
Chapter 2: Transport phenomena in fluid dynamics

Similarity and Transport Phenomena in Fluid Dynamics

Christophe Ancey



Chapter 2: Transport phenomena in fluid dynamics

•Transport phenomena
•Advection

•Diffusion

•Wave

•Boundaries

•Classification of PDEs

my header

Similarity and Transport Phenomena in Fluid Dynamics 2
o



A short detour: conservation equations

n

S

V

Equations of conservation describe how the spatial and temporal variations of a

function f are related. Let us consider a control volume V (and its bounding

surface S), then ∫
V

∂f

∂t
dV +

∫
S

fu · ndS = Φ

n normal oriented, n local velocity of the control surface, Φ rate of variation of f

(if φ = 0, then f is conserved).
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A short detour: conservation equations

When f is continuous over V , then the Green-Ostrogradski theorem tell us that∫
S

fu · ndS =

∫
V

∇ · (fu)dV

If this holds true for any volume V , then we can derive the local form of

conservation
∂f

∂t
+∇ · (fu) = φ

where φ is such that Φ =
∫
V φdV .
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Characteristic form of conservation equations

A reminder of a simple

geometrical interpretation

of the derivative.

The ODE

a(x, u)
du

dx
= b(x, u),

has an implicit solution ψ(x, u(x)) = c. Taking the x derivative

of this equation gives us
dψ

dx
=
∂ψ

∂x
+

du

dx

∂ψ

∂u
= 0⇒ u′ = −ψx

ψu
In other words, if we introduce the tangent vector t = (a, b),

then the ODE is equivalent to ∇ψ · t = 0 Point O′ lies on the

curve ψ(x, u(x)) = c if (dx, dy) is collinear to t: λt = (dx, dy),

and thus

λ =
dx

a
=

dy

b
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Characteristic form of conservation equations

Generalization to partial differential equations

Quasi-linear first-order partial differential equations are linear in

the differential terms. They can be put in the form:

P (x, y, u)∂xu + Q(x, y, u)∂yu = R(x, y, u).
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Characteristic form of conservation equations

The implicit solution can be written as ψ(x, y, u(x, y)) = c (with c a constant).

ψ is a first integral of the vector field (P, Q, R). We have:

∂xψ(x, y, u(x, y)) = 0 = ψx + ψuux,

∂yψ(x, y, u(x, y)) = 0 = ψy + ψuuy.

We deduce that ux = −ψx/ψu et uy = −ψy/ψu, and thus:

Pψx + Qψy + Rψu = 0,

or in a vector form

(P,Q,R) · ∇ψ = 0.
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Characteristic form of conservation equations

Geometrical interpretation: At point O, the normal to the solution surface is

normal to the vector field (P, Q, R). If point O (x, y, u) and neighbour point O’

(x + dx, y + dy, u + du) belong to the solution surface, then the vector 00′

(dx, dy, du) is normal to ∇ψ : ψxdx + ψydy + ψudu = 0. This means that

(dx, dy, du) is collinear to the tangent t = (P,Q,R). There exists a scalar λ such

that

(dx, dy, du) = λt = λ(P,Q,R)

We then deduce the characteristic form.
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Characteristic form of conservation equations

The characteristic equations is
dx

P (x, y, u)
=

dy

Q(x, y, u)
=

du

R(x, y, u)

Each pair of equations defines a curve in the space (x, y, u). These curves define a

two-parameter family (there are 3 equations, so 3 invariants but only 2 are

independent): for example, if p is a first integral of the first pair of equations, an

integral surface of the first pair is given by an equation of the form p(x, y, u) = a,

with a a constant. Similarly for the second pair: q(x, y, u) = b. The functional

relation F (a, b) = 0 defines the integral curve.
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Exercise 1

1. Solve equation

x
∂u

∂x
− y∂u

∂y
= u2.
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Advection

x

f

at time t1 at time t2

u(t2 − t1)

The simplest convection equation is the following one
∂f

∂t
+ u

∂f

∂x
= 0,

Linear advection with no source term.
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Advection

The characteristic equation associated to this PDE is
dx

u
=

dt

1
=

df

0
.

