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A Note on BIBO Stability
Michael Unser , Fellow, IEEE

Abstract—The statements on the BIBO stability of continuous-
time convolution systems found in engineering textbooks are often
either too vague (because of lack of hypotheses) or mathematically
incorrect. What is more troubling is that they usually exclude
the identity operator. The purpose of this note is to clarify the
issue while presenting some fixes. In particular, we show that a
linear shift-invariant system is BIBO-stable in the L∞-sense if and
only if its impulse response is included in the space of bounded
Radon measures, which is a superset of L1(R) (Lebesgue’s space
of absolutely integrable functions). As we restrict the scope of this
characterization to the convolution operators whose impulse re-
sponse is a measurable function, we recover the classical statement.

Index Terms—Convolution, filters, filtering theory, stability.

I. INTRODUCTION

A STATEMENT that is made in most courses on the theory
of linear systems, as well as in the English version of

Wikipedia,1 is that a convolution operator is stable in the BIBO
sense (bounded input and bounded output) if and only if its
impulse response is absolutely summable/integrable. While the
proof of this equivalence is fairly straightforward for discrete-
time systems, there seems to be some confusion in the continu-
ous domain (see Appendix B for specific references), especially
since the above statement excludes the identity operator, whose
impulse response is the Dirac distribution δ. Since δ is not a
measurable function in the sense of Lebesgue (see explanations
in Appendix A) and hence not a member of L1(R), does this
mean that the identity operator is not BIBO-stable? Obviously
not; this is what we want to clarify here. The argument, which is
somewhat technical, rests on the shoulders of two giants: Laurent
Schwartz and Lars Hörmander, who were awarded the Fields
medal in 1950 and 1962, respectively, for their fundamental
contributions to the theory of distributions and partial differential
equations.

In the sequel, we shall revisit the topic of BIBO stability with
the help of appropriate mathematical tools. In Section II, we
recall the classical integral definition of a convolution operator.
We then present a correction to the standard characterization
of BIBO-stable filters (Proposition 1) together with a new up-
graded proof. Since the underlying assumption that the impulse
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response should be a measurable function excludes the identity
operator, we first explain in Section III the extended (distri-
butional) form of convolution supported by Schwartz’ kernel
theorem (Theorem 1). Based on this formalism, we present two
Banach-space extensions of the classical result that should settle
the issue: a first one (Theorem 2) that imposes that the result
of the convolution be continuous, and a second (Theorem 3)
that characterizes the BIBO-stable filters in full generality. The
mathematical derivations are presented in Section IV, where
we also make the connection with known results in harmonic
analysis.

We like to mention a similar clarification effort by Hans
Feichtinger, who proposes to limit the framework to convolution
operators that are operating on C0(R) (a well-behaved subclass
of bounded functions) in order to avoid pathologies [1]. This is
another interesting point of view that is complementary to ours,
as discussed in Section IV.

II. BIBO STABILITY: THE CLASSICAL FORMULATION

The convolution of two functionsh, f : R → R is the function
usually specified by

t �→ (h ∗ f)(t) �
=

∫
R
h(τ)f(t− τ)dτ (1)

under the implicit assumption that the integral in (1) is well
defined for any t ∈ R. This latter point will be clarified as we
develop the mathematics. In particular, this requires that the
functions f and h both be measurable in the sense of Lebesgue.2

Here, instead of designating the continuous-time signal by f(t)
and its convolved (or filtered) version by h(t) ∗ f(t), as engi-
neers usually do, we are using the less ambiguous mathemat-
ical notations t �→ f(t) or f ∈ Lp(R) and t �→ (h ∗ f)(t) or
h ∗ f ∈ L∞(R).

If we fix h and consider f as the input signal, then (1) defines
a linear shift-invariant (LSI) operator (or system) denoted by
Th : f �→ h ∗ f . Its impulse response h is then formally de-
scribed ash = Th{δ}, where δ ∈ D′(R) is the Dirac distribution
and D′(R) Schwartz’ space of distributions [3]. This interpre-
tation is backed by Schwartz’ kernel theorem, as explained in
Section III-A.

An important practical requirement for an LSI system is that
its response to any bounded input remains bounded. There is one
mathematical aspect, however, that makes the formulation of
BIBO stability nontrivial in the continuous domain: Depending
on the context, the input and output boundedness requirements

2A function f : R → R is said to be Lebesgue-measurable if the preimage
f−1(E) of any Borel set E in R is a Borel set [2]. The property is preserved
through pointwise multiplication and translation.
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can be strict, with ‖f‖L∞ = ‖f‖sup �
=supt∈R |f(t)| < ∞,

which arises when the function f is continuous (i.e., f ∈ C(R)),
or in the looser sense of Lebesgue: |f(t)| ≤ ‖f‖L∞ < ∞ for
almost any t ∈ R (see Section III-B for additional explanations).
This latter condition is often expressed as f ∈ L∞(R) where
L∞(R) = {f : R → R s.t. f is measurable and ‖f‖L∞ < ∞}
is Lebesgue’s space of bounded functions.

Definition 1: The linear operator T : f �→ T{f} is said to be
BIBO-stable if

1) T{f} is well-defined for any f ∈ L∞(R), and,
2) there exists a constant C > 0 independent of f such that

‖T{f}‖L∞ ≤ C‖f‖L∞

for all f ∈ L∞(R).
The standard condition for the BIBO stability of the

continuous-time convolution operator Th : f �→ h ∗ f that is
found in engineering textbooks is ‖h‖L1

< ∞, where the L1-
norm is defined by

‖h‖L1

�
=

∫
R
|h(t)|dt. (2)

A slightly more precise statement is h ∈ L1(R), where

L1(R) = {f : R → R s.t. f is measurable and ‖f‖L1
< ∞}

is Lebesgue’s space of absolutely integrable functions.
The sufficiency of the condition h ∈ L1(R) is deduced from

the standard estimate∣∣∣∣
∫

R
h(τ)f(t− τ) dτ

∣∣∣∣ �
∫

R
|h(τ)| · |f(t− τ)| dτ

�
(∫

R
|h(τ)| dτ

)
‖f‖L∞ ,

which is valid for any t ∈ R. The convolution integral (1) is
therefore well defined if f ∈ L∞(R), which then also yields the
classical bound on BIBO stability

‖h ∗ f‖L∞ ≤ ‖h‖L1
‖f‖L∞ < ∞. (3)

By adapting the argument that is used in the discrete-time
formulation of BIBO stability, many authors (see Appendix B)
affirm that the condition h ∈ L1(R) is also necessary. To that
end, they apply the convolution system to a “worst-case” signal

f0(t) = sign (h(−t)) (4)

in order to produce the strongest response at t = 0,

(h ∗ f0)(0) =
∫ +∞

−∞
h(τ)sign (h(τ)) dτ =

∫ +∞

−∞
|h(τ)| dτ,

which is then claimed to saturate the stability bound (3) with‖h ∗
f0‖L∞ = ‖h‖L1

‖f0‖L∞ . Unfortunately, this simple reasoning
has two shortcomings. First, unlike in the discrete setting, the
characterization of what happens at t = 0, which is a set of
measure zero, is not sufficient to deduce that ‖h ∗ f0‖L∞ ≥ (h ∗
f0)(0), unless one invokes the continuity of t �→ (h ∗ f0)(t),
which is not yet known at this stage (see Theorem 2). Second,
one cannot ensure that the Lebesgue convolution integral (1) is

well defined for f0 ∈ L∞(R), unless h is Lebesgue-integrable,3

which then considerably limits the scope of the claim about
necessity.

