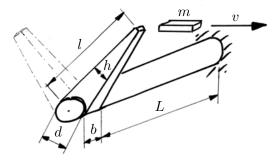
Exercice 1* : Butée élastique

Une masse m qui se déplace à une vitesse v entre en collision avec un ressort hélicoïdal encastré dans un châssis fixe.

Données du problème :


- masse: m = 0.1 kg
- vitesse de la masse : $v = 4 \text{ m s}^{-1}$
- diamètre moyen du ressort : D = 20 mm
- $\bullet\,$ diamètre du fil : $d=1~\mathrm{mm}$
- nombre de spires : n = 10
- \bullet Module de Young de l'acier ressort utilisé : $E=210~\mathrm{GPa}$
- Le coefficient de Poisson est : $\nu = 0.3$
- Rappel : le module de cisaillement est lié au module de Young par la relation : $G = \frac{E}{2(1+\nu)}$
- \bullet Contrainte de cisaillement admissible : $\tau_{\rm adm}=1000~{\rm MPa}$
- 1. Est-ce que la limite élastique du ressort est dépassée durant cette collision?
- 2. Quelle est la déformation maximale du ressort durant la collision?
- 3. Quelle est l'accélération maximale de la masse durant la collision?

Exercice 2 : Propulseur

Dans certaines machines à tisser, la navette m est propulsée à l'aide d'une barre de torsion et d'un levier.

Données du problème :

- barre : L=600 mm, d=20 mm, $\tau_{\rm adm}=1000$ MPa, matière : acier
- levier : l=200 mm, b=10 mm, h=10 mm (épaisseur moyenne), matière : acier
- navette : m = 30 g

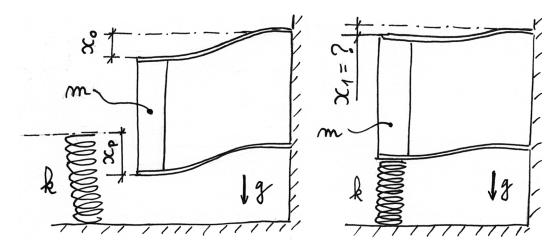
- 1. Quel est l'angle de rotation maximal admissible pour le levier?
- 2. Quelle est la vitesse maximale de la navette au moment où elle quitte le propulseur?

Hypothèses simplificatrices: On néglige le moment d'inertie de la barre de torsion. On considère le levier comme un barreau prismatique de masse m_{levier} et de longueur l; son inertie est $I=\frac{1}{3}$ m_{levier} l^2 .

Exercice 3[★] : Ressort hélicoïdal de traction ou de compression

Calculer la rigidité, la charge admissible et l'énergie admissible que peut stocker le ressort suivant :

- Géométrie : d = 0.5 mm, D = 5.5 mm, n = 4 spires actives
- Matériau : G = 81 GPa, $\tau_{\text{adm}} = 640$ MPa,
- 1. D'après le tableau de R. Clavel (2003) en annexe.
- 2. D'après le formulaire de S. Henein (2007) en annexe.

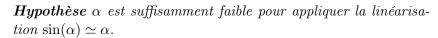

Exercice $4^{\star\star}$: Equilibre de ressorts

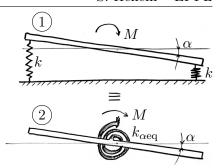
Un guidage flexible à deux lames parallèles subit une flèche x_0 sous l'effet du poids de la masse m qu'il supporte. Un ressort hélicoïdal de rigidité k est utilisé pour le soutenir. La longueur à vide du ressort est telle que la longueur de précharge au moment du montage est x_p (voir figure).

Calculez la flèche résiduelle x_1 du guidage flexible après la mise en place du ressort.

