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Foreword

This tutorial is primarily based on the material written by Randall LeVeque and his collaborators

References

Hyperbolic equation theory is described in a few books, including:

« Numerical Methods for Conservation Laws (LeVeque, 1992)
« Finite Volume Methods for Hyperbolic Problems (LeVeque, 2002)

+ Riemann Problems and Jupyter Solutions (Ketcheson et al., 2020)

Online material

Clawpack can be downloaded from its official website www.clawpack.org. It can also be downloaded
from github: github.com/clawpack.

The new book based on jupyter notebooks by David Ketcheson et al. offers a convenient way
of learning clawpack and the theoretical fundamentals through a series of examples. Many of these
examples will be used here. The html version of this book is available online.

Jupyter notebook viewers: cocalc.com and nbviewer.jupyter.org.

Additional ressources

« Shaltop

» Basilisk
« Iber

« Basement

+ OpenFoam

Notation

The notation used in this tutorial differs from that used by Randall LeVeque. I use the classic tensorial
notation: vectors and tensors are denoted by boldface symbols. I also use the operator - to refer to the

vii
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contracted product (“produit une fois contracté” in French) and : for the double-contracted product: for
tensors A and B whose matrix representation is A;; (¢ row, j column index) and B;;, respectively, v
and w two vectors of coordinates v; and wj; in a given basis, then

A B = ZAiijk
J

A:B = ZA”Bﬂ
1]

Av = ZAijUj
J

w-v = E W;V;
%



Let us start with linear hyperbolic systems. Nonlinear equations are more complex, but the solutions
to the Riemann problem have a similar structure to that exhibited by linear systems. Furthermore,
finite-volume numerical solvers involve approximate (linearised) solutions to this Riemann problem.

1.1 Riemann problems for linear hyperbolic equations

1.1.1 Linear system

For one-dimensional problems, a linear hyperbolic equation is defined by an equation of the form

0 0

where q is a vector with m components representing the unknowns, A is a m x m matrix whose
eigenvalues are assumed to be real and distinct, and S is a vector (of dimension m) called the source
term, x is the spatial dimension, and ¢ is time. For the moment, we assume that S = 0 (the equation is
said to be homogenous). The matrix A has m real eigenvalues \;, which are associated with m left v;
and m right eigenvectors w;:

A -w; = \w;andv; - A = \;v;. (1.2)

In the following, the eigenvalues are ranked in ascending order: A} < Ag--- < App,.

1.1.2 Diagonalization
If we multiply Eq. (1.1) by v;, we obtain:

0 0
vi~aq+vi'A-%q—vi-S. (1.3)

We introduce characteristic variable or Riemann variable (also called Riemann invariant when S = 0):
r; = v; - q and the vector r = (11, -+ ,7y), (1.4)

and the diagonal matrix A = diag(\1, - - - A, ). With this notation, we transform Eq. (1.3) into a system
of m uncoupled equations:

0 0

1
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where L is a matrix whose rows are made of the left eigenvectors: L = [v1,- -+, v,,]7.

Similarly to L, we define R is a matrix whose columns are made of the right eigenvectors: R =

[wi, -, wy]. The following relationships hold true
A-R = R-A, (1.6)
L-A = A-L. (1.7)

We also have:

A = R-A-R, (1.8)
A = L' AL (1.9)

Because when taking the transpose of v; - A = \;v; we have

(v; - A)T = AT .o = \oT (1.10)

79
the left eigenvectors v; of A is also the right eigenvector of AT

Multiplying Eq. (1.6) by L and Eq. (1.7) by R, we get
L-A-R=L-R-A=A-L-R. (1.11)

When two matrice M and D (where D is diagonal) satisfy D - M = M - D, then M is diagonal. This
means here that M = L - R is diagonal. There is no unique choice as any multiple of an eigenvector
is also an eigenvector. We can define the right eigenvectors such that:

R=L"' (1.12)

A geometrical interpretation of R and L is the following: aswe R-L = L™'- L = 1 (where 1 denotes
the identity matrix), then the left and right eigenvectors are orthogonal two by two: v; - w; # 0 and
v; - wi = 0 for k # 4.

In practice, we determine the right eigenvectors w;. The left eigenvectors are the right eigenvec-
tors of the transpose of A. The resulting matrices R and L satisfy: R - LT = diag(wy, - vi)1<k<i-
Furthermore, by normalizing the right eigenvectors (w; = w;/|w;|), we can enforce L = R L a
relationship that turns out to be helpful thereafter.

Example Let us consider the 3 x 3 matrix

1 2 3
A=\ 4 5 6
2 8 2

The eigenvalues are Ay = —3, Ay = —1, A3 = 12 associated with the right eigenvectors
-1 -3 11
w1 = —1 , Wy = 0 , W3 = 26 N
2 2 23

and the left eigenvectors

e

=

I

|
@\I»Jk

<

N

|

|
l—leﬂ

<

w

|
W = N
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1.1.3 Characteristic form and solution to the Cauchy problem for ho-
mogenous equations

Each uncoupled equation of the system (1.3) can be put into a characteristic form

or; or; dr; dz
5 + A i S & =Y S along the straight line m A (1.13)

For a homogenous problem, this means that r; is constant along the line z = \;t + x. If we know the

initial value g, = g(x,t = 0), then we know the initial condition for r: 7o = r(z,t = 0) = L - q,.
For a homogenous equation, the solution to Eq. (1.13) is

Ti(:L', t) = 7’1‘70(.% — )\it), (1.14)

and thus the solution to the initial-value (Cauchy) problem is

qz,t) = R-r=> riz,thw;, (1.15)
=1
= Z roi(x — Nit)w, (1.16)
=1
= Y (vi-qo (z — \it)w;. (1.17)
i=1

The solution g is a combination of the right eigenvectors. In other words, the initial conditions prop-
agate along the directions w;. This propagation is a consequence of the travelling-wave structure.
Indeed, the linear hyperbolic system (1.1) is invariant to the travelling wave group. If we seek a solu-
tion in the form s(x,t) = s(£) where £ = x — at and a is the wave velocity, then Eq. (1.1) leads to:

d d
—a—= A-—s=0. 1.18
ay 58 + i 63 (1.18)
This shows that s’ is an eigenvector and a must be one of the eigenvalues, say \;. Substituting the
Cauchy solution Eq. (1.15) into Eq. (1.18) shows that this condition is met. For strictly hyperbolic
systems (i.e., when all eigenvalues are real and different), the right eigenvectors form a basis, and the
decomposition (1.15) is unique.

The solution to the Cauchy problem is the superposition of m waves, each is advected independently
at the velocity A; along the direction w;, with no change in shape when the system is homogenous.

1.1.4 Simple wave

When the initial conditions are constant for all but one value k

rio(x) =r;fori # kand rio(x) = rio(x — Agt), (1.19)
then the solution
q(x,t) = qo(x — Mt) = rpo( — Mt)wy, + > ryw; (1.20)
ik

is called a simple wave. Propagation concerns the direction % alone.
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1.1.5 Riemann problem: definition
A Riemann problem is an initial-value problem for which the initial value is piecewise constant with a

single jump discontinuity at some point, by default at = 0:
1= { g, ifz > 0.

Because the right eigenvectors form a basis, we can decompose g; and g,. in this basis
(1.22)

m m
q =) riwiandq, =Y rpw;
i=1 i=1
(1.23)

and each Riemann variable satisfies the initial condition
Til if x <0,

ri0 = .
ririf £ > 0.

(1.24)

Each initial discontinuity propagates with speed \;:
Tl if v < A\t

i { Tir if x > A\;t.

Let us consider a point P at (z,t). We refer to I as the maximum index i for which z > A;t. As
(1.25)

illustrated by the example of Fig. 1.1, we can decompose the solution into two parts, either reflecting

the left or right initial conditions

1=1+1

I m
q= E TirW; + E T W;.
i=1

t

L:)\lf

Figure 1.1 Characteristic lines emanating from the origin point (solid lines) and joining P (dashed
lines). In this figure, we have I = 1: P is on the right of the first characteristic curve x = A1¢, and on

the left of the two others. Here we have g = ry ;w1 + ro w2 + r3 ;ws3.