As u is assumed to be constant, this means that the solution of the

characteristic equation is x− ut = const and any function F (x− ut)
whose argument is x− ut is a solution. A feature of this solution is that

the original form F (x) (at t = 0) is conserved in the course of movement:

it is simply translated by ut.
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Advection: methods of characteristics

Let us consider the solution F (x, t) to the linear advection equation
∂f

∂t
+ u

∂f

∂x
= 0

and a continuous path X(t). The time derivative of F along X is
dF

dt
(X(t), t) =

∂F

∂t
+
∂F

∂x

dX

dt
If we select X such that X ′ = u then

dF

dt
(X(t), t) = 0

This means that F is constant along the path X . This shows the

equivalence
∂f

∂t
+ u

∂f

∂x
= 0⇔ df

dt
= 0 along x(t) such that

dx

dt
= u
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Methods of characteristics: information propagation

Initial value problem Equivalence of a PDE and a system of ODEs
∂f

∂t
+ u(f, x, t)

∂f

∂x
= s(f, x, t)⇔ df

dt
= s on

dx

dt
= u

Information is propagated along the characteristic

curve. When s = 0 (homogenous equation), then the

characteristic curve are straight lines of slope u. For

linear advection, u = cst and all characteristic curves

are parallel. On each curve, the value of f is fixed by

the initial condition

f (x, t) = f0(x0) = f0(x− ut)
See chap. 8...
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Diffusion

An example of one-dimensional diffusion equations is the heat equation

∂T

∂t
= α

∂2T

∂x2
,

with α thermal diffusion, T (x, t) temperature, x abscissa in the bar

direction. This is a second-order linear equation, which describes heat

diffusion along the bar.

Example: spread of a heat source. Conservation of thermal energy E

imposes ∫ ∞
−∞

T (x, t)dx = V =
E

cS
.

with c heat capacity
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Diffusion: Dimensional analysis and similarity solution

There are n = 5 variables: T , x, t, α, and V ; the other variables (E, c,

and S) are introduced through V .

The dimensional matrix is the following

T x t α V

homogeneous to K m s m2/s m· K

power decomposition :

power of m 0 1 0 2 1

power of s 0 0 1 −1 0

power of K 1 0 0 0 1
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Diffusion: Dimensional analysis and similarity solution

This is a 3× 5 matrix of rank 3 (the fourth column is obtained by linear

combination of columns 2 and 3, column 5 is the sum of columns 1 and 2). We can

therefore form k = n− r = 2 dimensionless numbers. Let us pose

Π1 = xαatbV c et Π2 = Tαa
′
tb
′
V c′.

To get [Π1] = 0, we must have

[m (m2/s)a sb (mK)c] = 0.

This leads to the following system of equations

for m : 0 = 2a + c + 1,

for s : 0 = −a + b,

for K : 0 = c,
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Diffusion: Dimensional analysis and similarity solution

The solution is a = −1
2, b = −1

2, and c = 0. The first dimensionless group is

Π1 =
x√
αt
.

To get [Π2] = 0, we must have

[K (m2/s)a
′
sb
′
(mK)c

′
] = 0,

which leads to the following system of equations

for m : 0 = 2a′ + c′,

for s : 0 = −a′ + b′,

for K : 0 = c′ + 1.
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Diffusion: Dimensional analysis and similarity solution

The solution is a′ = 1
2, b′ = 1

2, and c′ = −1. The second dimensionless group is

Π2 =
T
√
αt

V
.

Dimensional analysis leads us to pose the solution in the form Π2 = F (Π1). We

substitute T into the PDE, with T defined by

T =
V√
αt
F (ξ),

with ξ = x/
√
αt. We get

∂T

∂t
= −1

2

V

t3/2
√
α
F (ξ)− 1

2
ξ

V

t3/2
√
α
F ′(ξ)

∂T

∂x
=
V

tα
F ′(ξ) and

∂2T

∂x2
=

V

(tα)3/2
F ′′(ξ),
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Diffusion: Dimensional analysis and similarity solution

This leads us to write the heat equation in the form of a second-order ordinary

differential equation

−1

2
F − 1

2
ξF ′ = F ′′,

which is easy to integrate
1

2
ξF + F ′ = a0,

with a0 a constant of integration. If propagation occurs in both directions, then the

solution is even (heat spreads equally in both directions), and for ξ = 0, F ′ = 0

(horizontal tangent), so a0 = 0.
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Diffusion: Dimensional analysis and similarity solution

We get
F ′

F
= −1

2
ξ ⇒ F = a1 exp

(
−1

4
ξ2

)
with a1 a constant of integration. Using the conservation of heat and since∫
Fdξ = 1, we deduce a1 = 1/(2

√
π).

The solution reads

T =
V

2
√
παt

exp

(
−1

4

x2

αt

)
.
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Diffusion: Dimensional analysis and similarity solution
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Exercise 2

2. Consider the diffusion equation:

∂f

∂t
= D

∂2f

∂x2
,

with D the diffusion coefficient (which is constant).
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Exercise 2 (continued)

It is subject to the following initial and boundary conditions

f (x, 0) = 0,

f (0, t) = a for t > 0,

f (x, t) = 0 for x→∞ and t > 0,

with a a constant.

