Cours de Signaux et Systèmes

Exemple de questionnaire à choix multiples

Instructions: cochez la réponse appropriée en face de chaque affirmation.

- Réponse correcte = 1
- Réponse incorrecte = -0.5
- Pas de réponse = 0

En cas de correction, veuillez indiquer en toutes lettres (Vrai/Faux/Pas de réponse) votre choix définitif. En examen, vous aurez 1 minute par question et aucun document ne sera autorisé pour ce questionnaire.

1. Systèmes linéaires analogiques invariants dans le temps (LIT)

rai	Faux	
		Le signal constant $f(t)=1$ est l'élément neutre de la convolution.
		$\operatorname{tri}(t) * \operatorname{tri}(t) = \operatorname{rect}(t) * \operatorname{tri}(t) * \operatorname{rect}(t).$
		Un système LIT est BIBO-stable si et seulement si sa réponse impulsionnelle $h(t)$ vérifie $\int_{\mathbb{R}} h(t) ^2 dt < +\infty$.
		Les sinusoïdales complexes sont les fonctions propres des systèmes LIT. (Les fonctions propres d'un système S sont les fonctions f qui vérifient $S\{f\} = \lambda_f f$, avec $\lambda_f \in \mathbb{C}$)
		L'opération de convolution est linéaire.
		Soit $h(t)$ la réponse impulsionnelle d'un système causal non nul. Il est possible de trouver une entrée $x(t)$ pour laquelle la sortie $(h*x)(t)$ est non-causale.
		Un système RIF avec réponse impulsionnelle $h(t)$ et $\max h(t) = M < \infty$ est toujours BIBO-stable.
		Soient f et g , deux signaux dont les supports sont respectivement $[a,b]$ et $[c,d]$. Le support de $f*g$ est exactement égal à $[a-c,b-d]$.
		Soit un système dont la réponse impulsionnelle est donnée par $h(t)$ et la fonction de Green par $\phi(t)$. Alors, $h(t)*\phi(t)=1$.

		La réponse impulsionnelle du système défini par l'équation differentielle $y''(t)+2y'(t)+y(t)=x(t)$, où y est la sortie et x l'entrée, est causale et RII.
		$(f(t) * \delta(t - t_0)) \cdot \delta(t - t_0) = f(0)\delta(t - t_0).$
		Un système instable est nécessairement à réponse impulsionnelle infinie.
		Soit la fonction $g: t \to u(-t)$. On a $\frac{\mathrm{d}g(t)}{\mathrm{d}t} = \delta(t)$.
		Une fonction f appartient à l'espace de fonctions L_1 si et seulement si elle vérifie $\int_{\mathbb{R}} f(t) ^2 dt < +\infty$.
		L'amplification $g(t)=Af(t)$ d'un facteur $A\in\mathbb{R}$ préserve la causalité du signal f .
		La fonction $h(t)=f(t)*u(t)$ est la réponse impulsionnelle d'un système BIBO-stable si $f(t)=\mathrm{e}^{-at}u(t)$ et $a>0$.
		Un système est BIBO-stable si et seulement si tous ses pôles ont une partie réelle positive.
		Soient $h(t)$, $f(t)$ et $g(t)$, trois systèmes RIF. Alors, $z(t) = h(t) * f(t) * g(t)$ est RIF.
		La fonction $h(t)=\mathrm{e}^t u(-t)+\delta(t-1)$ correspond à la réponse impulsionnelle d'un système causal BIBO-stable.
2. Pr	oduits	scalaires et séries de Fourier
Vrai	Faux	
		Une fonction réelle paire f est toujours orthogonale à une fonction réelle impaire g . Autrement dit, le produit scalaire $\langle f,g\rangle=\int_{\mathbb{R}}f(t)g^*(t)\mathrm{d}t$ est toujours nul.
		Soit $\phi_n(t) = \text{rect}(t - \frac{1}{2} - \frac{n}{2})$. Alors, $\{\phi_n\}_{n=0,1,2,3}$ n'est pas une famille orthonormée.
		L'intercorrélation c_{xy} des signaux réels $x(t)$ et $y(t)$ est toujours égale à $(x*y)(t)$ si $y(t)$ est symétrique par rapport à un $t=t_0$ quelconque.
		L'intercorrélation des signaux $x(t) = \sin(t)$ et $y(t) = \cos(t)$ est toujours égale à zéro.

		La forme $\langle f,g\rangle=\int_{\mathbb{R}}f(t)g^*(t-2)\mathrm{d}t$ est un produit scalaire hermitien sur $L_2(\mathbb{R})$, l'espace des fonctions à énergie finie.				
		La meilleure approximation d'un signal pour la norme L_2 s'obtient par échantillonnage de la fonction aux entiers.				
		Les coefficients c_n de la série de Fourier complexe d'un signal $x(t)$ de période T suffisent pour calculer l'énergie de $x(t)$ au sens de la norme associée à l'espace $L_2([-T/2,T/2])$.				
		L'intercorrélation c_{xy} des signaux réels $x(t)$ et $y(t)$ est donnée par $c_{xy}(\tau) = x(-\tau) * y(\tau) = y(-\tau) * x(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau) dt$.				
		Soient deux signaux causaux $x(t)$ et $y(t)$. On a $c_{xy}(\tau) = 0$ pour $\tau < 0$.				
		Le produit scalaire $\langle f,f\rangle_{L_2}$ est une mesure de l'énergie du signal $f.$				
		L'approximation aux moindres carrés du signal $f \in L_2(\mathbb{R})$ par une famille orthonormale $\{\phi_n(t)\}$, donnée par $\tilde{f} = \sum_n \langle f, \phi_n \rangle_{L_2} \phi_n$, satisfait la relation $\sum_n \langle f, \phi_n \rangle_{L_2} ^2 + \ f - \tilde{f}\ _{L_2}^2 = \ f\ _{L_2}^2$.				
		Le signal $\sqrt{3}\cos(2\pi t)$ n'a que deux coefficients de Fourier complexes non nuls par rapport à la période $T=1.$				
Soit $x(t) = \sum_{n=-3}^{3} n e^{j2\pi nt}$.						
Vrai	Faux					
		La fonction $x(t)$ est réelle.				
		La fonction $x(t)$ est paire.				
		La valeur moyenne de la fonction $x(t)$ est nulle.				
		La série de Fourier complexe de $x(t)$ par rapport à la période $T=1$ possède 6 coefficients non nuls.				
		$\int_0^1 x(t) ^2 \mathrm{d}t = \frac{\sqrt{2}}{3}.$				
Soit :	$x(t) = \sum_{t=0}^{\infty}$	$_{n=-2}^{2} e^{j\pi nt}.$				
Vrai	Faux					
		La série de Fourier complexe de $x(t)$ par rapport à la période $T=2$ possède 5 coefficients non nuls.				
		La fonction $x(t)$ est réelle.				

- \Box La fonction x(t) est impaire.
- \Box La fonction x(t) est à valeur moyenne nulle.
- $\Box \qquad \Box \qquad \int_0^2 |x(t)|^2 dt = 1.$