When crossing the ith characteristic, there is a jump from 7;; to r;, while the other coefficients
remain constant. As illustrated in Fig. 1.1, the plane is split into different wedges separated by charac-
teristic lines oriented by w;. Across the ith characteristic, the solution g experiences a jump:

(1.26)

Aq = (T‘i,r - Ti,l)wiy



1.1  Riemann problems for linear hyperbolic equations 5

which can be written as

Aq = ayw; with o; = Tig — Til- (1.27)

For linear hyperbolic systems, a strategy of solving the Riemann problem is to decompose the initial
jump Agq, — g; in the right eigenvector basis

Agq = i Qw;, (1.28)
i=1
which requires determining the coefficient o
R-a=Aq=a=R ' Aq=L-Aq. (1.29)
As this decomposition is central to Clawpack, we introduce the wave

W, = aw;. (1.30)

The solution to the Riemann problem can thus be written

Ag = Zaiwi, (1.31)
=1

I

a = q+y W, (1.32)
=1

qa = q- Y W, (1.33)
i=I+1

q = ql+ZH(x_)\it)Wi7 (1.34)
=1

where H is the Heaviside function. Equation (1.32) can also be written

a=q+ Y Wi (1.35)
/\i<x/t

which can be interpreted as follows (see an example in Fig. 1.1): at time ¢ and position z, the state q is
the left initial state to which contributions from the right initial state are added if this point is on the
right of the characteristic x = A;t (that is, when > A;t).

1.1.6 Phase plane representation for m = 2 equations

For a linear system of two hyperbolic equations, the solution consists of two discontinuities x = A;¢ and
x = Aot, and within the wedge formed by these two discontinuities there is an intermediate (constant)
state

q, = T1,rW1 + Ty wa. (1.36)
The jump from gq; to q, is (71, — r1;)wi, while the jump from g, to g, is (r2, — 72;)ws. In other

words, starting from the left state q;, we follow the direction w; to reach the intermediate state g, and
finally the direction wy to reach the right state g,., shown by Fig. 1.2.
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qx

dr

1':)\2t

(a) v SO

Figure 1.2 (a) Solution to the Riemann problem in the x — ¢ plane. (b) Phase plane representation.

1.2 Nonlinear scalar problem

Let us consider the nonlinear hyperbolic equation (nonlinear advection equation):

0

B 0 G,
54t /(@) =sla, 2 1) & zra+cla)5-a = S(q, 2, 1), (137)

where f is the flux function (a function of g, and possibly of x and t), ¢ is the unknown, S is the source
term, and ¢ = f’(q) is the celerity. We assume that the celerity is an increasing function of ¢, which
implies that the flux function is convex (f” > 0). Nonconvex functions are possible, but they lead to
difficulties that we will not address here.

1.2.1 Characteristic form

Equation (1.37) can be put in the characteristic form

d dx

—q = t) al —_— = . 1.38
3¢ = 8(¢, @, t) along + — = ¢(q) (1.38)
When the source term is zero (S = 0), then ¢ is constant along the characteristic curve, which is
therefore a straight line of slope c.

1.2.2 Rankine-Hugoniot equation

As the celerity ¢(q) is function of ¢, the characteristic curves are not parallel like in the linear case, and
may intersect. As multivalued functions are not possible (this would otherwise break the assumptions
of smoothness and uniqueness of the solution), then a shock takes place and connects two continuous
branches of the solution. By taking a control volume around the shock position x = s(t), we can
deduce that its velocity $ is given by the Rankine-Hugoniot equation:

1/ ()]

§ =22 (1.39)

la] ~



where

1.2 Nonlinear scalar problem

the double brackets denote the flux jump across the shock wave

lim_ f(q).

[[f(u)]] = r—)lgg>3 f(Q) - T—s, <S8

|- (b) /<
L@ 1.0 7
101 . I - 1
p
1 L {
i 0.5F \ .
051 - 2L N
o0k 1 oo ke .
1 I \
1 \
-051 =4 —05F A\ i
|- 1
] L /
-Lof : 1.0*/—"— ]
L L L Lt L L] i L L L ] L L L L 1 1 L L ]
0.0 0.5 1.0 05 0.0 0.5

05
Figure 1.3 (a) multivalued function. (b) The multivalued part is replaced by a discontinuities. The areas

of the two lobes are identical.

1.2.3 Riemann problem
Let us consider the Riemann problem for a homogeneous hyperbolic equation:
(1.40)

0 0
aQ‘f‘%f(Q) =0,

subject to the initial condition
{ qr, ifxz <0,

1@ 0 =w@) = 0 e

where qr, and qp are constant. When the flux function is convex, two solutions are possible depending

on these constants:
. rarefaction waves,

+ show waves.
Let us start with rarefaction waves. This equation is invariant to the transformation * — ax et

t — at. A solution can be sought in the form ¢(&) with £ = x/t. Substituting this form into Eq. (1.40)

(f'(a(€) =€) d =0.

The solution is
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where f/(=1) is the inverse of f’. The whole solution is

qr if < f'av),
ala, )= ¢ Qi fa) < T < Flar)
ar if % > f'(ar)

Let us now consider a shock wave. It position is = s(t) = $t. The Rankine-Hugoniot equation
(1.39): [f(q)] = 3[¢]. The whole solution is:

g if x < st
q(:”’t)_{qR if 2> at.

The shock velocity 5 is given by:
fqr) = f(ar)

a —qr

Let us summarise the two possible solutions: Recall that when f” > 0, the celerity ¢(q) = f/(q) is
an increasing function of ¢, which is also the slope of the characteristic curves (straight lines):

e qr > qr, Mug) > A(ur). At time t = 0, the two families of characteristic curves fan out.
Equation & = f/(U(&)) is an implicit solution over the interval A\(qr) > £ > A(qr).

» qr < qr. The two families of characteristic curves cross each other as of t = 0. The shock wave
moves at speed A(qr) < § < A(qr). This condition is called the Lax condition, which defines
whether a shock is physically admissible.

1.3 Nonlinear systems

Let us now consider the nonlinear case for one-dimensional problems

0 0 0 0

5t g fW=5%5a+ Al 5 a=

where g is a vector with m components representing the unknowns, f is the flux function, A = V f
is its Jacobian (the gradient involves the derivatives with respect to the g components). We assume
that A is m X m matrix whose eigenvalues \; are assumed to be real and distinct—like for the linear
case—over a certain domain.

S, (1.41)

1.3.1 Riemann invariants

The computational strategy closely follows the one taken for the linear case. It relies on the concept of
differential invariants. Let us illustrate this concept for m = 2. The unknown vector q has components
(q1, q2). We seek a new variable » = {ry, 2} such that:

vy - dg = pydry,

vy - dq = podra,

where p; are the integrating factors such that dr; are exact differentials. By expanding the differential
dri, we get:

or or
pidry = p <1d6h + 1dQ2) = v11dq1 + vi2dge.
oqn 0qo
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Upon identification with the former equation, we deduce:

ory v

T
and

Ory  wvig

g

We deduce the governing equations for r; and p;. By dividing the two equations above, we obtain:

Or _ v dn (1.42)
oqn V12 3Q2’ '

while the integrating factor is obtained by applying the Schwarz theorem
0 V12 0 V11
o 1 Og2 p1
We have seen above that the left and right eigenvectors are orthogonal two by two, which means here
that vq - wo = 0 (that is, v12 = wo; and —v1; = wa2). We can then transform Eq. (1.42) into

0 0
Wot 2L 4 g T — 0 = wy - Vi = 0. (1.43)
oq 9q2

Note that :

« in the literature, the k-invariant r, is defined simply as the solution to wy, - Vry = 0, and its label
differs from the one used here: r; was associated with the eigenvalue A1, and is a 2-invariant of
Eq. (1.41).

« when there are m > 2 equations, then there are usually m — 1 distinct functions 7, that are

k-invariants.

Equation (1.42) can be cast in the form

dgy _ dgp _ dnm

vi2 Un 0’
whose integration provides 7;. Equation (1.41) leads to:
dq

. +v,-8=0,
dt v, )

V1

where the characteristic curve © = X (t) satisfies dX;/dt = A;. It is called the 1-characteristic. We
have:

dr
M1 ! =v-S.
dt .- x, @)
Similarly for ry:
dr
py —= =v2-8S.
d z=X5(t)

The compact form of Eq. (1.41) after the change of variable is:

dr —L.8, (1.44)
dt |,_x @
]T

where L = [v1, vo]|' and r = {ry, r2}.
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1.3.2 Rarefaction wave

Definition

The homogeneous hyperbolic system

0 0
54T A 5-q4=0 (1.45)

is invariant to the stretching group  — ax and t — «t. We define the similarity variable { = z/t.
We are seeking a similarity solution ¢ = q(&). Substituting this form into Eq. (1.45) gives

—£q'+A-q =0,

which shows that ¢’ is a right eigenvector of A, imposing £ = A\ and g’ colinear with the right
eigenvector wy. We can arbitrarily pose

d
d—gq = wy. (1.46)

A geometric interpretation is that the curve q(&) is tangent to the vector field wy, (g(&) is called the
integral curve of wy,). Note that if we seek a function R(q) that remains constant along this integral
curve, then we recover the definition (1.42) of the Riemann invariant:

d

N — . / —=
%m@ 0=VR-¢q =0,

and since ¢’ = wy, then the invariance condition is: VR - wy, = 0.