Solve it using the Laplace transform in t

f̂ (x, s) =

∫ ∞
0

e−stf (x, t)dt.
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Advection-diffusion equation

Convection-diffusion is a combination of two phenomena. The linear case is

df

dt
=
∂f

∂t
+ u

∂f

∂x
= D

∂2f

∂x2
,

where D and u are assumed constant. This equation can be reduced to a linear

diffusion problem by making the following change of variable

ζ = x− ut,
τ = t.
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Advection-diffusion equation

We get
∂·
∂x

=
∂·
∂ζ

∂ζ

∂x
+
∂·
∂τ

∂τ

∂x
,

=
∂·
∂ζ
,

∂·
∂t

=
∂·
∂ζ

∂ζ

∂t
+
∂·
∂τ

∂τ

∂t
,

= −u∂·
∂ζ

+
∂·
∂τ
.

and so
∂f

∂τ
= D

∂2f

∂ζ2
,

my header

Similarity and Transport Phenomena in Fluid Dynamics 26
o



Advection-diffusion equation: Burger’s equation

A special case of convection-diffusion is Burger’s equation

∂u

∂t
+ u

∂u

∂x
= D

∂2u

∂x2
,

which can also be transformed into a diffusion equation using the Cole-Hopf

transformation:

u = −2D

φ

∂φ

∂x
,

with φ(x, t) an auxiliary function.
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Advection-diffusion equation: Burger’s equation

We have
∂u

∂x
= −2D

φ

∂2φ

∂x2
+

2D

φ2

(
∂φ

∂x

)2

,

∂u

∂t
= −2D

φ

∂2φ

∂x∂t
+

2D

φ2

∂φ

∂x

∂φ

∂t
,

∂2u

∂x2
= −2D

φ

∂3φ

∂x3
− 4D

φ3

(
∂φ

∂x

)3

+
6D

φ2

∂2φ

∂x2

∂φ

∂x
.
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Advection-diffusion equation: Burger’s equation

After simplification, we obtain

∂φ

∂t

∂φ

∂x
− φ ∂

2φ

∂x∂t
+ 2D

(
φ
∂3φ

∂x3
− ∂φ
∂x

∂2φ

∂x2

)
= 0,

which can be transformed—by dividing it by φ2, then integrating with respect to x,

and ultimately by multiplying it again by φ—into a linear diffusion equation

∂φ

∂t
= D

∂2φ

∂x2
.
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Wave equation

Dynamic waves are solutions to a differential equation such as:

∂2φ

∂t2
= c2∂

2φ

∂x2
,

with c the (phase) velocity. This form is not exhaustive. For example, the equation

of gravity waves reads
∂2φ

∂t2
= −g∂φ

∂y
,

with here φ the velocity potential (u(x, y, t) = ∇φ) and g gravity acceleration.
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Wave equation

wavelength λ

amplitude A

crest

trough

Shape: A is the amplitude, k wave number (λ = 2π/k wavelength), ω

angular frequency; we also introduce a frequency f defined as

f = ω/(2π): the number of complete oscillations during a second at a

given position. The period is defined as T = λ/c.
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Wave equation

Solutions are sought in the form of harmonics (periodic wave)

φ(t) = A exp[ı(kx− ωt)] = Re(A) cos(kx− ωt)− Im(A) sin(kx− ωt),
The wave velocity is

c = ω/k.

The dispersion relation ω(k) is here linear (ω(k) = ck), i.e. the wave

crests move at a constant speed regardless of the wavelength. The phase

velocity cp

cp =
ω(k)

k
= c.
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Wave equation

Note: In a physical process where waves result from the superposition of

many harmonic waves of different wavelength, each harmonic component

moves at its own speed, which ultimately leads to a separation or

dispersion of the wave, hence the name dispersion relation for ω(k).

There is a third velocity, called group velocity, which represents the speed

at which the energy associated with the wave propagates:

cg =
dω

dk
= c

for linear waves. In general for most physical processes, we have cg ≤ cp.
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Wave equation

There are two directions of propagation:

• forward wave f = f (x− ct): the wave goes in the x > 0 direction;

•backward wave f = f (x + ct): the wave goes in the x < 0 direction.

