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Equations of conservation describe how the spatial and temporal variations of a
function f are related. Let us consider a control volume V' (and its bounding

surface S), then

8fdij/fu ndS = o

1. normal oriented, 1 local veIOC|ty of the control surface, ® rate of variation of f

(if ® = 0, then f is conserved).
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When f is continuous over V', then the Green-Ostrogradski theorem tell us that

/Sfu-ndS/vV-(fu)dV

It this holds true for any volume V', then we can derive the local form of

of B
5 TV - (fu)=9¢

where ¢ is such that ¢ = [, odV.

conservation
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A reminder of a simple The ODE

geometrical interpretation a(z, u)i—z = b(x, u),
of the derivative. has an implicit solution ©(x, u(x)) = c. Taking the x derivative
of this equation gives us
Vi = (=b,a) % _ o { duoy 0= ) — (o
de  Ox dxou Uy,

In other words, if we introduce the tangent vector t = (a, b),
then the ODE is equivalent to Vi - t = 0 Point O’ lies on the
curve Y(z,u(x)) = cif (dx,dy) is collinear to t: At = (dx, dy),
and thus

_dz_ dy
a b
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Generalization to partial differential equations

Quasi-linear first-order partial differential equations are linear in

the differential terms. They can be put in the form:
P(ZL’, yv u)azlfu s Q(xa ya u)ayu — R(Za ya u)
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The implicit solution can be written as ¢(x, y, u(x, y)) = ¢ (with ¢ a constant).
) is a first integral of the vector field (P, ), R). We have:

O (x, Y, ulz, y)) =0 =ty + Yy,
Oy(z, y, u(z, y)) = 0=, + Yyu,.
We deduce that u, = —, /9, et u, = —1, /1y, and thus:
P, + QYy + R, = 0,

or in a vector form

(P,Q,R)- Vi =0.
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Geometrical interpretation: At point O, the normal to the solution surface is
normal to the vector field (P, ), R). If point O (x, y, v) and neighbour point O’
(x + dx, y+ dy, u+ du) belong to the solution surface, then the vector 00’

(dz, dy, du) is normal to V¥ : ¢, dz + 1, dy + 1,du = 0. This means that

(dx, dy, du) is collinear to the tangent t = (P, (), R). There exists a scalar A such
that

(dz, dy,du) = A\t = A(P, Q, R)

We then deduce the characteristic form.

Similarity and Transport Phenomena in Fluid Dynamics 3



Characteristic form of conservation equations =PrL

The characteristic equations is

da dy du

Pz, y,uv) Qz, y,u) Rz, y,u)

Each pair of equations defines a curve in the space (z, y, u). These curves define a

two-parameter family (there are 3 equations, so 3 invariants but only 2 are
independent): for example, if p is a first integral of the first pair of equations, an
integral surface of the first pair is given by an equation of the form p(x, vy, u) = a,
with a a constant. Similarly for the second pair: q(x, y, u) = b. The functional

relation F'(a, b) = 0 defines the integral curve.
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Exercise 1
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1. Solve equation
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R at time t; at time to

u(tg — tl)

-y - -

X

>

The simplest convection equation is the following one

8f|uﬁ—o
ot Oxr

| inear advection with no source term.
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Advection =Pr-L

The characteristic equation associated to this PDE is

de dt df

w 10
As 1 is assumed to be constant, this means that the solution of the
characteristic equation is x — ut = const and any function F'(x — ut)
whose argument is x — ut is a solution. A feature of this solution is that

the original form F'(z) (at t = 0) is conserved in the course of movement:

it is simply translated by wut.
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Advection: methods of characteristics =PrL

Let us consider the solution F'(x,t) to the linear advection equation

of 8]‘

| =
ot oz
and a continuous path X (¢). The time derivative of F' along X is
dF OF OFdX

- Xt t — |
dt( (£),1) ot Ox dt
If we select X such that X’ = u then
dF

This means that /' is constant along the path X. This shows the
equivalence

0 . d q

ﬁf 8£ O<:>d_{zoa|0ng$()SUChthat d_f:u
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Methods of characteristics: information propagation =P~