Simple wave

Rarefaction waves are a special case of simple wave. As for the linear case (see § 1.1.4), a simple wave
propagates in a single direction. If there is a smooth mapping (x, t) — 7, a simple wave is defined as
the special solution

Q(‘rv t) = Q(U(l’at))-

Substituting this form into Eq. (1.45) gives

a77 / 877 /
My I =0,
at? T ot

Reiterating the same reasoning as just above, we deduce that g is an integral curve of one right eigen-
vector ki, and thus 1 must satisfy the nonlinear advection equation
dn dx

on @:0@—:alongE:)\k.

ot + /\kf)x dt

Characteristic curves in the x — ¢ plane are thus straight lines of slope \x(g(n)).
Exemple: Saint-Venant equations

For water waves over horizontal frictionless beds, the governing equations (called Saint-Venant or shal-
low water equations) are given by Eq. (1.45) with:

h y 0 1
q:<q>andA:f:<—q2/h2+gh 2q/h>’ (1.47)
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where h and ¢ = hu denote the flow depth and momentum, g is gravity acceleration, and u is velocity.
The eigenvalues are
Al =u—cand \g =u+c,

where ¢ = y/gh and the right eigenvectors are

1 1
’U}1:<u_c> andwgz(u+c>.

If we define the 1-Riemann invariant 1 as Vry - wy = 0, then r; is the solution to

ory ory dh dg dry
1 l_ope = ==t
+(ute) dq < 1 u—+c 0

Oh
Integrating the first pair of equations gives
q= —2h3/2\/§—|—ha & =u+24/gh,

where a is a constant of integration. As r; is an arbitrary function of a, we select the simplest form.
Similarly for the 2-invariant ry, we find

rgzu—Q\/gih

The Saint-Venant equations are thus equivalent to

dry drz dry dr =
E—Oalonga—)\l—u candE—Oalonga—)\g—u—l—c. (1.48)

hu

hu

q
q

Figure 1.4 (a) lambda, -2.5, 1, 0.5. (b) lambda, -1, 2.5, 0.5.






)

3

o i =

2.1 General formulation

Let us consider a hyperbolic equation in one space dimension and in a conservative form

0 0
29 + %f(Q) =0, (2.1)

where q is a vector with m components representing the unknowns and f is the flux function. We
consider a uniform grid, whose mesh size is constant: Az. We define the cell C; = [z;_; /2, Tit1 /2),
centred around the cell middle z; = x¢+iAx and whose interfaces are z;1 /5. The time step is denoted
by At = tniq — tp.

tot1 |

_____ ?__________¢__________’__________+.____-

! | | !

I | | !

| | | !

1 | Ci | !

| | | !

I | | !

I | | !

tn | | |
————— - @ - @ —— @

Ti—1/2 Tit1/2 |

Figure 2.1 Computation grid in the = — ¢ plane.

We integrate Eq. (2.1) over the cell Cj:
Tit1/2 aq z;
[ s (f@: =0 (22)
x
Integrating this equation over (¢, t,,+1] gives:

Tit1/2 tnt1 Tz g
/ («auﬁu—quMMx+/‘ [F(@)52 dt =0, (23)
X tn

i—1/2

We define the cell-averaged value of g at time ¢,,:

1 Tit1/2
Q= [ alwtia, o
x

Az i—1/2

13
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and a time-averaged flux

1 tn+1
i1/2 = At/ Fa(zity/0,1))dt. (2.5)

tn

We can develop an explicit time-marching algorithm by rearranging Eq. (2.3) and introducing the time-
and grid-averaged variables

Qi+1 =Qi - Ax (F1;+1/2 - Fi—1/2> . (2.6)

2.2 Godunov’s method for linear systems

Godunov’s method has been a major achievement in the field of hyperbolic equations, which has opened
up the way to modern finite-volume techniques. It consists of three steps: reconstructing, evolving, and
averaging:

1. Reconstruction. We assume that we can approximate the solution g(x, t) by a piecewise constant
function g;'(7,t,) = Q' for v € C; = (¥;,_1 /2, T;41/2): Note that to second order, we have

2

A A
Q;L = q(xiatn) + %896(1(xi7tn) + 71‘

24 aqu(xla tn)-

AlthGodunov’s method is a first-order accurate scheme. We can use higher-order reconstruc-
tions of the approximate the function g(x,t) (e.g., a piecewise linear function with a nonzero
slope in each grid cell).

2. Ewvolution. Using Eq. (2.6) or another method, we look at how the solution [jzm'l evolves from its
state at time ¢,,. This step amounts to solve Riemann problems at each cell boundary ;41 .

3. Averaging. We average this function over each grid cell

1 Tit1/2

Q=L / (2, trs1)de, (2.7

Az i—1/2

We can piece together the Riemann solutions provided that the waves from two adjacent inter-
faces have not started to interact. This condition is usually met when the Courant-Friedrichs-
Lewy (CFL) condition is satisfied (no wave passes through more than one grid cell within At):

Smaz O\ <
Ax —

where 4. represents the largest wave speed.

L, (2.8)

Godunov’s method was initially used to solve the Euler equations in gas dynamics. The flux F7’ /2
was determined from the exact solution to the Riemann problem for the Euler equations. Approximate
Riemann solvers are today used because they are faster. Godunov’s method is robust and stable when
the CFL condition is met. When approximate solvers are used, this may not be the case, and thus
special care has to be paid to robustness and stability. Moreover, Godunov’s method tends to smear
out solutions near discontinuities. By using limiters, approximate Riemann solvers deal more effi-
ciently with discontinuities. They also build numerical solutions as linear combinations of travelling
discontinuities—they do not use rarefaction waves, which are therefore approximated as discontinuities.
Transonic waves' may need more care.

Isee Fig. 2.4 for a quick definition.
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2.3 Wave decomposition for linear systems

2.3.1 Introductive example

In Clawpack, we will use a variant of Godunov’s method based on the wave decomposition seen in
Chapter 1. There are other strategies such as flux differencing (Toro, 2001; LeVeque, 2002; Guinot, 2010).
The advantage of wave decomposition over other approaches is that it can also be applied to non-
conservative equations.

Let illustrate how Clawpack proceeds with the flux estimation by considering a problem of dimen-
sion m = 3. Let us assume that we have three different eigenvalues such that A\ < 0 < Ay < A3. As
shown by Fig. 2.2, from the node z;_;/, emerge three characteristics x;_; /5 + A;t, which will create
three discontinuities in g at time ¢,1. Recall that in Chapter 1, we learned from Eq. (1.28) that the
initial jump in the Riemann problem at z;_; /5 can be decomposed into three waves

Q,—Q, 1= Z Wiiz1/2; (2.9)
k=1

where Wy, ;15 is related to the right eigenvectors oy, ;_1 2wy ;—1/2- As seen in Fig. 2.2, the first wave
W 1 ,i—1/2 will not modify the value of the solution at time ¢,11, but the two other waves will do. For
instance, the second wave will modify the value of g over a fraction of the grid cell AyAt/Ax by the
amount

At
—)\2EW2¢—1/2

relative to the initial value Q);.

Figure 2.2 Wave structure for the node z;_; /5.

2.3.2 General formulation

If we repeat the reasoning seen in the previous section for all waves, we obtain

n n At
QI =Ql - Az (AeWoi1/0+XWsi1/0+ MW 100.), (2.10)



16 Chapitre 2  Finite volume methods

This can be readily generalised to arbitrary hyperbolic systems. Let us introduce the notation
AT = max(),0) and A~ = min(}, 0). (2.11)
The updated value Q7" is then

At
Q’g«-‘rl QTL _ (Z )\ Wk i—1/2 + Z)\ Wk’ i+1/2¢ ) (2.12)

k=1 k=1
The cell average depends on the right-going waves from z; _; /3 and left-going waves from z; 1 /5.

