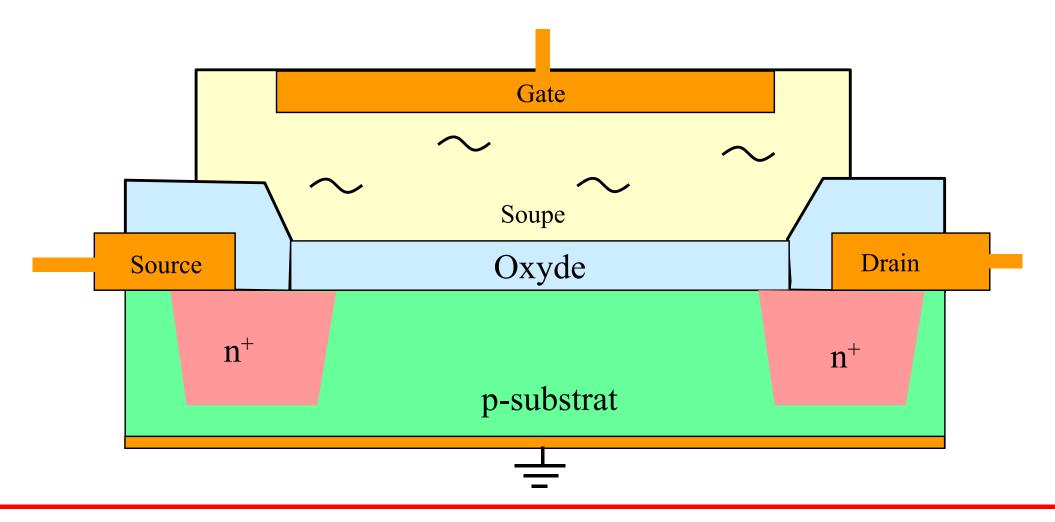

ক্ত Toulouse : TP « Nanocrystals inside » ক্ত

FABRICATION DE COMPOSANTS MEMOIRES MOS A BASE DE NANOCRISTAUX DE SILICIUM GÉNÉRALITÉS:

Cette formation de courte durée, en salle blanche, donne une approche pratique complète du concept « NANO-INSIDE » appliqué à l'intégration de nanocristaux de silicium dans la technologie NMOS. Il aborde alors toutes les opérations de fabrication des circuits intégrés de type « mémoires », ainsi que leurs caractérisations à la fois matériaux et composants. In fine, le but est de montrer comment une information peut être mémorisée avec des objets nanométriques de façon durable et conservée même sans alimentation.

Lisez et interprétez ce texte

La puce à l'oreille No. 31, p. 4, nov. 2009.



Exercice 11.5 ISFET

Comment varie la tension de threshold si:

- A) la soupe contient des ions positifs (pH<7)
- B) la soupe contient des ions négatifs (pH>7)