Initial value problem

Equivalence of a PDE and a system of ODEs

ﬁf of df da

Y u(f, x, ) —s(fa: )@E—sonazu

Information is propagated along the characteristic

curve. When s = 0 (homogenous equation), then the
characteristic curve are straight lines of slope u. For

linear advection, u = c¢st and all characteristic curves
are parallel. On each curve, the value of f is fixed by

the initial condition

f(x,t) = folxo) = folzx — ut)
See chap. 8...
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Diffusion = PrL

An example of one-dimensional diffusion equations is the heat equation

0T 0-T
— =«

Ot 0x?’

with a thermal diffusion, T'(x, t) temperature, x abscissa in the bar

direction. This is a second-order linear equation, which describes heat

diffusion along the bar.

Example: spread of a heat source. Conservation of thermal energy £

Imposes
> E
T'(x, t)de =V =—.
/OO (x7 ) L CS
with ¢ heat capacity
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Diffusion: Dimensional analysis and similarity solution E P :: L

There are n = 5 variables: T', x, t, «, and V; the other variables (F, c,
and S) are introduced through V.

The dimensional matrix is the following

T'et oo V
homogeneous to Kmsm?/sm- K
power decomposition :
power of m 010 2 1
power of s 001 -1 O
power of K 100 O 1
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Diffusion: Dimensional analysis and similarity solution E P :: L

This is a 3 X 5 matrix of rank 3 (the fourth column is obtained by linear
combination of columns 2 and 3, column 5 is the sum of columns 1 and 2). We can

therefore form £k = n — r = 2 dimensionless numbers. Let us pose
1, = 2o’V et I, = Ta t"V°.
To get [II;] = 0, we must have
m (m*/s)” 8" (mK)“] = 0.
This leads to the following system of equations
form : 0=2a+c+ 1,

fors : 0= —a+ 0,
for K : 0 =c,
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Diffusion: Dimensional analysis and similarity solution E P :: L

|

—35, and ¢ = 0. The first dimensionless group is

€T
1[{ = .
1 vV ot

The solution 1s a = —3 b =

To get |II] = 0, we must have
K (m?/s)” " (mK)] =0,
which leads to the following system of equations
form : 0=2d" + ¢
fors : 0= —a' +V,
for K : 0=¢ +1.
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Diffusion: Dimensional analysis and similarity solution E P :: L

The solution is a’ = % b = % and ¢ = —1. The second dimensionless group is
1T'\/ ot
I, = .
|4

Dimensional analysis leads us to pose the solution in the form II, = F(II;). We
substitute 7’ into the PDE, with T’ defined by

%
with € = /v at. We get
o 1V v
or VvV _, 32T_ Voo,
%ZEF (g) and 512 — (t()é)g/QF <§>7
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Diffusion: Dimensional analysis and similarity solution E P :: L

This leads us to write the heat equation in the form of a second-order ordinary

differential equation

1 1
__F L _SF/ _ F//,
2 2
which is easy to integrate |
§€F - F/ — Ay,

with agp a constant of integration. If propagation occurs in both directions, then the
solution is even (heat spreads equally in both directions), and for £ =0, F' =0

(horizontal tangent), so ag = 0.
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Diffusion: Dimensional analysis and similarity solution E P :: L

We get

F’ 1 1
F — —55 —> F — a1 €XP (—Zgz)

with a; a constant of integration. Using the conservation of heat and since

[ Fd¢ =1, we deduce a; = 1/(2/7).

The solution reads

V ( 1x2)
1" = exp .
2\/Tat 4ot
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Diffusion: Dimensional analysis and similarity solution E P :: L

0.8
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EXercise 2

Ot Ox?’

with D the diffusion coefficient (which is constant).
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Exercise 2 (continued)

It is subject to the following initial and boundary conditions
flz, 0) =0,
f(0, t) =a fort > 0,
f(x, t) =0forx — oo and t > 0,

with @ a constant.