LeVeque (2002) introduced a shorthand notation

A+'AQ171/2 = Z)‘;Wk,i—l/% (2.13)
k=1

AT AQupy = Y N Wit (2.14)
k=1

which are interpreted as fluctuations: A" -AQ,_, /2 represents the effect of all right-going waves from
z;_1/2 (Where there is a discontinuity AQ;_;/, = Q; — Q;_;) on the cell average at time ¢,,11. This
formulation that holds for linear problems will be generalized to nonlinear problems.

2.3.3 Interface flux

Note that that the interface between two cells, the interface value can be written (see Eq. (1.35)):

Qi1p=Qi 1+ Z Wii-1/2- (2.15)
Ae<0

We then deduce that for a linear system, the flux at the interface is:

Flip=FQi_1p)=A Qi 1p=A-Q; 1+ Z AWy 1 (2.16)
A <0

As W is an eigenvector of A, we can rearrange the terms

Filip=A-Q1+Y NWiiip=A-Q1+A -AQ;_ 1. (2.17)
k=1

This expression will be generalised to nonlinear systems (which, once linearised, involve only shock
waves), for which we will assume that

12 = F(Qi_1) + ATAQ; 1. (2.18)

or equivalently:

e = F(Q) — ATAQ; 5. (2.19)

Can we proceed differently for nonlinear systems? For a nonlinear problem, the theoretical expres-
sion of the flux is more complicated. Integrating the hyperbolic equation (2.1) over [—dz, 0] x [0, dt]
(see Fig. 2.3) gives

0 0 ot ot
/ q(z, ot)dzx :/ q(z, 0)dx + flg(—dx, t))dt — f(q(0, t))dt,

—ox —ox 0 0
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T =Mt T = A\t

Figure 2.3 Calculating the interface flux F;_y /5.

and if 0 is chosen such that it lies in the domain controlled by the initial conditions Q;_; or Q;, then
we can rearrange the terms

0
/ q(z, 6t)dr = 02Q,;_1 + 6t f(Q;_1) — 6tF;_yo.
—ox

This gives us the relation:

1 0

5t ), Q(z, ot)dx. (2.20)

1)
Fi1=f(Q,_1)+ ng‘—l -

The relation leads to no formal result, but it can be exploited to provide approximate solvers such as
the HLL solver (Toro, 2019).

2.4 Approximate Riemann solvers for nonlinear prob-
lems

Earlier in this chapter, we have seen that a general time-marching algorithm to solve the hyperbolic
equation (2.1) is given by Eq. (2.6):

Q?H =Qi - % (F?+1/2 - F?A/z) .

At each interface x;_1 /o, the flux function is given by
F?—1/2 = f(Q?—l/z),

where Q" ; /2 s the value of @ obtained along the ray x = x;_; /5. It depends on the values Q" and
Q7 of either side of the interface. In the absence of a source terme, Q}' remains constant along this ray.
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2.4.1 Scalar problems

Scalar Riemann problem are associated with five possible wave configurations (see Fig. 2.4):

(a) Left-going shock wave: Q' , 2 = Qr.
(b) Left-going rarefaction wave: Q' , 2 = Q7.
(c) Transonic? rarefaction wave: Qr 4 /2 = ¢s(Q7}, Q7). This is the only case for which we cannot

set the ();_1/o value. Further calculations are needed to evaluate the value g;. The unknown
value ¢, satisfies

?—1 <gs < Q??

and this is associated with the vertical ray, its characteristic speed is zero. Therefore, g5 is the
solution to

f(gs) = 0. (2.21)

(d) Right-going rarefaction wave: Q' , j2 = Q.

(e) Right-going shock wave: Q7" , /2= Q1.

t
(a) (b)

Figure 2.4 The five possible solutions to a scalar Riemann problem: (a) left-going shock wave; (b)
left-going rarefaction wave; (c) transonic rarefaction wave; (d) right-going rarefaction wave; and (e)
right-going shock wave.

(©) (d) (e)

For a convex scalar flux, we can summarise all these possibilities

fQ,) Q7 >qgsands>0
Flip=94 f@Q)) ifQ <gsands<0 (2.22)
f(qs) if Q) 1 <gs <Qf,

where the shock speed s is given by:

F(@F) — F(Qfy)
QF —Q,

A more compact way used in Clawpack is given

min _ f(q) ifQ}, <QF

n _ i—13456;
Flie =3 "max  fl@) Q> Qr (223)

°Tt is called transonic because it moves with velocity 0. In gas dynamics, this happens when one of the
eigenvalues u & ¢ (c: sound speed) takes the value 0, thus when the fluid moves at the same speed as sound. In
Fig. 2.4(c) the fluid is accelerated from a subsonic velocity to a supersonic one through a rarefaction wave.



2.4  Approximate Riemann solvers for nonlinear problems 19

The Lax entropy condition is an extra condition imposed to shock waves solution for them to be
physically admissible. A shock wave must dissipate energy, not create energy (or from a thermody-
namical standpoint, entropy increases through a shock, and does not decrease). A shock wave satisfies
the Lax entropy condition if its speed lies between bounds fixed by the initial data

@) > s> f'(ar). (2.24)

For a scalar problem, the time-marching algorithm to solve the hyperbolic equation (2.1) is given
by this variant of Eq. (2.6):

" n At n
QI =Qp - Ar ( i+1/2 ‘Fi—1/2> ,
or equivalently
n n At n n
Q; = Q7 — Az (Fi+1/2 - f(Qi) — (Fi—1/2 - f(Ql))) '

We can make an analogy with the formulation for linear equations, which emphasizes the role of fluc-
tuations (see § 2.3). We put the equation above in a form consistent with the LeVeque’s notation:

" n At _
QI =qQf - s (AYAQ;_1/2 + A" AQi11)2)
where the fluctuations A*AQ, 4, /2 are defined by
ATAQi 172 = F(QF) = F(QF1)2),

ATAQit12 = f( ?+1/2) — f(QF).
High-resolution techniques involve defining the wave W;_;, and speed s;_;/ associated with the
Riemann problem:

Wi = Qi — Qi-1,

n n
B f(Qz)l f(n 1—1) lle 7& Qi—l,
Si—1/2 = Q' — Q4
Q) if Qi = Qi-1.

When the Riemann solution is a shock wave, the speed chosen is the one given by the Rankine-
Hugoniot equation. When it is a rarefaction wave, the speed chose provides a proper estimate of the
actual wave speed, and the wave behaviour can be approximated by a shock wave even the latter would
not satisfy the entropy condition (2.24). The big advantage is that we can treat all waves as shock waves
regardless of their actual nature. When the solution is not a transonic wave, we can also express the
fluctuations as:

ATAQ; 1y = Sj_l/QWi—l/Zv (2.25)
ATAQit12 = S0 Wik1y2, (2.26)
where sT = max(s,0) and s~ = min(s,0). Equation (2.25) is used in Clawpack for solving scalar

problems.

When the Riemann solution consists of a transonic rarefaction wave, the fluctuation terms
ATAQ, 11 /2 need to be corrected using an entropy fix. In Clawpack, the wave IV and speed s are first
computed, and from them, we determine the fluctuations using Eq. (2.25). If f/(Q;—1) < 0 < f'(Qs),
then the fluctuations in Eq. (2.25) are replaced by one of the equations (for the interface from which
the transonic wave originates):

ATAQ; 1y = f(QF) — f(gs), (2.27)
ATAQi12 = flgs) = F(QF). (2:28)
Although this approach based on an entropy fix is unnecessary for scalar problems, it is easy to gen-

eralize to nonlinear systems of hyperbolic equations, for which there is no easy way to determine the
rarefaction wave structure exactly.
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2.4.2 Systems of equations

The method used for scalar problems can be generalised to systems of hyperbolic equations. The crux
lies in the determination of the interface value Q;" , /2 This value is usually one of the intermediate
states that connect the left and right states through a series of shock and rarefaction waves. When
Q" /2 is part of a transonic rarefaction wave, additional work is required to determine the wave struc-
ture.

The computational approach to solving the nonlinear Riemann problem is the same as the one
taken for linear problems. When dealing with Godunov’s equation (2.6), Clawpack still uses the wave-
propagation form

At
n+l n n n
QI = Qi -+, (F¢+1/2 - Fi—1/2> ;
At n _ "
- Q-5 (A+AQZ»_1/2 +A AQZ.H/Q) 7 (2.29)

where the fluctuations are defined by generalizing the linear case (see § 2.3.3):

ATAQ = F(QlL ) — F(QY), (2.30)
ATAQY ), = FQP) - FQF 1)), (231)

These definitions are useful when the solution to the Riemann problem is a transonic wave. When the
solution is a shock or rarefaction wave, the fluctuations can be approximated by considering that in the
close vicinity of the initial state the solution behaves like a shock wave, and like in the linear case, the
fluctuations are given by:

My
A_AQZ-I/Q = Z S];Z‘+1/2 271‘4_1/2, (2.32)
k=1
My
A+AQ?—1/2 - Z Sz,z‘—l/z ki—1/2> (2.33)
k=1
where M, is the number of waves (usually M,, = m), s~ = min(0, s) and s = max(0, s).