Our first practical fix is an extension of the argumentation
to the larger space L1,loc(R) of measurable functions that are
locally integrable, meaning that

∫
K |h(t)|dt < ∞ over any com-

pact domain K ⊂ R. The reassuring outcome, which conforms
with the practice in the field, is that one can determine the
stability of an LSI system by integrating the absolute value
of its impulse response—even if h is not globally Lebesgue
integrable, as in the case of an increasing and possibly oscillating
exponential.

Proposition 1: If h ∈ L1(R), then the convolution operator
f �→ h ∗ f defined by (1) is BIBO-stable with ‖h ∗ f‖L∞ ≤
‖h‖L1

‖f‖L∞ . Conversely, if the impulse response h is mea-
surable and locally integrable with

∫
R |h(t)|dt = ∞, then the

system is not BIBO-stable, in which case it is said to be unstable.
Proof: The first statement is a paraphrasing of (3). For the

converse part, we assume that h ∈ L1,loc(R)with
∫

R |h(t)|dt =
∞. Because of the local integrability of h, one can then still
rely on the definition of the convolution given by (1), but only
if the input function f is bounded and compactly supported.
By considering the truncated versions f0,T = f0 · 1[−T,T ] of the
worst-case signal (4), we can therefore determine the maximal
value of the output signal as

(h ∗ f0,T )(0) =
∫ +T

−T

h(τ)sign (h(τ)) dτ =

∫ +T

−T

|h(τ)|dτ.

The additional ingredient is the continuity of t �→ (h ∗ f0,T )(t)
in the neighborhood of t = 0 (see Proposition 4 in Appendix D),
which allows us to conclude that (h ∗ f0,T )(0) ≤ supt∈R |h ∗
f0,T (t)| = ‖h ∗ f0,T ‖L∞ . While the latter quantity is finite for
any fixed value of T , we have that limT→∞(h ∗ f0,T )(0) =∫

R |h(t)|dt = ∞, which indicates that the output signal be-
comes unbounded in the limit. This shows that the underlying
system is unstable. �

Another way of obtaining Proposition 1 is as a corollary of
Theorem 3 (the complete characterization of BIBO-stable sys-
tems) and Proposition 3 in Section IV. The important examples
of unstable filters that fall within the scope of Proposition 1 are
the systems ruled by differential equations with at least one pole
in the right-half complex plane; for instance, h(t) = 1+(t)eαt

with Re(α) ≥ 0 [5]. The derivative operator with h = δ′ and
the Hilbert transform with h(t) = 1/(πt) are unstable as well
(as asserted by Theorem 3), but they fall outside the scope
of Proposition 1: the first because δ′ is not a function (but a
distribution), and the second because the function 1/t is not
locally integrable—in fact, the impulse response of the Hilbert
transform is the distribution “1/(πt)” that requires the use of
a “principal value” for the proper definition of the convolution
integral [6].

3Any measurable function h : R → R admits a unique decomposition
as h = h+ − h− with h+, h−R → R≥0. It is Lebesgue integrable if
min(‖h+‖L1

, ‖h−‖L1
) < ∞ [4].
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In the stable scenario, where h ∈ L1(R), we are able to
characterize the underlying filter by its frequency response

ĥ(ω)
�
=F{h}(ω) =

∫
R
h(t)e−jωtdt, (5)

which is the “classical” Fourier transform of h. Moreover,
the Riemann-Lebesgue lemma ensures that ĥ ∈ C0(R) with
‖ĥ‖sup ≤ ‖h‖L1

. We recall that C0(R) is the Banach space
of continuous and bounded functions that decay at infinity,
equipped with the sup-norm.

III. BANACH FORMULATIONS OF BIBO STABILITY

The classical textbook statements on continuous-time BIBO
stability, including our reformulation in Proposition 1, have two
limitations. First, they exclude the identity operator with h = δ,
as explained in Appendix A. Second, they are often evasive con-
cerning the hypotheses under which the condition h ∈ L1(R) is
necessary (see Appendix B). In this section, we show how this
can be corrected by considering appropriate Banach spaces.

A. Extension of the Notion of Convolution

The scope of our mathematical statements relies on Schwartz’
famous kernel theorem [7], [8] which delineates the complete
class of linear operators that continuously map D(R) → D′(R).
We recall that D(R) = C∞

c (R) is the space of smooth and
compactly supported test functions equipped with the usual
Schwartz topology.4 Its topological dual D′(R) is the space of
generalized functions also known as distributions. In essence,
a distribution f ∈ D′(R) is a linear map—more precisely, a
continuous linear functional—that assigns a real number to each
test function ϕ ∈ D(R); this is denoted by f : ϕ �→ 〈f, ϕ〉. For
instance, the definition of Dirac’s impulse as a distribution is
δ : ϕ �→ 〈δ, ϕ〉 �

=ϕ(0).
Beside linearity, the property that defines an LSI opera-

tor is TLSI{ϕ(· − t0)}(t) = TLSI{ϕ}(t− t0) for any t0 ∈ R.
Schwartz’ theorem then tells us that there is a one-to-one cor-
respondence between continuous LSI operators D(R) → C(R)
and distributions, with the defining distributionh ∈ D′(R) being
the impulse response of the operator. The relevant space of
continuous functions here is C(R) with the topology of uniform
convergence over compact sets, which involves the system of
seminorms ‖f‖N = sup|t|≤N |f(t)|, N ∈ N. The latter is an ex-
tended functional setup that tolerates arbitrary growth at infinity.

Theorem 1 (Schwartz’ kernel theorem for LSI operators): For
any given h ∈ D′(R), the operator Th : ϕ �→ h ∗ ϕ with

t �→ (h ∗ ϕ)(t) �
=〈h, ϕ(t− ·)〉 (6)

is LSI and continuously maps D(R)
c.−→C(R). Conversely, for

every LSI operator TLSI : D(R)
c.−→C(R), there is a unique h ∈

D′(R) such thatTLSI = Th : ϕ �→ h ∗ ϕwhere the convolution
is specified by (6).