Solve it using the Laplace transform in ¢

AN

P, s) = / e e, 1)t

Similarity and Transport Phenomena in Fluid Dynamics 24



Advection-diffusion equation =Pr-L

Convection-diffusion is a combination of two phenomena. The linear case is

A _or | 0f 0

& ot or oz

where D and u are assumed constant. This equation can be reduced to a linear

diffusion problem by making the following change of variable
( =x — ut,

T = 1.
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Advection-diffusion equation =Pr-L

We get
9 9-0¢  0-0r
Ox  9COx  OT0x’
_ 0
=5
9. 9-0¢  0-0r
ot 9Cot  Orot’
B u@. | @.
9C Or
and so
Of O~ f

7 pl L
ot 0(?’
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Advection-diffusion equation: Burger's equation =PrL

A special case of convection-diffusion is Burger's equation

0“ | @— D@
ot | or o2

which can also be transtformed into a diffusion equation using the Cole-Hopft

transformation:

2D ¢
¢ Oz’

u =

with ¢(x, t) an auxiliary function.
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Advection-diffusion equation: Burger's equation =PrL

We have

Ou  2D0% 2D (0¢\°
or ¢ dx? ¢ (a_x> ’
Ou 2D 0%¢  2D0¢I¢
ot b Ordt | P2 ox ot
0w 2D%¢ 4D (06\’ 6DI’¢pd¢
or2 ¢ 0z ¢ (_) @2 02201

Ox
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Advection-diffusion equation: Burger's equation =PrL

After simplification, we obtain

sJoYelo 0° ¢ | O°p 0PI
R (%ﬁ Oz 01
which can be transformed—by dividing it by ¢*, then integrating with respect to z,

= 0,

and ultimately by multiplying it again by ¢—into a linear diffusion equation

0 B 6%
a5t = Pag
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Wave eguation =PrL

Dynamic waves are solutions to a differential equation such as:

"¢ _ 0%

Ot? 012

with ¢ the (phase) velocity. This form is not exhaustive. For example, the equation

of gravity waves reads

¢ 0
ot? g@y’
with here ¢ the velocity potential (u(z, y, t) = V¢) and g gravity acceleration.
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Wave eguation =PrL

rest
\amp itude A /\
|

wavelength X

C

trough

Shape: A is the amplitude, k wave number (A = 2 /k wavelength), w
angular frequency; we also introduce a frequency f defined as
f = w/(27): the number of complete oscillations during a second at a

given position. The period is defined as T = \/c.
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Wave equation =P =

Solutions are sought in the form of harmonics (periodic wave)
¢(t) = Aexpli(kxr — wt)] = Re(A) cos(kx — wt) — Im(A) sin(kz — wt),
The wave velocity is
c=wl/k.
The dispersion relation w(k) is here linear (w(k) = ck), i.e. the wave

crests move at a constant speed regardless of the wavelength. The phase

velocity ¢,
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Wave eguation =PrL

Note: In a physical process where waves result from the superposition of
many harmonic waves of different wavelength, each harmonic component
moves at its own speed, which ultimately leads to a separation or

dispersion of the wave, hence the name dispersion relation for w(k).

There is a third velocity, called group velocity, which represents the speed

at which the energy associated with the wave propagates:

dk

for linear waves. In general for most physical processes, we have ¢, < ¢,,.
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Wave eguation =PrL

There are two directions of propagation:
o forward wave f = f(x — ct): the wave goes in the x > 0 direction;

e backward wave f = f(x + ct): the wave goes in the z < 0 direction.

The general solution to the wave equation reads
f=alx—ct)+blx+ct),

with a and b two functions. This is the d'Alembert solution.
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Exercise 3 =Pr-L

3. Calculate the phase velocity and group velocity of the following
equation:

Ut + Uy T Upypy = 0.
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Classification of second-order partial differential equatiofs -~ |_

The only general classification of partial differential equations concerns linear

equations of second order. These equations are of the following form
Ay + 20Uy, + CUy,, + du, + euy, + fu =g,

where a, b, ¢, d, e, f, and g are real-valued functions x and y. When g = 0, the
equation is said to be homogeneous. Linear equations are classified depending on

the sign of A = b* — ac > 0.
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Classification of second-order partial differential equatiofs -~ |_