The computation cost is high if we use exact Riemann solvers. A variety of approximate Riemann
solvers have been proposed to reduce this cost (Toro, 2001; LeVeque, 2002).

Linearised solvers

Nonlinear equations

0 0
&‘J‘f'afxf((ﬁ*o

can be linearised when the initial values g; and q, are sufficiently close to each other, and put in the
linear form

dq =+ Oq
E—FA‘%—O,

where the constant matrix A is an approximation of f(q) for q ~ q; ~ q,.. The Roe function (studied
later) is an example of linearised solvers (Roe, 1981).
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Two-wave solvers

Several approximate solvers are based on the idea that the Riemann solution can be approximated
by picking up two of the m waves, W and W, and defining an intermediate state ), such that
Wi =Q,—Q,and Wy = Q, — Q,. The Rankine-Hugoniot implies that f(Q,;) — f(Q,) = s1W
and f(Q,)— f(Q,) = s2W. By adding these two equations, we end up with a system of m equations

f(Q,) — f(Q)) = s1W1 + 55Wo,

which gives
£(Qr) — F(Q) — 2@, + 51Q

S1 — 52

Q.=

The various solvers proposed so far differ by the choice of the speeds s; and s9 along with the waves
W1 and W . Lax-Friedrichs and Harten-Lax-van Leer (HLL) are classic solvers.

The advantage of HLL solvers is that they usually do not need an entropy fix to compute transonic
rarefaction waves. As they involve only two waves (thereby ignoring all other waves), they may lead
to poorer resolutions for systems made of m > 2 equations (Toro, 2019).

2.5 Roe solver

The Roe solver linearises the governing equation (2.1):

99, 4299 _
o T A5 =0

The matrix A is constructed so that it approximates f’(q) in the neighbourhood of @, and Q,_; and
satisfies the conditions

1. Continuity condition:

Ai—1/2 — f'(@) when Q;_1,Q, — q.

2. Hyperbolicity: Ai_l /2 is diagonisable, with m right eigenvectors wy, ;1 /5 associated with eigen-
values Sk,i—l/Q = )‘k,i—l/2'

3. Roe linearisation. This third property states that if Q;_; and Q, are connected by a single wave
W = Q; — Q,_, in the original Riemann problem, then W should also be an eigenvector of
Ai—1/2 : )

Q) - Q1) = Ai—1/2 Qi — Qi) = s(Q; — Qi—1),

where s is the wave speed. Formally, the matrix A, /2 can be determined by integrating the
Jacobian over a straight-line path q(§) = Q,_; +£Q,; — Q;_;)

- 1q
A= [ g

There is no guarantee that the resulting matrix is diagonisable with m real eigenvalues and that
it takes an analytical form. By making a change of variable, Roe (1981) showed that this difficulty
can often be overcome (LeVeque, 2002, see pp. 317-323).

An alternative choice to Roe’s linearisation is to set a particular value, for instance

1

A171/2 = §(f/<Qi—1) + £1(Q)))-
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2.6 Two-wave solver: HLL solver

The idea underpinning the HLL solver’s derivation is that the solution to the Riemann problem consists
of two shock waves separating an intermediate state from the left and right initial states. The speeds
s1 and s9 of these waves are given by the Rankine-Hugoniot equation

Qi) — f(Q,) =s1(Q;—1 — Q,), (2.34)

Solving Egs. (2.34) and (2.35) for Q, and F,. = f(Q,) gives

52Q; —51Q;_4 n F, - F;

Q. = (2.36)
So — 81 S2 — 81
soF; 1 — 51 F; 11— Q;
F, = 2471 15 5959 Qz 1 Q17 (2.37)
So9 — 81 S2 — 81

with F; = f(Q;). For the Harten-Lax—van-Leer (HLL) solver, the speeds are defined as the lower and
upper bounds of all characteristic speeds:

Sii-1/2 = min (min()‘k,i—la )\k,i—l/2)> ) (2.38)
S2,-1/2 =  min (min(kk,m )\k,i—1/2)> : (2.39)

where )\, ; is the kth eigenvalue of the Jacobian f(Q;) and S‘k,i—l /2 is kth eigenvalue of the Roe matrix
(linearised Jacobian).

2.7 Alternative: the f-wave method
An alternative approach to the wave decomposition is to first split the jump in f into f-waves:
FQ) = F(Qii) = Zii (2.40)
k=1

moving at speeds s, ;_1 /o, then express the fluctuations in terms of the f-waves. This method is useful
to study the second-order accuracy of wave-propagation methods or in the context of spatially-varying
flux functions f(x, q) (LeVeque, 2002, see § 15.5). It also guarantees that approximate Riemann solvers
are conservative.

When dealing with a linear or linearised problems, we can decompose f(Q;) — f(Q,_;) as a linear
combination of the right eigenvectors Wy, ;_1 /o of the linearised matrix A;_1 /o

Q) - f(Q; )= Zﬁk,i—l/Q'wk,i—l/% (2.41)

k=1

where the coefficient vector 3;_ /, is the solution to the linear system (2.41):

Biijp=R - (F(Q)—F(Qi1)=L-(f(Q;) — F(Q;_1)). (2.42)

The f-waves are then
Zyi—1/2 = Bri-1/2Wki-1/2- (2.43)
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These f-waves are related to the waves W ;_; /5 when the wave speeds are nonzero

Zii-1)2
Wiio12 = LI, ) (2.44)
Sk,i—1/2
and the fluctuations are
A@:l/zAQz‘—l/Q = Z Zyi1)2, (2.45)
k: sp<0
Aj_l/QAQifl/Q = Z Zi-1/2- (2.46)
k: sp>0

2.8 High-resolutions methods

High-resolutions methods aim to increase the approximation accuracy when evaluating Q?H from
Q' and avoid the occurrence of large fluctuations near discontinuities. They take the form

n n At - n n JAN AN N
Qi +1 — QZ — ?x (A AQi+1/2 + A+AQi—1/2) — E (F'H—I/Q — Fi—l/?) s (247)
where ﬁ‘i“ /2 is the flux correction

R 1Ly At .
Fii12= 3 Z |Skic1/2] (1 — fx|8k,i—1/2\ Wiio1/2 (2.48)
k=1

where W k,i—1/2 is the limited version of the kth wave W ;1 , obtained by comparing this wave with
the jump Wy, ;_1/7 in the upwind direction (I =i — lis s;;_1/0 > 0and I =i+ 1is 53,;,_1/5 < 0)
(LeVeque, 2002, see Chaps. 6 and 15).

2.9 Implementation in Clawpack

Clawpack is a Fortran-based library developed to solve hyperbolic partial differential equations in the
form

0
wea+ V- fla) =S, (249)

where « is the capacity function (or constant), g the unknown, f the flux function, and S the source
term.

2.9.1 Clawpack installation

Linux is best suited to run the Clawpack library. Installation requires a few additional libraries (see
www.clawpack.org/prereqs.html)

« Compiler: gfortran (available from most linux distributions) or ifort (which needs a license, free
for academic activities).

+ Python: version 3, scipy, numpy, pip, and git


http://www.clawpack.org/prereqs.html

N
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« It can be useful to install anaconda. This environment makes it possible to manage the python
packages and offers several functionalities like jupyter (a system of Python-based notebooks
that can be read by a web browser), spyder (a scientific environment written for Python), R, and
julia. Jupyter notebooks available from github can be read locally on the computer or via a web
interface such as nbviewer.jupyter.org/.

Following the procedure with pip (see www.clawpack.org/installing.html) is the easy way to install
Clawpack.

Finally, it is necessary to edit the . bashrc file by providing the required environment variables

export CLAW=$HOME/clawpack-v5.7.0
export FC=gfortran

2.9.2 Legacy Clawpack

In its original form developed by Randall Leveque, Clawpack has been based on a set of Fortran 77
routines (LeVeque, 2002).

The main programme was originally located in the file driver.f. This file allocated storage for the
arrays used by Clawpack. This is done now automatically, and the user does not need to fill this file. This
programme then calls claw1ez, which reads the file claw.data created by the python script setrun.py (it
can be created by typing make .data).