4A sequence of functions ϕk ∈ D(R) is said to converge to ϕ in D(R) if
(i) there exists a compact domain F that includes the support of ϕ and of all

ϕk; and (ii) ‖ϕk − ϕ‖n → 0 for all n ∈ N, where ‖ϕ‖n �
=‖Dnϕ‖L∞ with

Dn : D(R) → D(R) the nth derivative operator.

Then, depending on the decay properties of h, it is generally
possible to extend the domain of the convolution operator Th to
some appropriate Banach space according to the procedure de-
scribed in Section IV. For instance, if h ∈ L1(R), then Th has a
continuous extension L∞(R) → Cb(R) ⊂ C(R) that coincides
with the classical definition given by (1).

Finally, we note that, for the cases where the Dirac impulse δ
is in the domain of the extended operator (for instance, whenh ∈
C(R)), the distributional definition of the convolution given by
(6) yieldsTh{δ} = h ∗ δ = h, which explains the term “impulse
response.”

B. Banach Spaces of Bounded Functions

In order to investigate the issue of BIBO stability, it is help-
ful to describe the boundedness and continuity properties of
functions via their inclusion in appropriate Banach subspaces of
D′(R). The three relevant function spaces are

C0(R) ⊂ Cb(R) ⊂ L∞(R).

The central space consists of the subset of bounded functions
that are continuous:

Cb(R) = {f : R → R s.t. f is continuous and ‖f‖sup < ∞} .
It is a classical example of Banach space—a complete normed
vector space [9]. The smaller space C0(R), which is also
equipped with the sup-norm, imposes the additional constraint
that f(t) should vanish at t = ±∞. It is best described as the
completion of D(R) equipped with the sup-norm, which will
have its importance in the sequel. This property is indicated by
C0(R) = (D(R), ‖ · ‖sup). The concept is also valid for L1(R),
which can be described as L1(R) = (D(R), ‖ · ‖L1

), where the
L1-norm is defined by (2) with f ∈ D(R) and the integral being
classical—in the sense of Riemann. This completion property
applies to Lp(R) = (D(R), ‖ · ‖Lp

) with p ∈ [1,∞) as well [4,
Proposition 8.17, p. 254], but not for p = ∞, which explains the
importance of the space C0(R), which is distinct from L∞(R).

In order to properly identify L∞(R) as a subspace of D′(R),
we shall exploit the property that the L∞-norm is the dual of the
L1-norm. We therefore choose to define the L∞-norm as

‖f‖L∞
�
= sup

ϕ∈D(R): ‖ϕ‖L1
≤1

〈f, ϕ〉 = sup
ϕ∈L1(R): ‖ϕ‖L1

≤1

〈f, ϕ〉,

(7)

where the central part of (7) takes advantage of the denseness5

of D(R) in L1(R). This yields a definition that is valid not
only for (measurable) functions, but also for all f ∈ D′(R).
Consequently, we can redefine our target space as

L∞(R) = {f ∈ D′(R) : ‖f‖L∞ < ∞}, (8)

which is readily identified as the topological dual of L1(R);
that is, L∞(R) = (L1(R))′ due to the dual specification of the
L∞-norm given by the right-hand side of (7).

5This means that, for any f ∈ L1(R) and any ε > 0, there exists a function
ϕε ∈ D(R) such that ‖f − ϕε‖L1

< ε. It is a direct consequence of L1(R) =

(D(R), ‖ · ‖L1
).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 05,2020 at 12:50:51 UTC from IEEE Xplore.  Restrictions apply. 



UNSER: NOTE ON BIBO STABILITY 5907

While (8) defines L∞(R) as a subspace of D′(R), we can
also identify its elements as (bounded) measurable functions
f : R → R via the classical association

ϕ �→ 〈f, ϕ〉 �
=

∫
R
ϕ(t)f(t)dt, (9)

where the right-hand side of (9) is a standard Lebesgue inte-
gral. Now, the main difference between the sup-norm and the
L∞-norm is that, for f ∈ L∞(R) (identified as a function), the
inequality |f(t)| ≤ ‖f‖L∞ holds for almost every t ∈ R. This
means that it holds over the whole real line except, possibly,
on a set of measure zero. This is often indicated as ‖f‖∞ =
ess supt∈R|f(t)|, using the notion of essential supremum. In
other words, the L∞-norm is more permissive than the sup-
norm with ‖f‖∞ ≤ ‖f‖sup. However, the two norms are equal
whenever the function f is continuous, which translates into the
isometric inclusion C0(R)↪→iso.

Cb(R) ↪→iso.
L∞(R).

C. Extended Results on BIBO Stability

Remarkably, the combination of the two latter function spaces
enables us to formulate a first Banach extension of the classical
statement on BIBO stability. To that end, we shall restrict the
distributional framework covered by Theorem 1 to the case
where the impulse response h is identifiable as a measurable
function (i.e., h ∈ L1,loc(R) ⊂ D′(R)). The linear functional
on the right-hand side of (6) then has an explicit integral de-
scription given by (1) with f = ϕ ∈ D(R). Within this class of
convolution operators, we now identify the ones whose domain
can be extended to L∞(R).

Theorem 2: The convolution operator Th : f �→ h ∗ f with
h ∈ L1,loc(R) has a continuous extension L∞(R)

c.−→Cb(R) if
and only if h ∈ L1(R). Moreover,

‖h ∗ f‖sup ≤ ‖h‖L1
‖f‖L∞

with the bound being sharp in the sense that it also yields the
norm of the underlying operator: ‖Th‖L∞→Cb

= ‖h‖L1
(see

Definition 2).
The proof of this result is deferred to Section IV (see Item 2

and the final statement of Theorem 4).
It is of interest to compare Proposition 1 and Theorem 2

because they address the problem of stability from different but
complementary perspectives. Proposition 1 is focused primar-
ily on the well-posedness of the convolution integral (1) for
f ∈ L∞(R). It can be paraphrased as: “Let h be a measurable
(and locally integrable) function. Then, the Lebesgue integral (1)
defines a convolution operator that is BIBO-stable if and only
if h ∈ L1(R).” By contrast, Theorem 2 considers the complete
family of “classical” convolution operatorsTh : D(R) → C(R)
with h ∈ L1,loc(R) and precisely identifies the subset of oper-
ators that have a continuous extension from L∞(R) → Cb(R).
Since Cb(R) is isometrically embedded in L∞(R), this is more
informative than Proposition 1 because it also tells us that
(h ∗ f)(t) is a continuous function of t ∈ R. In that respect, we
note that the requirement that the convolution of any bounded
functionf be continuous excludes the use of the identity operator

with h = δ at the onset, even if we extend the framework to
h ∈ D′(R).

