Cours de Signaux et Systèmes

Correction du questionnaire à choix multiples

1. Systèmes linéaires analogiques invariants dans le temps (LIT)

Vrai Faux

- \square Le signal constant f(t) = 1 est l'élément neutre de la convolution.
- \square $\operatorname{tri}(t) * \operatorname{tri}(t) = \operatorname{rect}(t) * \operatorname{tri}(t) * \operatorname{rect}(t)$.
- Un système LIT est BIBO-stable si et seulement si sa réponse impulsionnelle h(t) vérifie $\int_{\mathbb{R}} |h(t)|^2 dt < +\infty$.
- \square Les sinusoïdales complexes sont les fonctions propres des systèmes LIT.
- ☐ L'opération de convolution est linéaire.
- \square Soit h(t) la réponse impulsionnelle d'un système causal non nul. Il est possible de trouver une entrée x(t) pour laquelle la sortie (h*x)(t) est non-causale.
- $\ \ \, \square \ \ \,$ Un système RIF avec réponse impulsionnelle h(t) et $\max |h(t)|=M<\infty$ est toujours BIBO-stable.
- \square Soient f et g, deux signaux dont les supports sont respectivement [a,b] et [c,d]. Le support de f*g est exactement égal à [a-c,b-d].
- \square Soit un système dont la réponse impulsionnelle est donnée par h(t) et la fonction de Green par $\phi(t)$. Alors, $h(t) * \phi(t) = 1$.
- \square La réponse impulsionnelle du système défini par l'équation differentielle y''(t) + 2y'(t) + y(t) = x(t), où y est la sortie et x l'entrée, est causale et RII
- $\square \qquad (f(t) * \delta(t t_0)) \cdot \delta(t t_0) = f(0)\delta(t t_0).$
- \square Un système instable est nécessairement à réponse impulsionnelle infinie.
- \square Soit la fonction $g: t \to u(-t)$. On a $\frac{\mathrm{d}g(t)}{\mathrm{d}t} = \delta(t)$.
- Une fonction f appartient à l'espace de fonctions L_1 si et seulement si elle vérifie $\int_{\mathbb{R}} |f(t)|^2 dt < +\infty$.

 $\sqrt{}$ L'amplification g(t) = Af(t) d'un facteur $A \in \mathbb{R}$ préserve la causalité du signal f. $\sqrt{}$ La fonction h(t) = f(t) * u(t) est la réponse impulsionnelle d'un système BIBO-stable si $f(t) = e^{-at}u(t)$ et a > 0. Un système est BIBO-stable si et seulement si tous ses pôles ont une $\sqrt{}$ partie réelle positive. Soient h(t), f(t) et g(t), trois systèmes RIF. Alors, z(t) = h(t) * f(t) * g(t) $\sqrt{}$ est RIF. La fonction $h(t) = e^t u(-t) + \delta(t-1)$ correspond à la réponse impulsion- $\sqrt{}$ nelle d'un système causal BIBO-stable.

2. Produits scalaires et séries de Fourier

 $\sqrt{}$

Vrai Faux $\sqrt{}$ Une fonction réelle paire f est toujours orthogonale à une fonction réelle impaire g. Autrement dit, le produit scalaire $\langle f, g \rangle = \int_{\mathbb{R}} f(t)g^*(t)dt$ est toujours nul. Soit $\phi_n(t) = \text{rect}(t - \frac{1}{2} - \frac{n}{2})$. Alors, $\{\phi_n\}_{n=0,1,2,3}$ n'est pas une famille $\sqrt{}$ orthonormée. $\sqrt{}$ L'intercorrélation c_{xy} des signaux réels x(t) et y(t) est toujours égale à (x * y)(t) si y(t) est symétrique par rapport à un $t = t_0$ quelconque. $\sqrt{}$ L'intercorrélation des signaux $x(t) = \sin(t)$ et $y(t) = \cos(t)$ est toujours égale à zéro. La forme $\langle f, g \rangle = \int_{\mathbb{R}} f(t)g^*(t-2) dt$ est un produit scalaire hermitien sur $\sqrt{}$ $L_2(\mathbb{R})$, l'espace des fonctions à énergie finie. П $\sqrt{}$ La meilleure approximation d'un signal pour la norme L_2 s'obtient par échantillonnage de la fonction aux entiers. $\sqrt{}$ Les coefficients c_n de la série de Fourier complexe d'un signal x(t) de période T suffisent pour calculer l'énergie de x(t) au sens de la norme associée à l'espace $L_2([-T/2, T/2])$.

 $x(-\tau) * y(\tau) = y(-\tau) * x(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau) dt.$

L'intercorrélation c_{xy} des signaux réels x(t) et y(t) est donnée par $c_{xy}(\tau)$ =

- \square Soient deux signaux causaux x(t) et y(t). On a $c_{xy}(\tau) = 0$ pour $\tau < 0$.
- \square Le produit scalaire $\langle f, f \rangle_{L_2}$ est une mesure de l'énergie du signal f.
- \square Le signal $\sqrt{3}\cos(2\pi t)$ n'a que deux coefficients de Fourier complexes non nuls par rapport à la période T=1.

Soit
$$x(t) = \sum_{n=-3}^{3} n e^{j2\pi nt}$$
.

Vrai Faux

- \square La fonction x(t) est réelle.
- \square La valeur moyenne de la fonction x(t) est nulle.
- \square La série de Fourier complexe de x(t) par rapport à la période T=1 possède 6 coefficients non nuls.
- $\square \qquad \boxed{\Delta} \qquad \int_0^1 |x(t)|^2 dt = \frac{\sqrt{2}}{3}.$

Soit $x(t) = \sum_{n=-2}^{2} e^{j\pi nt}$.

Vrai Faux

- \square La série de Fourier complexe de x(t) par rapport à la période T=2 possède 5 coefficients non nuls.
- \square La fonction x(t) est réelle.
- \square La fonction x(t) est impaire.
- \square La fonction x(t) est à valeur moyenne nulle.
- $\Box \qquad \qquad \boxed{\Delta} \qquad \int_0^2 |x(t)|^2 \, \mathrm{d}t = 1.$