The initial condition is contained in the file ginit.f. We should define the cell average value for the
entire domaine, but for a continuous function, this average value is the value taken by f at x; (cell
midpoint).

The initial conditions are processed in the file bc1.f. The type of boundary conditions is prescribed
in the file claw.data.

The Riemann solver is contained in the file rp1.f. The idea is to decompose any discontinuity into
a set of waves Wy, :

Qi —Qi 1= Z Wi
k=1

avec m is the wave number (which is usually equal to the dimension of the system). For Godunov’s
method, the value W; is updated as follows:

At

QZTLH =Qr — A—QC(AJr CAQ; s+ AT - AQ Ly 0),

where we distinguish between the left-going wave (coming from the right endpoint z;; /5) :
At AQi—l—l/Q = Zmin<)‘i‘€+1/2v O)Wk,i+1/27
k

and the right-going wave

AT AQip 0= Zmax()‘?—l/Qv O)Wii—1/2,
k

The left-going wave is zero if A ;112 > 0 (because this the wave moves from right to left) and the
right-going wave is zero if Ay ;_1/o < 0. The Riemann solver needs two input data: the two arrays q1
and qr related to the left and right states. High-resolution methods require further information. Note
that for the Riemann solver at the interface z;_; /5, we use the following notation for referring to cells


https://www.anaconda.com/products/individual
https://nbviewer.jupyter.org/
http://www.clawpack.org/installing.html
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i—landi:qr(i-1,:)=Q,; 1pandql(il, :)= Q;; 1o, and in this notation, left and right
refer to the left and right of the cell ¢ or ¢ — 1, and not what happens relative to the interface.

The solver provides

« the functions amdq (literally “a minus delta q”, which is the vector A~ - AQ,,,/5) and apdq
(vecteur AT - AQit1/2),

« wave (the vawe Wy ;_; 5), and

« s (the eigenvalue Ay ;_1/9).
Caveat. Note® that the Riemann problem at the interface x;_; /2 between cells i-1 and i has data:

o Left state: qﬁl = qr(;, i-1).
+ Right state: qZ-L_1 =ql(,i).
This notation is confusing since in the solver direction we use g; to denote the left state and g, to denote

the right state in specifying Riemann data.

There are many other routines, which are not always required. They are called by the main driver
by default, but do not return anything. Among the most important:

« setprob.f: the routine clawlez calls setprob.f before each execution, which makes it possible to
initialize some parameters.

« setaux.f: the routine clawlez calls the routine setaux.f before each execution to initialize the
auxiliary variables (for instance, bed topography).

+ bd4step1.f: the routine claw1 calls the routine bc4step1.f before each step to perform additional
tasks.

« srcl.f: if the equation involves a source term, this file is used to correct the solution to the
homogenous equation.

2.9.3 Pyclaw

Pyclaw is a python package that offers a convenient framework for pre- and post-processing informa-
tion, interfacing and running Clawpack or Sharpclaw (Ketcheson et al, 2012; Mandli et al., 2016). It
can call Fortran or Python routines. Interfaced with PyWENO and PETSc, Pyclaw provides extended
functionality in terms of parallel computing (Ketcheson et al., 2012).

3See www.clawpack.org/riemann.html.


http://www.clawpack.org/riemann.html




3.1 Acoustic waves

3.1.1 Governing equation

When linearised, the acoustic wave equation takes the form

op ou
du 10
ot opdx

where K is the bulk modulus, g the density, u(z, t) and p(z, t) the velocity and pressure. We define
the speed of sound as ¢ = /K /p and impedance Z = /K. In a tensorial form, the acoustic wave

equation is:
oq oq . p 0O K
ot + o’ with q ( v and ol 0

We define the right and left eigenvector matrices R and L

-7 Z 1/ 2711
R_(l 1>etL_§(Z 1)
and the eigenvalue matrix A

1
A= ()(\) )?2 ) avec \! = —cet \2 = 4.

We diagonalize the matrix A

A=R-A-L.
By introducing the Riemann variables
r=L-q
we want to solve

subject to the initial conditions

riife <0
ri = T
ripifz >0

27
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Figure 3.1 Solution to the Riemann problem.

In a Riemann problem, the left and right states can be connected using the right eigenvectors:

q, —q =a'w' +*w’*=R-q,
thus
a=R"'-(q,—q)=L (q,—q),

1 _
a1:2<_M+Ur_ul>a

which leads to:

VA
L (pr—pi
042:2<TZ +ur—ul y
The jump from g, to g, is W' = o'r! while the jump from g, to q, is W? = o?r2.

3.1.2 Implementation

In classic Clawpack, the algorithm for the solver is quite simple.

apdq)

implicit double precision (a-h,o0-z)

dimension wave(meqn, mwaves, 1-mbc:maxm+mbc)
dimension s(mwaves, 1-mbc:maxm+mbc)
dimension ql(meqn, 1-mbc:maxm+mbc)
dimension qr(meqgn, 1-mbc:maxm+mbc)
dimension apdq(megn, 1-mbc:maxm+mbc)
dimension amdq(meqn, 1-mbc:maxm+mbc)



40

46

1
2
3

3.1 Acoustic waves 29

local arrays

dimension delta(2)

# density, bulk modulus, and sound speed, and impedance of medium:
# (should be set in setprob.f)
common /cparam/ rho,bulk,cc,zz

# find al and a2, the coefficients of the 2 eigenvectors:
do 20 i = 2-mbc, mx+mbc
delta(1l) = ql(1,i) - qr(1,i-1)
delta(2) = ql(2,i) - qr(2,i-1)
al = (-delta(l) + zz*delta(2)) / (2.d0*zz)
a2 = (delta(l) + zz*delta(2)) / (2.d0*zz)

! # Compute the waves.

wave(1,1,1) -al*zz
wave(2,1,1i) = al

s(1,i) = -cc
wave(1l,2,1) = a2*zz
wave(2,2,1) = a2
s(2,i) = cc

20 END DO

# compute the leftgoing and rightgoing flux differences:
# Note s(1,1) < O and s(2,1) > 0.

do 220 m=1,meqn
do 220 i = 2-mbc, mx+mbc
amdq(m,1i) = s(1,i)*wave(m,1,1)
apdq(m, i) s(2,i)*wave(m,2,1)
220 END DO

return
end subroutine rpl

3.1.3 Implementation in Pyclaw

Here is an example of notebook setting up a solver for the acoustic wave equations.

zmatplotlib inline

3 from numpy import sqrt, exp, cos

4+ from clawpack import riemann

5
6

from clawpack import pyclaw

7 def setup(outdir='./_ output', output_style=1):

8
9
10
11
12
13

riemann_solver = riemann.acoustics_1D_py.acoustics_1D
solver = pyclaw.ClawSolverlD(riemann_solver)
solver.limiters = pyclaw.limiters.tvd.MC
solver.kernel_language = 'Python'
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X = pyclaw.Dimension(0.0, 1.0, 100, name='x")
domain = pyclaw.Domain(x)

num_eqn = 2

state = pyclaw.State(domain, num_eqn)

solver.bc_lower[0] = pyclaw.BC.periodic
solver.bc_upper[0] = pyclaw.BC.periodic

rho = 1.0 # Material density
bulk = 1.0 # Material bulk modulus

state.problem_data['rho'] = rho

state.problem_data[ 'bulk'] = bulk
state.problem_data['zz'] = sqrt(rho*bulk) # Impedance
state.problem_data['cc'] = sqrt(bulk/rho) # Sound speed

xc = domain.grid.x.centers

beta = 100

gamma = 0O

x0 = 0.75

state.q[0, :] = exp(-beta * (xc-x0)**2) * cos(gamma * (xc - x0))
state.q[1, :] = 0.0

solver.dt_initial = domain.grid.delta[0] / state.problem_data['cc']
0.1

claw = pyclaw.Controller()

claw.solution = pyclaw.Solution(state, domain)
claw.solver = solver

claw.outdir = outdir

claw.output_style = output_style

output_style = 1

claw.tfinal = 1.0

claw.num_output_times = 10

claw.keep_copy = True

claw.setplot = setplot

return claw

setplot(plotdata):

Specify what is to be plotted at each frame.