To obtain a more permissive characterization of BIBO stabil-
ity, we need to extend the range of the operator from Cb(R) to
L∞(R), which should then also translate into a corresponding
enlargement of the class of admissible impulse responses. We
shall delineate the latter in a way that parallels our definition of
L∞(R), with the roles of theL1- and sup- (orL∞-) norms being
interchanged. To that end, we first define the M-norm as

‖f‖M �
= sup

ϕ∈D(R): ‖ϕ‖sup≤1

〈f, ϕ〉. (10)

This then yields the Banach space

M(R) = {f ∈ D′(R) : ‖f‖M < ∞}, (11)

which also happens to be the space of bounded Radon measures6

on C0(R). In other words, M(R) is the topological dual of
C0(R). Moreover, we can invoke the Riesz-Markov theorem to
identify M(R) = (C0(R))′ with the space of bounded signed
Borel measures on R [2]. Concretely, this means that any h ∈
M(R) is associated with a unique Borel measureμh, which then
gives a concrete definition of the linear functional

f �→ 〈h, f〉 �
=

∫
R
f(τ)dμh(τ) (12)

for any measurable function f , while the total-variation norm
of the measure μh is given by ‖μh‖TV

�
=
∫

R d|μh| = ‖h‖M
(see Section IV-C). The main point for us is that M(R) is
a superset of L1(R), with ‖f‖M = ‖f‖L1

for all f ∈ L1(R).
Moreover, we have that δ(· − t0) ∈ M(R) for any t0 ∈ R with
‖δ(· − t0)‖M = 1, as can be readily inferred from (10) by con-
sidering a non-negative test function that achieves its maximum
ϕ(t0) = 1 at t = t0.

For the cases where the impulse response h ∈ M(R) is not an
L1 function, we extend our definition of the original (Lebesgue)
convolution integral as

t �→ (h ∗ f)(t) = 〈h, f(t− ·)〉 �
=

∫
R
f(t− τ)dμh(τ), (13)

which is the same as (1) when we can write dμh(τ) = h(τ)dτ ,
which happens when the corresponding measureμh is absolutely
continuous7 with respect to the Lebesgue measure. A standard
manipulation then yields that

|(h ∗ f)(t)| ≤
∫

R
|f(t− τ)| d|μh|(τ)

≤ ‖f‖L∞

∫
R
d|μh| = ‖f‖L∞‖h‖M, (14)

which is the basis for the direct (easy) part of Theorem 3,
where the complete class of BIBO-stable systems is identified,
including the identity operator.

6We adhere with Bourbaki’s nomenclature to distinguish the two comple-
mentary interpretations of a measure: either as a continuous linear functional on
D(R) (Radon measure), or as a set-theoretic additive rule that associates a real
number to any Borel set of R (signed Borel measure) [10], [11].

7Another way to put it is that h is the Radon-Nikodym derivative of μh.
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Theorem 3: The convolution operator Th : f �→ h ∗ f with
h ∈ D′(R) has a continuous extension L∞(R)

c.−−−−−→L∞(R)
if and only if h ∈ M(R). Moreover,

‖h ∗ f‖∞ ≤ ‖h‖M ‖f‖L∞

with the bound being sharp in the sense that ‖Th‖L∞→L∞ =
‖h‖M.

This result, which is also valid in dimensions higher than
1, is known in harmonic analysis [12, p. 140 Corollary 2.5.9],
[6] but much less so in engineering circles. It can be traced
back to an early paper by Hörmander that provides a compre-
hensive treatment of convolution operators on Lp spaces [13].
The reminder of the paper is devoted to the proof of the two
theorems on BIBO stability and of some interesting variants (see
Theorem 4). To that end, we shall rely on Schwartz’ powerful
distributional formalism which, as we shall see, allows for a
rather soft derivation, once the prerequisites have been laid out.

IV. MATHEMATICAL DERIVATIONS

A. Extension of Convolution Operators

The most general form of a convolution operator backed by
Schwartz’ kernel theorem (see Theorem 1) is Th : D(R) →
C(R) ↪→ D′(R) with h ∈ D′(R), where Th{ϕ} is defined by
(6) for any ϕ ∈ D(R). The two complementary ingredients at
play there are: (i) the restriction of the domain to D(R)—
the “nicest” class of functions in terms of smoothness and
decay—and (ii) the extension of the range to D′(R), which
can accommodate an arbitrary degree of growth (polynomial,
or even exponential) at infinity. In other words, the theoretical
framework is such that it can deal with the very worst scenarios,
including unstable differential systems whose impulse response
is exponentially increasing.

Then, depending on the smoothness and decay properties of
h, it is usually possible to extend the domain of Th to some
Banach space X ⊇ D(R) that is continuously embedded in
D′(R), which is denoted byX ↪→ D′(R). For this to be feasible,
we require that ‖ · ‖X be a valid norm on D(R) and that D(R)
be dense in X , which is equivalent to X = (D(R), ‖ · ‖X ). In
other words, X is the completion of D(R) equipped with the
‖ · ‖X -norm.

We start by recalling the definition of the norm of a bounded
operator.

Definition 2: Let (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) be two Banach
spaces and T a linear operator X → Y . Then, the operator is
said to be bounded if

‖T‖X→Y
�
= sup

f∈X\{0}

‖T{f}‖Y
‖f‖X < ∞.

A direct consequence of Definition 2 is that a bounded oper-
ator T : X → Y continuously maps X into Y , as indicated by
T : X c.−→Y .

Theorem 2 then describes a functional mechanism that allows
us to extend an operator initially defined on D(R). It is a partic-
ularization of a fundamental extension theorem in the theory of
Banach spaces [14, Theorem I.7, p. 9].

Proposition 2 (Extension of a linear operator): Let X and
Y be two Banach subspaces of D′(R) with the additional
property that D(R) is dense in X . Then, the linear operator
T : D(R)

c.−→D′(R) has a unique continuous extension X =

(D(R), ‖ · ‖X ) c.−→Y with ‖T‖X→Y ≤ C if and only if

(i) T{ϕ} ∈ Y, and (15)

(ii) ‖T{ϕ}‖Y ≤ C‖ϕ‖X (16)

for all ϕ ∈ D(R) and some constant C > 0.
Since a convolution operator Th : D(R)

c.−→D′(R) is
uniquely characterized by its impulse response h ∈ D′(R), the
same holds true for its extension Th : X c.−→Y , which justifies
the use of the same symbol. Rather than definingTh{f} = h ∗ f
through a Lebesgue integral as in (1) or (13), we can therefore
rely on (6) and define our extended convolution operator Th :
X → Y through a limit process. Specifically, we pick a Cauchy
sequence (ϕn) in (D(R), ‖ · ‖X ) such that limn→∞ ϕn = f ∈
X . Then, the sequence of functions (gn = h ∗ ϕn) with

t �→ (h ∗ ϕn)(t) = 〈h, ϕn(t− ·)〉 (17)

is Cauchy in Y and converges to a limit g = limn→∞(h ∗ ϕn) ∈
Y , independently of the choice of the ϕn since the space Y is
complete. We now recapitulate this process in the form of a
definition.