If A =0>—ac > 0, the PDE is hyperbolic. The wave equation is an example. In

fluid mechanics, transport equations are often hyperbolic. The canonical form is
Ugy — Wyy + - -+ = 0 or, equivalently, u,, +--- =0,

where dots represent terms related to w or its first-order derivatives;

If A =0b°— ac < 0, the PDE is elliptic. The Laplace equation is an example.
Equations describing equilibrium of a process are often elliptic. The canonical form
IS

gy + Uy + - =0
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Classification of second-order partial differential equatiofs -~ |_

If A =b°— ac =0, the PDE is parabolic. The heat equation is an example.

Diffusion equations are often parabolic. The canonical form is

Uyy + - = 0.

Link between the classification and conics: If we substitute u.,., with 2, .,
with x, u,, with y*, u, with y, and u,, with zy into the PDE, we obtain the

general equation of a conic, which depending on the sign A = b* — ac gives a
parabola (A = 0), an ellipse (A < 0), or a hyperbola (A > 0).
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Classification of second-order partial differential equatiofs -~ |_

’ The differential terms are linked and vary
_ according to the constraints intrinsic to each
2+ type of curve. For example, for hyperbolic
_ - equations, there are two branches and part of
‘ ; the x — y plane is not crossed by the curve,
° \ which allows for discontinuous jumps from one
- branch to another: a hyperbolic equation is
_2 able to generate solutions that become
_ discontinuous, i.e. undergo a shock even it
: initially they were continuous.
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Boundaries =Pr-L

In mechanics, we solve equations with space and time variables. In general, in order

to work out a particular solution u to a partial differential equation, we need

e boundary conditions that specify how u varies along the domain boundaries at any
time;

e the initial conditions that specify how varies u at the initial instant for any point in

the domain.

We must solve what is called a boundary-value problem with initial conditions or,
said differently, initial boundary-value problem. In some cases, we do not need as
much information. For example, for certain hyperbolic equations, one needs only
the initial conditions, whereas elliptic problems require only boundary conditions

(they generally reflect stationary processes).
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Boundaries =Pr-L

We distinguish:
e Dirichlet boundary conditions: the boundary condition specifies the value u that

the function takes at a point or a curve
u(x ; t) = uy(t)
along a curve I
e Neuman boundary conditions: the boundary conditions specify the derivative that

the function takes at a point or a series of points. Physically, this retlects a flux

condition across the domain boundary:

ou
@_n(n 1) = o(t)

along a curve I', with i the normal to I" and ¢ (%) a flux function.
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Exercise 4

ou ou

t
0x ot
with u(x, 0) = f(zx) for x > 0. What type is this equation? Solve it after

determining the associate characteristic equation.
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Exercises 5 and 6 =PrL

5. The Euler-Darboux equation reads

au, — bu
Ugeyy - Y — (.
r—1Y
Characterise this equation.
6. The Helmholtz equation reads
Vu + k*u = 0.

Characterise this equation.
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EXercises /7

rainfall of intensity I

sloping bed «

/. Let us consider the kinematic wave approximation for a water flow induced by

rainfall of intensity I over a sloping bed (starting from z)

8h| ohu
ot Ox

where h is the water flow depth and u = ah" the mean flow velocity (a and n two

= 1.

parameters). Initially the soil is dry, and there is no inflow: A(xg,t) = 0. Use the

method of characteristics and solve the equation.

Similarity and Transport Phenomena in Fluid Dynamics 44



Exercises 8 and 9 =PrL

8. The Klein-Gordon equation is a variant of the Schrodinger equation, which

described how an elementary particle behaves. It reads
o‘u 0
o2 | o
Characterise this equation. Seek periodic solutions in the form

u(x, t) = a(k)exp(rtkx + A(k)t) with a the amplitude of the wave and where \

and k£ are the modes. Determine the mode \? |Is the solution stable?

9. Find and sketch the regions in the (z, y)-plane where the equation

(1 4+ 2)0ps + 20y @y, + y2¢yy =0
is elliptic, parabolic, and hyperbolic.
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