Input: plotdata, an instance of visclaw.data.ClawPlotData.
Output: a modified version of plotdata.

nmmnn

plotdata.clearfigures() # clear any old figures,axes,items data

# Figure for pressure
plotfigure = plotdata.new_plotfigure(name='Pressure', figno=1)

# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.axescmd = 'subplot(211)'
plotaxes.ylimits = [-0.2, 1.0]
plotaxes.title = 'Pressure'

# Set up for item on these axes:

*
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claw

plotitem
plotitem
plotitem
plotitem
plotitem

# Set up
plotaxes

plotaxes.
plotaxes.
plotaxes.
plotaxes.

# Set up
plotitem
plotitem
plotitem
plotitem
plotitem

3.1 Acoustic waves

= plotaxes.new_plotitem(plot_type='1d_plot')
.plot_var = 0

.plotstyle = '-o'

.color = 'b'

.kwargs = {'linewidth': 2, 'markersize': 5}

for axes in this figure:

= plotfigure.new_plotaxes()
axescmd = 'subplot(212)'
xlimits = 'auto'

ylimits = [-0.5, 1.1]

title = 'Velocity'

for item on these axes:

= plotaxes.new_plotitem(plot_type='1d_plot')
.plot_var = 1

.plotstyle = '-'

.color = 'b'

.kwargs = {'linewidth': 3, 'markersize': 5}

return plotdata

To run the script and plot one result here (frame 10) using setplot, the following can be done:

claw.run()

from
from

= setup()

clawpack.visclaw import data
clawpack.visclaw import frametools

plotdata = data.ClawPlotData()
plotdata.setplot = setplot
claw.plotdata = frametools.call_setplot(setplot,plotdata)

frame = claw.load_frame(10)
f=claw.plot_frame(frame)

We can also plot a frame directly

7matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

frame = claw.frames[5]
frame.q[O0, : ]
frame.state.grid.c_centers

w
X
X

x[0]

plt.plot(x, w)

Here is how

Pyclow has encoded the solver of the Riemann problem.

def acoustics_1D(q_l,q_r,aux_l,aux_r,problem_data):

r" nn
Basic 1d

acoustics riemann solver, with interleaved arrays

*problem_data* is expected to contain -

_ *ZZ*
*

- *cc*

- (float) Impedence
- (float) Speed of sound

31
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See :ref: pyclaw_rp” for more details.

:Version: 1.0 (2009-02-03)

noan

import numpy as np

# Convenience
num_rp = np.size(q_1,1)

# Return values

wave = np.empty( (num_eqn, num_waves, num_rp) )
s = np.empty( (num_waves, num_rp) )

amdq = np.empty( (num_eqn, num_xrp) )

apdq = np.empty( (num_eqn, num_xrp) )

# Local values
delta = np.empty(np.shape(q_1l))

delta = q_r - q_1

al = (-delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 *
problem_data['zz'])

a2 = (delta[O0,:] + problem_data['zz']*delta[1,:]) / (2.0 * problem_data
['zz'])

# Compute the waves

# 1-wave

wave[0,0,:] = -al * problem_data['zz']
wave[1,0,:] = al

s[0,:] = -problem_data['cc']

# 2-Wave

wave[0,1,:] = a2 * problem_data['zz']
wave[1l,1,:] = a2

s[1,:] = problem_data['cc']

# Compute the left going and right going fluctuations
for m in range(num_eqn) :

amdq[m, :] = s[0,:] * wave[m,O0, :]

apdq[m,:] = s[1,:] * wave[m,1, :]

return wave, s, amdq, apdq



4.1 Theory

Let us consider the Burger’s equation

ou ou
a + UJ% = 0, (4.1)
or in the flux form )
Ou  Of(u) u
En + 9y 0 where f(u) = 5

The solution to the Riemann problem has two types of solution:
« rarefaction wave: w = U (§) with £ = x/t. Substituting this form into Eq. (4.1)
U(g) = ¢
+ shock wave: The Rankine-Hugoniot equation tells us that the shock moves at speed:

[f ()]

O
The solution to the Riemann problem depends on the sign of u, — w;:

« If u, > u;, we have a rarefaction wave separating two constant states. The characteristic curves
separating U (§) from u; and u, are, respectively, z = w;t and z = u,t.

o If u, < u;, we have a shock wave moving at speed

. 1
§= §(u,~ + uy)

4.2 Approximate solvers
In Clawpack, the Riemann solver expresses the idea the (); values evolve because of fluctuations:
n+1 n At + -
QT =07 — E(A AQi_1/2 + A" AQit12),

33
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where the fluctuations are

ATAQi 1o = F(Qi) = F(QF, ),
.A_AQH.l/Q = f(Qj,_i_l/Q) - f(QZ)7

where (0;11 /7 represents the value advected along the characteristic coming from the ;4 /, interface.
When the solution to the Riemann problem is not a transonic wave, the idea is to approximate this
solution as a shock wave (even though it is a rarefaction wave). The show propagates the wave WV at a
speed s:

Wi_1/2 = Qi — Qi—1,
f(@Qi) — [(Qi—1)

Si—1/2 = )

Qi — Qi1

for Q; # Q;_1. We then deduce
ATAQi—12 = si—1/2Wi—1)2,
ATAQi—1/2 = si—1/2Wi—1/2

When the solution to the Riemann problem is a transonic wave, we use the definition of the fluctuations

A+AQ¢—1/2 = f(Qi) — f(gs),
ATAQ;—172 = [(Qs) — [(Qi-1),

where ¢, is the value such as f/(gs) = 0 (vertical characteristic corresponding to x — z;_1 2 =0-1).
For the Burgers equation we have ¢, = 0.

To summarize, we express the functions amdp, apdp, s, and W:

-A+AU1‘—1/2 = 5@—1/2W¢—1/2,
ATAU; 12 = si_12Wi—1/2,

with
Wi—172 = Ui = Ui,
Si—1/2 = %(Ui + Ui-1),
but if U;_1 < 0 et U; > 0 then
ANy = SU7,
ATAU; 15 = _%Uz?—lv

In Clawpack, the treatment of the transonic wave is called an entropy fix, and its use in the Riemann
solver is indicated through the Boolean variable efix.

The Roe solver involves linearising Burger’s equation (4.1):

dq  .0q

- — =0 4.2
5 Ti5, =0 (4.2)
where ¢ is the intermediate state
(j _ q+qr
2

to be consistent with the Rankine-Hugoniot equation. This solver is equivalent to the one described
above.
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4.2 Approximate solvers

4.2.1 Implementation in Clawpack

c
c
efix = .true. !# Compute correct flux for transonic rarefactions
c
do 30 i=2-mbc,mx+mbc

c
c # Compute the wave and speed
c

wave(i,1,1) = ql(i,1) - qr(i-1,1)

s(i,1) = 0.5d0 * (qr(i-1,1) + ql(i,1))
c
c
c # compute left-going and right-going flux differences:
C ______________________________________________________
c

amdq(i,1) = dminl(s(i,1), 0.d0) * wave(i,1,1)

apdq(i,1) = dmax1(s(i,1), 0.d0) * wave(i,1,1)
c

if (efix) then
c # entropy fix for transonic rarefactions:

if (qr(i-1,1).1t.0.d0 .and. ql(i,1).gt.0.d0) then

amdq(i,1) = - 0.5d0 * qr(i-1,1)*"*2
apdq(i,1) = 0.5d0 * ql(i,1)**2
endif

endif

30 continue

4.2.2 Implementation in Pyclaw

def burgers_1D(q_l,q_r,aux_l,aux_r,problem_data):

nun
r

Riemann solver for Burgers equation in 1d
*problem_data* should contain -

- *efix* - (bool) Whether a entropy fix should be used, if not present

false is assumed

nmmnn

num_rp

= q_l.shape[1]

# Output arrays

wave =

S = np.

amdq =
apdq =

np.empty( (num_eqn, num_waves, num_xrp) )
empty( (num_waves, num_xrp) )

np.empty( (num_eqn, num_rp) )

np.empty( (num_eqn, num_xrp) )

# Basic solve

wave[O,

s[0, :]

5,1l =qr-ql
= 0.5 * (q_r[0,:] + q_1[0,:])

s_index = np.zeros((2,num_xrp))
s_index[0,:] = s[0,:]

amdq[O0,
apdq[o,

:] = np.min(s_index,axis=0) * wave[0,0, :]
:] = np.max(s_index,axis=0) * wave[0,0, :]
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25 # Compute entropy fix

26 if problem_data['efix']:

27 transonic = (q_1[0,:] < 0.0) * (q_r[0,:] > 0.0)
28 amdq[0, transonic] = -0.5 * q_1[0,transonic]**2
29 apdq[0, transonic] = 0.5 * q_r[0,transonic]**2
30

31 return wave, s, amdq, apdq

In this routine, q1 is the left initial condition. It is a p X N array (p = 1 the problem dimension, and
N the number of cells). So, num_xrp = q_1l.shape[1] gives N. First, the amdp, apdp, s, and
W are initialised, then s and W are defined. Finally, the fluctuations are defined using the numpy func-
tion numpy . min, which provides the minimum value: absolute, for each column (with the axis=0
option), or for each row (with the axis=1 option). For instance, the lines

1 import numpy as np

2 x=np.array([[1,4],[2,5],[3,-2]])
3 np.min(x,axis=None)

4 np.min(x,axis=0)

5 np.min(x,axis=1)

provide the values: -2, array ([ 1, -2])andarray([ 1, 2, -2]),respectively.