Definition 3 (Banach extension of a distributional convolution
operator): LetX andY be two Banach subspaces ofD′(R)with
the additional property that D(R) is dense in X . When the two
conditions in Theorem 2 hold, the unique continuous extension
Th : X c.−→Y of the convolution operator specified by (17) with
h ∈ D′(R) is defined by

Th : f �→ h ∗ f �
= lim

n→∞(h ∗ ϕn) ∈ Y, (18)

where (ϕn) is any sequence in D(R) such that limn→∞ ‖f −
ϕn‖X = 0.

Also important for our purpose is the adjoint operator T∗ :
Y′ → X ′, which is the unique linear operator such that

〈g,T{f}〉Y′×Y = 〈T∗{g}, f〉X ′×X

for any g ∈ Y′ and f ∈ X ′, where the spaces X ′ and Y′ are the
duals of the topological vector spaces X and Y , respectively. If
T : X c.−→Y is bounded with operator norm ‖T‖, then the ad-
joint T∗ : Y′ c.−→X′ is bounded with ‖T∗‖ = ‖T‖. In particular,
the adjoint of the convolution operator Th : D(R)

c.−→D′(R) is
Th∨ : D(R)

c.−→D′(R), where h∨ is the time-reversed impulse

response such that 〈h∨, ϕ〉 = 〈h, ϕ∨〉, where ϕ∨(t)�=ϕ(−t).
We now briefly show how we make use of these two mech-

anisms to specify the continuous extension Th : L∞(R) →
L∞(R) with h ∈ M(R) (or, h ∈ L1(R)) that is implicitly re-
ferred to in Theorems 2 and 3. The enabling ingredient there
is the continuity bound ‖h∨ ∗ ϕ‖L1

≤ ‖h∨‖M‖ϕ‖L1
(see proof

of Theorem 4, Item 4), which also yields h∨ ∗ ϕ ∈ L1(R) for
all ϕ ∈ D(R). We then apply Definition 3 to specify the unique
extension Th∨ : L1(R)

c.−→L1(R). An important point for our
argumentation is that this (pre-adjoint) convolution operator also
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has a concrete implementation as

t �→ (h∨ ∗ ϕ)(t) = 〈h∨, ϕ(t− ·)〉 =
∫

R
ϕ(τ + t)dμh(τ),

(19)

which is supported by the same continuity bound with ϕ now
ranging overL1(R) instead of the smaller spaceD(R). The exis-
tence and uniqueness ofTh∨ : L1(R)

c.−→L1(R) then guarantees
the existence and unicity of the adjointT∗

h∨ : L∞(R)
c.−→L∞(R).

To show that T∗
h∨ = Th, we use the explicit representation

of Th∨ given by (19) with h∨ ∈ M(R) and invoke Fubini’s
theorem to justify the interchange of integrals in

〈Th∨{f}, g〉 =
∫

R

(∫
R
f(τ + t)dμh(τ)

)
g(t)dt

=

∫
R

∫
R
f(x)g(x− τ)dμh(τ)dx

=

∫
R
f(x)

(∫
R
g(x− τ)dμh(τ)

)
dx

= 〈f,Th{g}〉
for any f ∈ L1(R) and g ∈ L∞(R). This proves that the original
convolution operator defined by (13) coincides with the adjoint
of Th∨ : L1(R)

c.−→L1(R), which is also consistent with the
property h = (h∨)∨. Since D(R) ⊂ L∞(R), we can therefore
uniquely identify Th : L∞(R)

c.−→L∞(R) as the extension of
Th : D(R) → D′(R) that preserves the adjoint relation T∗

h∨ =
Th.

B. Proof of Banach Variants of BIBO Stability

The Banach spaces of interest for us are X = C0(R), Lp(R)
and Y = C0(R), Cb(R), Lp(R) with p ≥ 1.

Theorem 4: Depending on the functional properties of its
impulse response h ∈ D′(R), the convolution operator Th :

D(R)
c.−→D′(R) defined by (6) admits the following (unique)

continuous extensions.8

1) Let p, q ∈ (1,∞) be conjugate exponents with 1
p + 1

q =

1. Then, h ∈ Lq(R) ⇒ Th : Lp(R)
c.−→C0(R) with

‖Th‖Lp→C0
≤ ‖h‖Lq

.

2) h ∈ L1(R) ⇒ Th : L∞(R)
c.−→Cb(R) with

‖Th‖L∞→Cb
= ‖h‖L1

.
3) h ∈ M(R) ⇔ Th : C0(R)

c.−→Cb(R).
4) h ∈ M(R) ⇔ Th : L1(R)

c.−→L1(R).
5) h ∈ M(R) ⇔ Th : L∞(R)

c.−→L∞(R).
Moreover, the operator norms for Items 3-5, char-

acterized by an equivalence relation, are ‖Th‖C0→Cb
=

‖Th‖L1→L1
= ‖Th‖L∞→L∞ = ‖h‖M. Finally, under the hy-

pothesis of local integrability h ∈ L1,loc(R), the continuity of
Th : L∞(R)

c.−→Cb(R) implies that h ∈ L1(R), which is the
converse part of Item 2.

8See Definition 3 and accompanying explanations. The bottom line is that the
definition of these operators is compatible with the convolution integral (1) or
(13) depending on whether h is a function or a Radon measure.

Proof:
Item 1: Under the assumption that h ∈ Lq(R) with q ≥ 1, we

invoke Hölder’s inequality

|(h ∗ ϕ)(t)| ≤
∫

R
|h(τ)| · |ϕ(t− τ)|dτ ≤ ‖h‖Lq

‖ϕ(· − t)‖Lp

for any ϕ ∈ D(R), which yields the required upper bound
‖h ∗ ϕ‖L∞ ≤ ‖h‖Lq

‖ϕ‖Lp
. Likewise, by linearity, we get that

|(h ∗ ϕ)(t)− (h ∗ ϕ)(t−Δt)| = |h ∗ (ϕ(t)− ϕ(t−Δt))|
≤ ‖h‖Lq

· ‖ϕ− ϕ(· −Δt)‖Lp
.

Due to the constraining topology of D(Rd), limΔt→0 ‖ϕ−
ϕ(· −Δt)‖Lp

= 0 for any p ≥ 1, which proves the continuity
of the function t �→ (h ∗ ϕ)(t). This leads to the intermediate
outcome h ∗ ϕ ∈ Cb(R) for all ϕ ∈ D(R).

If we now replace h by φ ∈ D(R), we readily deduce
that Tφ{ϕ} = φ ∗ ϕ is compactly supported; hence, Tφ{ϕ} ∈
C0(R) for all ϕ ∈ D(R) with ‖φ ∗ ϕ‖L∞ ≤ ‖φ‖Lq

‖ϕ‖Lp
.