The general solution to the wave equation reads

f = a(x− ct) + b(x + ct),

with a and b two functions. This is the d’Alembert solution.
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Exercise 3

3. Calculate the phase velocity and group velocity of the following

equation:

ut + ux + uxxx = 0.
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Classification of second-order partial differential equations

The only general classification of partial differential equations concerns linear

equations of second order. These equations are of the following form

auxx + 2buxy + cuyy + dux + euy + fu = g,

where a, b, c, d, e, f , and g are real-valued functions x and y. When g = 0, the

equation is said to be homogeneous. Linear equations are classified depending on

the sign of ∆ = b2 − ac > 0.
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Classification of second-order partial differential equations

If ∆ = b2 − ac > 0, the PDE is hyperbolic. The wave equation is an example. In

fluid mechanics, transport equations are often hyperbolic. The canonical form is

uxx − uyy + · · · = 0 or, equivalently, uxy + · · · = 0,

where dots represent terms related to u or its first-order derivatives;

If ∆ = b2 − ac < 0, the PDE is elliptic. The Laplace equation is an example.

Equations describing equilibrium of a process are often elliptic. The canonical form

is

uxx + uyy + · · · = 0
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Classification of second-order partial differential equations

If ∆ = b2 − ac = 0, the PDE is parabolic. The heat equation is an example.

Diffusion equations are often parabolic. The canonical form is

uyy + · · · = 0.

Link between the classification and conics: If we substitute uxx with x2, ux

with x, uyy with y2, uy with y, and uxy with xy into the PDE, we obtain the

general equation of a conic, which depending on the sign ∆ = b2 − ac gives a

parabola (∆ = 0), an ellipse (∆ < 0), or a hyperbola (∆ > 0).
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Classification of second-order partial differential equations

�4 �2 0 2 4
�4

�2

0

2

4
The differential terms are linked and vary

according to the constraints intrinsic to each

type of curve. For example, for hyperbolic

equations, there are two branches and part of

the x− y plane is not crossed by the curve,

which allows for discontinuous jumps from one

branch to another: a hyperbolic equation is

able to generate solutions that become

discontinuous, i.e. undergo a shock even if

initially they were continuous.
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Boundaries

In mechanics, we solve equations with space and time variables. In general, in order

to work out a particular solution u to a partial differential equation, we need

•boundary conditions that specify how u varies along the domain boundaries at any

time;

• the initial conditions that specify how varies u at the initial instant for any point in

the domain.

We must solve what is called a boundary-value problem with initial conditions or,

said differently, initial boundary-value problem. In some cases, we do not need as

much information. For example, for certain hyperbolic equations, one needs only

the initial conditions, whereas elliptic problems require only boundary conditions

(they generally reflect stationary processes).
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Boundaries

We distinguish:

•Dirichlet boundary conditions: the boundary condition specifies the value u0 that

the function takes at a point or a curve

u(x ; t) = u0(t)

along a curve Γ.

•Neuman boundary conditions: the boundary conditions specify the derivative that

the function takes at a point or a series of points. Physically, this reflects a flux

condition across the domain boundary:
∂u

∂n
(n ; t) = φ(t)

along a curve Γ, with n the normal to Γ and φ(t) a flux function.
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Exercise 4

4. Consider the following initial-value problem

t
∂u

∂x
− x∂u

∂t
= 0,

with u(x, 0) = f (x) for x > 0. What type is this equation? Solve it after

determining the associate characteristic equation.
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Exercises 5 and 6

5. The Euler-Darboux equation reads

uxy +
aux − buy
x− y = 0.

Characterise this equation.

6. The Helmholtz equation reads

∇2u + k2u = 0.

Characterise this equation.
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Exercises 7

7. Let us consider the kinematic wave approximation for a water flow induced by

rainfall of intensity I over a sloping bed (starting from x0)
∂h

∂t
+
∂hu

∂x
= I.

where h is the water flow depth and u = ahn the mean flow velocity (a and n two

parameters). Initially the soil is dry, and there is no inflow: h(x0, t) = 0. Use the

method of characteristics and solve the equation.
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Exercises 8 and 9

8. The Klein-Gordon equation is a variant of the Schrödinger equation, which

described how an elementary particle behaves. It reads

∂2u

∂t2
− γ2∂

2u

∂x2
+ c2u = 0.

Characterise this equation. Seek periodic solutions in the form

u(x, t) = a(k) exp(ıkx + λ(k)t) with a the amplitude of the wave and where λ

and k are the modes. Determine the mode λ? Is the solution stable?

9. Find and sketch the regions in the (x, y)-plane where the equation

(1 + x)φxx + 2xyφxy + y2φyy = 0

is elliptic, parabolic, and hyperbolic.
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