Données et hypothèses :

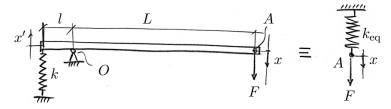
- Masse suspendue : m = 2 kg.
- Accélération de la pesanteur : $g=9.81~\mathrm{m/s^2}$
- Flèche sans ressort de soutien : $x_0 = 10$ mm.
- Longueur de précharge du ressort de soutien : $x_p = 15$ mm.
- Rigidité du ressort hélicoïdal de soutien : k = 1500 N/m.
- Les rigidités du ressort de soutien et du guidage flexibles sont supposées constantes (loi de Hooke).
- Le guidage est orienté de telle sorte que le mouvement de la masse soit vertical.
- Le ressort de soutien agit verticalement.



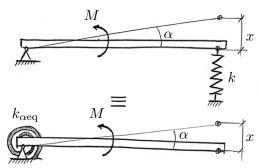

Système avant (à gauche) et après (à droite) la mise en place du ressort de soutien.

2

Exercice 5^* : Combinaison de ressorts

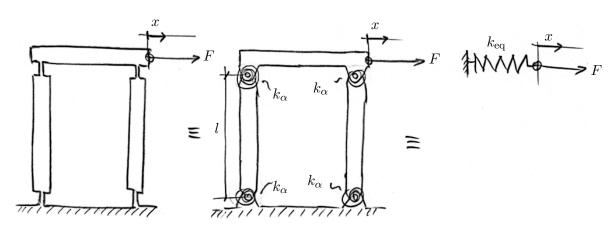

Calculer la rigidité angulaire équivalente $k_{\alpha eq}$ du ressort spiral telle que le couple M appliqué aux poutres $\widehat{\ \ }$ et $\widehat{\ \ }$ produise le même angle de rotation α . Les deux ressorts hélicoïdaux sont séparés par une distance d.

Exercice 6^* : Levier et ressort

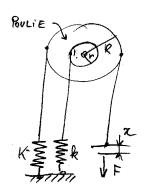

Calculer la rigidité équivalente du mécanisme ci-contre au point A.

Exercice 7[★] : Plongeoir

Calculer la rigidité angulaire équivalente $k_{\alpha eq}$ de la poutre de longueur l ci-contre.


Hypothèse α est suffisamment faible pour appliquer la linéarisation $\sin(\alpha) \simeq \alpha$.

Exercice 8^{\star} : Mécanisme flexible à quatre barres


Calculer la rigidité équivalente $k_{\text{eq}} = F/x$ du mécanisme ci-dessous (F est la force horizontale appliquée au bloc mobile du mécanise, et x est la composante horizontale de son déplacement).

Hypothèse α est suffisamment faible pour appliquer la linéarisation $\sin(\alpha) \simeq \alpha$.

Exercice 9^* : Poulie

Une poulie à deux tambours de rayons R et r transmet le force d'un brin de corde vers deux ressorts comme illustré ci-contre. L'axe de la poulie est fixe. Calculer la rigidité équivalente $k_{\rm eq}=F/x$.