We then invoke Theorem 2 with X = (D(R), ‖ · ‖p) to de-
duce that Tφ : Lp(R)

c.−→C0(R) for p ∈ [1,∞) and Tφ :

C0(R)
c.−→C0(R) for any φ ∈ D(R). Since the convolution

is commutative, this implies that φ ∗ h = h ∗ φ ∈ C0(R) for
any h ∈ Lq(R) with q ∈ (1,∞) (resp., h ∈ C0(R)) and φ ∈
D(R) ⊂ Lp(R) which, by completion with respect to the
‖ · ‖Lp

norm with p ∈ (1,∞), gives Th : Lp(R)
c.−→C0(R)

with ‖Th‖Lp→C0
≤ ‖h‖Lq

(resp., Th : C0(R)
c.−→C0(R) with

‖Th‖C0→C0
= ‖h‖L1

).
Item 3: Since Cb(R) ↪→iso.

L∞(R), the relevant duality bound
there is (14), which yields ‖h ∗ ϕ‖L∞ ≤ ‖h‖M ‖ϕ‖L∞ . This
allows us to use the same argument as in Item 1 to show
that Th{ϕ} ∈ Cb(R) for all ϕ ∈ D(R). Since C0(R) =

(D(Rd), ‖ · ‖L∞), we then apply the proven completion tech-
nique to specify the unique operatorTh : C0(R) → Cb(R)with
‖Th‖C0→Cb

≤ ‖h‖M. Conversely, let Th : C0(R)
c.−→Cb(R)

with operator norm ‖Th‖C0→Cb
< ∞. Then, for any ϕ ∈

C0(R),

(h ∗ ϕ)(0) = 〈h, ϕ∨〉 ≤ ‖Th‖C0→Cb
‖ϕ‖L∞

with ϕ∨ ∈ C0(R) and ‖ϕ∨‖L∞ = ‖ϕ‖L∞ . By substituting ϕ for
ϕ∨ and by recalling that D(R) is dense in C0(R), we get that

sup
ϕ∈C0(R)\{0}

〈h, ϕ〉
‖ϕ‖L∞

= sup
ϕ∈D(R)\{0}

〈h, ϕ〉
‖ϕ‖L∞

= ‖h‖M ≤ ‖Th‖C0→Cb
, (20)

which then also proves that the bound is sharp.
Item 4: The key here is the estimate∫

R

∣∣(h ∗ f)(t)∣∣ dt ≤ ∫
R

∫
R
|f(t− τ)| d|μh|(τ) dt

=

∫
R

(∫
R
|f(x)|dx

)
d|μh|(τ) (by Fubini)

=

(∫
R
|f(x)|dx

)(∫
R
d|μh|

)

= ‖f‖L1
‖h‖M,
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from which we deduce the boundedness of Th : L1(R) →
L1(R) with ‖Th‖L1→L1

≤ ‖h‖M. (The extension technique
is essentially the same as in Item 1 with p = 1 and L1(R) =
(D(R), ‖ · ‖L1

).) The converse implication and the sharpness
of the bound will be deduced from Item 5 by duality.

Item 5: Since L∞(R) = (L1(R))′, the adjoint of Th :

L1(R)
c.−→L1(R) is T∗

h = Th∨ : L∞(R)
c.−→L∞(R). The equiv-

alence h ∈ M(R) ⇔ h∨ ∈ M(R) implies the continuity of
Th : L∞(R)

c.−→L∞(R)with ‖Th‖L∞→L∞ ≤ ‖h‖M = ‖h∨‖M.
As for the converse implication, we take advantage of the embed-
ding C0(R) ↪→iso.

L∞(R), which allows us to reuse the argument
of Item 3.

Item 2 and Its Converse: The first part follows from the
beginning of the proof of Item 1, the application of the ex-
tension principle for p = 1, and the commutativity of the con-
volution integral, which yields f ∗ h = h ∗ f ∈ Cb(R) with
‖h ∗ f‖L∞ ≤ ‖h‖L1

‖f‖L∞ for any f ∈ L∞(R). We show that
the bound is sharp by applying the convolution operator to the
“worst-case” signal f0 identified in (4). Conversely, let Th :
L∞(R)

c.−→Cb(R) with ‖Th‖L∞→Cb
< ∞. Taking advantage of

the isometric embedding Cb(R) ↪→iso.
L∞(R), we then invoke the

equivalence in Item 5 to deduce that ‖h‖M < ∞, which implies
that h ∈ M(R). The announced equivalence then follows from
Proposition 3 in Section IV-C. �

The result in Item 1 is discussed in most advanced treatises on
the Fourier transform (e.g., [4, Proposition 8.8, p 241]). We are
including it here in a self-contained form—at the expense of a
few more lines in the proof of Item 2—because it nicely charac-
terizes the regularization effect of convolution. The equivalences
stated in Item 4 and Item 5 are known in the context of the theory
ofLp Fourier multipliers [12, Section 2.5], even though the latter
does not seem to have permeated to the engineering literature.
The equivalence in Item 4 may also be identified as a special
instance of Wendel’s theorem in the abstract theory of multipliers
on locally compact Abelian groups [15, Theorem 0.1.1, p. 2].
Interestingly, the condition h ∈ M(R) is also sufficient for the
continuity of Th : Lp(R)

c.−→Lp(R), a claim that is supported
by the Young-type norm inequality

‖h ∗ f‖Lp
≤ ‖h‖M ‖f‖Lp

, (21)

which holds for any f ∈ Lp(R) with p ≥ 1. However, (21)
is only sharp at the two end points p = 1,+∞, in confor-
mity with the statements in Items 4 and 5. In fact, the only
other case where the complete class of convolution opera-
tors Th : Lp(R)

c.−→Lp(R) has been characterized is for p = 2,
with the necessary and sufficient condition being ĥ ∈ L∞(R)
(bounded frequency response) [6, Theorem 3.18, p. 28], which
is slightly more permissive than the BIBO requirement. In-
deed, h ∈ M(R) ⇒ ĥ ∈ L∞(R), whereas the reverse implica-
tion does not hold.

We like to single out Item 3 in Theorem 4 as the pivot
point that facilitates the derivation of the (nontrivial) re-
verse implications—namely, the necessity of the condition h ∈
M(R). While the listed property is sufficient for our purpose,
we can refer to a recent characterization by Feichtinger [1,
Theorem 2, p. 499] which, in the present context, translates into

the refined statement “h ∈ M(R) ⇔ Th : C0(R)
c.−→C0(R).”

The additional element there is the vanishing of (h ∗ f)(t) at
infinity, which calls for a more involved proof.

While the statement in Item 2 is a special case of Item 5,
as made explicit in Section IV-C, the interesting part of the
story is that this restriction induces a smoothing effect on the
output, ensuring that the function t �→ (h ∗ f)(t) is continuous.
There is obviously no such effect for the case h = δ ∈ M(R)
(identity) or, by extension, hd =

∑
n∈Z a[n]δ(· − n) ∈ M(R)

with ‖hd‖M = ‖a‖�1 , which corresponds to the continuous-
time transposition of a digital filter.

C. Explicit Criterion for BIBO Stability

We now show how to determine ‖h‖M (our extended criterion
for BIBO stability) under the assumption that h ∈ L1,loc(R).
Any such impulse response can be identified with a distribution
by considering the linear form

h : ϕ �→ 〈h, ϕ〉 =
∫

R
h(t)ϕ(t)dt, (22)

which continuously maps D(R) → R. It turns out that the latter
is a special instance of a real-valued Radon measure, which is an
extended type of measure whose ‖ · ‖M-norm is not necessarily
finite.

Definition 4 ([3]): A distribution f ∈ D′(R) is called a real-
valued Radon measure if, for any compact subset K ⊂ R, there
exists a constant CK > 0 such that

〈f, ϕ〉 ≤ CK sup
t∈K

|ϕ(t)| (23)

for all ϕ ∈ D(K) = {ϕ ∈ D(R) : ϕ(t) = 0, ∀t /∈ K}.
A distribution f+ ∈ D′(R) is said to be positive if 〈f+, ϕ〉 ≥

0 for all ϕ ∈ D+(R) = {ϕ ∈ D(R) : ϕ(t) ≥ 0, t ∈ R}.
The connection between the two kinds of distributions in

Definition 4 is that a positive distribution is a special instance
of a Radon measure, while any real-valued Radon measure f
admits a unique decomposition as f = (f+ − f−), where both
f+, f− ≥ 0 are positive distributions [16, Theorem 21.2, p.
218]. One then also defines the corresponding “total-variation
measure” |f | = f+ + f−, which is positive by construction.

It turns out that the Dirac impulse δ is a positive Radon mea-
sure with a universal bounding constant CK = 1. Likewise, the
minimal constant in (23) forf ∈ L1,loc(R) is CK =

∫
K |f(t)|dt,

which is essentially what is expressed in Proposition 3.
Proposition 3 (Total-variation norm for measurable

functions): Let h ∈ L1,loc(R). Then, ‖h‖M = ‖h‖L1
=∫ +∞

−∞ |h(t)|dt. Consequently, h ∈ M(R) if and only if∫ +∞
−∞ |h(t)|dt < ∞.

Proof: In accordance with Definition 4, we view h ∈
L1,loc(R) as a real-valued Radon measure with h+(t) =
max(h(t), 0) and h−(t) = max(0,−h(t)), while the corre-
sponding total-variation measure is |h| = h+ + h− ∈ L1,loc(R)
with |h| : t �→ |h(t)|, which is consistent with the notation. We
then distinguish between two cases.
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(i) Bounded Scenario: When ‖h‖M < ∞, we can invoke the
classical Jordan decomposition of a measure (see [4]),

∀f ∈ M(R) : ‖f‖M = ‖f+‖M + ‖f−‖M = ‖|f |‖M < ∞,

which allows us to reduce the problem to the easier determina-
tion of ‖|h|‖M. Accordingly, for any given T > 0, we define
hT = |h| · 1[−T,T ] ≥ 0 and observe that

‖hT ‖M = sup
ϕ∈D(R): ‖ϕ‖L∞≤1

〈hT , ϕ〉 = 〈hT , 1〉

= ‖hT ‖L1
< ∞,

where the supremum is achieved by considering any test function
ϕT ∈ D(R) such thatϕT (t) = 1 for all t ∈ [−T, T ]. In the limit,
we get that limT→∞ ‖hT ‖L1

= limT→∞ ‖hT ‖M = ‖|h|‖M <
∞, from which we conclude that ‖|h|‖M = ‖h‖M = ‖h‖L1

.
(ii) Unbounded Scenario. The condition ‖h‖M = ∞ can be

formalized as: for any n ∈ N, there exists ϕn ∈ D(R) with
‖ϕn‖L∞ = 1 such that 〈h, ϕn〉 > n. However,

〈h, ϕn〉 ≤
∣∣ ∫

R
h(t)ϕn(t)dt

∣∣ ≤ ∫
R
|h(t)|dt ‖ϕn‖L∞ = ‖h‖L1

.

Therefore, ‖h‖L1
> n for all n ∈ N, leading to ‖h‖L1

= ∞.�
Let us now conclude with a few more observations.
Since L1,loc(R) can be identified as the subspace of mea-

sures that are absolutely continuous (see [3, p. 18]), the result
in Proposition 3 is consistent with the well-known property
in probability theory that L1(R) coincides with the subset of
bounded measures that are absolutely continuous.

Under the minimalistic assumption that h ∈ L1,loc(R), the
convolution integral (1) is well defined for any t ∈ R provided
that the input function f : R → R is bounded and compactly
supported. Equation (1) then even yields an output function t �→
(h ∗ f)(t) that is continuous, as shown in Appendix D. However,
the trouble comes from the fact that the output then inherits the
potential lack of decay of h when h /∈ L1(R).

One can also make a connection between the result in Propo-
sition 3 and the standard argument that is presented to justify the
necessity of h ∈ L1(R). When the latter condition is fulfilled,
we have that

‖h‖M = sup
ϕ∈D(R): ‖ϕ‖L∞≤1

〈h, ϕ〉

= ‖h‖L1
= sup

φ∈L∞(R): ‖φ‖L∞≤1

〈h, φ〉 =
∫

R
h(t)φ0(t)dt,

(24)

where φ0(t) = sign(h(t)). While the supremum is achieved ex-
actly overL∞(R) by takingφ = φ0, it is a bit trickier overD(R)
because of the additional smoothness requirement. Yet, due to
the definition of the supremum, for any ε > 0 there exists a func-
tion ϕε ∈ D(R) with ‖ϕε‖∞ = 1 such that

∫
h(t)ϕε(t)dt =

(1− ε)‖h‖M ≤ ‖h‖M = ‖h‖L1
. By taking ε arbitrarily small,

we end up with ϕε being a “smoothed” rendition of φ0, so that
the spirit of the initial argument is retained.

APPENDIX

A. Is the Dirac Distribution a Member of L1(R)?

Let us start with the historical observation that the eponymous
impulse δ is already present in the (early) works of both Fourier
and Heaviside [17]. The former, as one would expect, defined it
via an “improper” integral (the inverse Fourier transform of “1”),
while the latter identified δ as the “formal” derivative of the unit
step (a.k.a. the Heaviside function). However, the mathematics
for giving a rigorous sense to these identifications were missing
at the time; one had to wait for the development of Schwartz’
distribution theory in the 1950s [3], which already shows that
the mere process of obtaining a rigorous definition of δ was far
from trivial.