Ressorts de traction et compression: valeurs typiques

00	9 - 1/1/1/		Da - Diamètres normaux											
1	_ J U		(1.5)	2	(2,5)	3	(3,5)	4	(4,5	5	6	(7)	8	(9)
normaux	(0.1)	Р	20	14							T			
		f./sp.	0,54	0,99					1					1
	(0,15)	P	62	50	39	33								
		f./sp.	0,30	0,63	1	1,5								
	0,2	P	140	110	87	78	67	58						
		f./sp	0,19	0,40	0,66	1,1	1,5	2						
	0,25	P	265	205	175	140	132	115	100	90				
		f./sp.	0,13	0,28	0,51	0,75	1,15	1,55	2	2,5				
	0,3	P		360	280	250	210	202	179	155	131			
		f./sp.		0,22	0,37	0,61	0,85	1,25	1,60	2	3			
	0,35	P		550	458	370	340	296	258	255	210	178		
		f./sp.		0,16	0,30	0,46	0,71	95	1,24	1,72	2,53	3,50		
00	0,4	P			646	565	474	440	388	345	311	264	233	
Si	0.4	f./sp.			0,24	0,39	0,55	0,81	1,05	1,29	2,15	3,02	3,98	
d - Diamètres	0,45	P			1055	820	685	587	560	500	451	381	334	295
		f./sp.			0,19	0,33	0,47	0,65	0,92	1,13	1,88	2,64	3,50	4,47
	0,5	P				1055	955	820	715	6 9 5	570	529	459	404
		f./sp.				0,27	0,41	0,56	0,73	1,01	1,51	2,31	3,07	3,98
	0,6	Р					1575	1460	1270	1125	1000	840	810	700
		f./sp.					0,29	0,44	0,58	0,73	1,22	1,69	2,51	3,21
	(0.7)	P								1830			1180	1040
		f./sp.					k	3,33	0,43	0,61	0,92	1,40	1,92	2,45
	0,8	Р								2580				
		f./sp.							0,36	0,47	0,77	1,11	1,63	2,10
	(0.9)	P								3765	3275	2730	2350	2255
		f./sp.								0,39	0,66	0,95	1,29	1,82
	1	P									1230	3820	3275	2870
		f./sp.									0,53	0,83	1,12	1,47
<pre>T₂' = 700 MN/m²</pre>														
ou situées hors des limites														

Source: Polycopié EPFL « Composants de la microtechnique », R. Clavel, 2003

Note : \mathcal{D}_a est le diamètre extérieur du ressort ; d est le diamètre du fil.

4

Z	PESSORTS	RIGIDITÉ K: N/m K= \(\frac{F}{2} \) Ka: N/m/rad	DEPLACEMENT ADMISSIBLE X: m X: rad	FORCE/MOMENT ADMISSIBLE F: N M: Nm	ENERGIE ADMISSIBLE W: 7 W= 1/2 Fx	COEFF. D'UTILI- SATION
ACTION	F	$K = \frac{E P V}{f}$	$x = \frac{\sigma \ell}{E}$	F= 0 b A	W= 0268 L	1
TRI	F	$K = \frac{E \pi d^2}{4 \ell}$	$x = \frac{\sigma \ell}{E}$	$F = \frac{0.77 d^2}{4}$	$W = \frac{\sigma^2 \pi d^2 \ell}{8E}$	1
X:ON /PURF	n a	$K = \frac{E \int_{0}^{\infty} \int_{0}^{3} \frac{12 \ell}{\ell}$	x = 20 l El	$M = \frac{Ob k^2}{6}$	W= 0-26 R L	1/3
SIMPLE	T= <u>b</u> P ³ ×	$K = \frac{Eb R^3}{4 \ell^3}$	$x = \frac{25 l^2}{3ER}$	F = 5 h2 6 l	W= 0-26 R P	1/9
BARRE	M	$K_a = \frac{G / \pi d^4}{32 \ell}$	$x = \frac{2 \Upsilon \ell}{G d}$	$M = \frac{\Upsilon \pi d^3}{16}$	W= T2md2 l 16 G	~ 1/3
TOR S M SPIRES /	pd/ pd	$K = \frac{G d^4}{8m D^3}$	$x = \frac{mTTD^2}{Gd}$	$F = \frac{T \pi d^3}{8D}$	$W = \frac{n T^2 \pi^2 d^2 D}{46 G}$	~ ¹ / ₃
T _P =	$\frac{\pi d^4}{32}, G = \frac{E}{2,6}, \tau = \frac{\sigma}{2}$	LÉGENDE: E: M	odule de Young trainte admimible	G: Module de Gliss T: Cisaillement adm	ement n: Nombre de imble S. HENEIN,	

Note concernant la torsion : D est le diamètre du ressort mesuré depuis le centre de la section circulaire du fil et d est le diamètre du fil. Le diamètre extérieur du ressort est donc $D_a = D + d$.