From the pragmatic point of view of an engineer, the title
question is at the heart of the matter to understand the scope of
Proposition 1, and the source of some confusion, too. Let us start
by listing the elements that could suggest that the answer to the
question is positive.

1) It is common practice to make liberal use of what mathe-
maticians consider abusive notations; in particular, equa-
tions such as f(t) =

∫
R δ(τ)f(t− τ)dτ , which could

suggest that δ(τ) can be manipulated as if it were a
classical function of τ .

2) Dirac’s δ has the unit “integral” 〈δ, 1〉 = 1, which is indi-
cated formally as

∫
R δ(τ)dτ = 1. Moreover, δ ≥ 0 in the

sense that it is a positive distribution (see Definition 4).
3) The Dirac impulse is often described as the limit

of ϕn(t) =
n√
2π

e−(tn)2/2 as n → ∞, with ϕn ∈ S(R).
Since ‖ϕn‖L1

= 1 for any n > 0, this could suggest that
limn→∞ ‖ϕn‖L1

= 1 as well.
In order to convince the reader that the answer to the title

question is actually negative, we now refute these intuitive
arguments one by one.

1) The explicit description of the Dirac impulse as a centered
Gaussian distribution whose standard deviation σn = 1/n
tends to zero suggests that δ = limn→∞ ϕn must be en-
tirely localized at t = 0. The best attempt at describing this
limit in Lebesgue’s world of measurable functions would
be

p0(t) =

{
+∞, t = 0
0, otherwise,

which is equal to zero almost everywhere. However,
since the width of the impulse is zero, we get that∫

R p0(t)dt = 0, which is incompatible with the property
that

∫
R δ(t)dt = 1. This points to the impossibility of

representing δ by a function inL1(R) or even inL1,loc(R).
Strictly speaking, δ is defined as a continuous linear
functional on D(R)—or, by extension, C0(R)—which
precludes the application of any nonlinear operation (such
as | · |p) to it.

2) The generalized Fourier transform of δ is F{δ} =
1, which is bounded, but not decreasing at infinity.
If δ was included in L1(R), this would contradict
the Riemann-Lebesgue Lemma, which is equivalent to
F : L1(R)

c.−→C0(R) with ‖F‖L1→C0
= 1. By contrast,
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the inclusion δ ∈ M(R) is compatible with the (dual)
continuity property of the Fourier transform F∗,F :
M(R)

c.−→L∞(R) with ‖F∗‖M→L∞ = 1.
3) While the sequence of rescaled Gaussians (ϕn) converges

to δ ∈ S′(R) ↪→ D′(R) in the (weak) topology of S′(R)
(Schwartz’ space of tempered distributions), the problem
is that it fails to be a Cauchy sequence in the (strong)
norm topology of L1(R). Hence, there is no guarantee
that δ = limn→∞ ϕn stays in L1(R).

B. Examples of Inaccurate Statements on BIBO Stability

This list is far from exhaustive and not intended to down-
play the important contributions of the listed people who are
internationally recognized leaders in the field. Its sole purpose
is to illustrate the omnipresence of the misconception in the
engineering literature, including in some of the most popular
and authoritative textbooks in the theory of linear systems and
signal processing.

As a start, one can read in the English version of Wikipedia
that a necessary and sufficient condition for the BIBO stability of
a convolution operator is that its impulse response be absolutely
integrable, formulated as

∫
R |h(τ)|dτ = ‖h‖L1

< ∞. In view
of the discussion around Proposition 1, this is only correct if one
restricts the scope of the statement to those impulse responses
that are Lebesgue-measurable and locally integrable.

Kailath mentions in [18, p. 175] that the equivalence between
BIBO stability and h ∈ L1(R) is well known, and attributes
the result to James, Nichols, and Phillips [19]. It turns out
that the pioneers of the theory on control and linear systems
were focusing their attention on analog systems ruled by ordi-
nary differentiable equations whose impulse responses are sums
of causal exponentials and, therefore, Lebesgue-measurable.
Kailath then presents a proof on p. 176 that is essentially the one
we used for Proposition 1, except that he neither considers a limit
process nor explicitly says that h must be (locally) integrable.

Oppenheim and Willsky discuss the property in [5, p. 113-
114]. To justify the BIBO stability of the pure time-shift operator
(including the identity), they then present an argument in support
of the inclusion of δ(· − t0) in L1(R) (Example 2.13) which, in
view of the discussion in Appendix A, is flawed.

Vetterli et al. claim in [20, Theorem 4.8, p. 357] that the
operator Th is BIBO-stable from L∞(R) → L∞(R) if and only
if h ∈ L1(R), a statement that is incompatible with Theorem 3.
This can be corrected by limiting the scope of the equivalence
as in the statement of Theorem 2.

D. Convolution in the “Unstable” Scenario

Here, we characterize the output of a potentially “unstable”
filter when the input signal is compactly supported. The enabling
hypothesis is the local integrability of the impulse response.

Proposition 4: Let f ∈ L∞(R) be compactly supported and
h ∈ L1,loc(R). Then, the function t �→ (h ∗ f)(t) defined by (1)
is bounded on any compact set K ⊂ R and continuous; that is,
h ∗ f ∈ C(R).

Proof: Because of the local integrability of h, the convolution
integral (1) is well-defined for any t ∈ R with

(h ∗ f)(t) =
∫

R
h(τ)f(t− τ)dτ

=

∫
M

f(x)h(t− x)dx (by change of variable)

and

|(h ∗ f)(t)| ≤ ‖f‖L∞

∫
M

|h(t± τ)|dτ < ∞,

where M is the smallest symmetric interval such that f(t) =
f(−t) = 0 for all t /∈ M. For any given open bounded set K ⊂
R, we then observe that

∀t ∈ K : (h ∗ f)(t) = (hK+M ∗ f)(t)
where hK+M = h · 1K+M is the restriction of the original im-
pulse response to the set K + M = {t+ τ : t ∈ K, τ ∈ M}.
Since hK+M ∈ L1(R), one has that

sup
t∈K

|h ∗ f(t)| ≤ ‖f‖L∞‖hK+M‖L1
< ∞. (25)

Likewise, for any t, t0 ∈ K, we have that

|h ∗ f(t)− h ∗ f(t0)|
≤ ‖f‖L∞‖hK+M(t− ·)− hK+M(t0 − ·)‖L1

. (26)

Next, we invoke Lebesgue’s dominated-convergence theorem
and the property that C0(R) is dense in L1(R) to show
that ‖hK+M(t− ·)− hK+M(t0 − ·)‖L1

→ 0 as t → t0. This,
together with (26), implies that limt→t0 |(h ∗ f)(t)− (h ∗
f)(t0)| = 0, which expresses the continuity of t �→ h ∗ f(t) at
t = t0 for any t0 ∈ K. �
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