4.2.3 Examples
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Figure 4.1 Solutions to the Riemann problem: (a) rarefaction wave; (b) shock wave; (c) transonic rar-
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4.3 Nonlinear advection equation with a source term

4.3.1 Theoretical considerations

Let us consider a rainfall of intensity I over a sloping bed inclined at « (see Fig. 4.2). There are two
possible runoff mechanisms: superficial or hyporheic flow. For both cases, we assume that the flow
depth is h(z,t) and velocity u(z, t) related to h: u = ah®, where a and b are two coefficients: a = C'y/a
et b = 1/2 if one considers runoff with a Chézy friction C.

rainfall of intensity [/

-« - - - - -
4__________
- - - - - - - - - - ===

sloping bed «
h(.fC, t) Zo

> i

Figure 4.2 Flow generated by a rainfall.

X

The governing equation is given by mass conservation:

Oh  Ohu
— 4+ — =1 4.3
ot oz (43
As we have u = ah?, we obtain:
oh oh b
— — = ] with = 1)A°.
iy + c(h) 9 with ¢(h) = a(b+ 1)h
or in a characteristic form:
dh dz b
E I along E = C(h) = a(b -+ 1)h )

and we assume that initially the flow depth is zero (dry bed: h(z,0) = 0) and no water comes from
upstream of g (h(zg, t) = 0). The solution to the characteristic equation is h = It along the charac-
teristic curve:

x = /a(b + )Rt + 21 = aI®t T + 2y, (4.4)

where z is constante of integration (such that at z = x;, we have h = 0). This implies for any =
(0 £ & < x, with the frame used in Fig. 4.2, x¢g = Lg), we have:
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. alinear growth h(x, t) = It until time t., such that aI’t}}* = zq — z ;

- a stationary state for:

I(wo — $))1/(1+b)

a

h(z, t) = hoo(z) = (

151

(b)

1.0}

z 0.5 1.0 1.5 2.0 25 3.0

Figure 4.3 (a) characteristic curves (4.4). The thick line represents = aI’t'*?, the path of a fluid
parcel emitted from xg. The coloured area represents the domain controlled by the initial condition
h = 0 for which we observe a linear growth h(x, t) = It. Above the curve x = aI’t'*?, the depth
is constant and equal to hoo(x). (b) Flow depth variation at x = 0. Computation for arbitrary values
a=11/sb=1,1 =1m/s,and zg = 3 m.

4.3.2 Numerical implementation

import numpy as np

import matplotlib.pyplot as plt
import os

from clawpack import riemann
plt.ioff()

7 #!/usr/bin/env python

# encoding: utf-8

r" nn

Burgers' equation

nmmon

def source_term(solver, state, dt):
i = state.problem_data['i']
h = state.q[0, :]
# Update to momentum
state.q[0, :] += dt * i

def inlet_bc(state,dim,t,gbc,auxbc,num_ghost):
"inlet boundary conditions"
gbc[0, :num_ghost] = 0.

def b4step(solver,state):
h = state.q[O0, :]
t = state.t
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hf = h[-1]
front.append([t,hf])

0 def setup(use_petsc=0,kernel_language='Fortran',outdir='./_output',

solver_type='classic'):

if use_petsc:

import clawpack.petclaw as pyclaw
else:

from clawpack import pyclaw

if kernel_language == 'Python':
riemann_solver = riemann.burgers_1D_py.burgers_1D
elif kernel_language == 'Fortran':

riemann_solver = riemann.burgers_1D

if solver_type=='sharpclaw':

solver = pyclaw.SharpClawSolverlD(riemann_solver)
else:

solver = pyclaw.ClawSolverlD(riemann_solver)

solver.limiters = pyclaw.limiters.tvd.vanleer
solver.kernel_language = kernel_language

solver.bc_lower[0] = pyclaw.BC.custom
solver.user _bc_lower = inlet _bc
solver.bc_upper[0] = pyclaw.BC.extrap
solver.step_source = source_term
solver.before_step = b4step

x = pyclaw.Dimension(0.0,10.0,1000,name="'x")
domain = pyclaw.Domain(x)

num_eqn = 1

state = pyclaw.State(domain,num_eqn)

xc = state.grid.x.centers

state.q[0,:] = 0.
state.problem_data['efix']=True
state.problem data['i'] = 1

claw = pyclaw.Controller()

claw.tfinal = 10

claw.num_output_times = 20

claw.solution = pyclaw.Solution(state,domain)
claw.solver = solver

claw.outdir = outdir

claw.setplot = setplot

claw.keep_copy = True

return claw

setplot(plotdata):

nmoan

Plot solution using VisClaw.

plotdata.clearfigures() # clear any old figures,axes,items data
# Figure for q[O0]

plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)
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83 # Set up for axes in this figure:
84 plotaxes = plotfigure.new_plotaxes()
85 plotaxes.xlimits = 'auto'
86 plotaxes.ylimits = [-1., 2.]
87 plotaxes.title = 'q[0]'
88 # Set up for item on these axes:
89 plotitem = plotaxes.new_plotitem(plot_type="'1d")
90 plotitem.plot_var = 0O
91 plotitem.plotstyle = '-o'
92 plotitem.color = 'b'
93
94 return plotdata
front = []

1

2 claw = setup()
3 claw.run()
4

5 ind=5
6 ind2=20
7 delta_t=claw.tfinal/claw.num_output_times

9 fig = plt.figure(figsize=(8,4))

10 left, bottom, width, heigth = 0.2, 0.2, 0.8, 0.8
11 ax = fig.add_axes((left ,bottom, width, heigth ))
12 ax.ylimits = [0,0.1]

13 frame = claw.frames[ind]

14 h = frame.q[O, :]

15 frame = claw.frames[ind2]

16 h2 = frame.q[O, :]

18 x = frame.state.grid.x.centers
19 ax.plot(x,h,label="t = {:.2f}'.format(ind*delta_t))
20 ax.plot(x,h2, 'k-.',label='t {:.2f}'.format(ind2*delta_t))

22 ax.set_xlabel(r'$x$ (m)')
23 ax.set_ylabel(r'$y$ (m)')
24 ax.legend()

5 plt.show()

N
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Figure 4.4 Numerical solutions at time ¢t = 2.5 sand ¢t = 10 s.



5.1 Theory

The shallow water equations (also called the Saint-Venant) equations consists of the mass and momen-
tum balance equation for a depth-averaged water flow. In this chapter, we consider the simplest case,
in which the bottom is horizonal and exerts no resistance, and the flow is one-directional. In this case,
the conservative form of the governing equations comprises the mass balance equation

Oh 0q

ot o
where h denotes the flow depth, ¢ = hu is the flow rate, and u the depth-averaged velocity. The second
equation is the momentum balance equation

dq Ohu? oh
En + e + gh% =0, (5.2)

where ¢ is gravitational acceleration, and the unknowns are ¢ and h. The non-conservative form is
useful when the solution is smooth:
Oh 0q

ot o
where h denotes the flow depth, ¢ = hu is the flow rate, and u the depth-averaged velocity. The second
equation is the momentum balance equation

0, (5.1)

0, (5.3)

ou ou oh
e + u% + g% =0. (5.4)
In a matrix form, Egs. (5.1)-(5.2) takes the form:
0 0
EQ + af(Q) =0, (5.5)
where
q h
f:(qQ/h+gh2/2)andQ:(q)' (5.6)
The Jacobian is
, 0 1
;= ( —q?/h?® +gh 2q/h )’ 7)
whose eigenvalues are
AL =u—+/ghand Ay = u+ \/gh, (5.8)

associated with the right eigenvectors:

= 1 d = 1 5.9
wl_(u—\/g_h)anw2_<u+@>’ (5.9)

43
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5.1.1 Dam break solution

Let us consider the dam break problem on a wet bed (that is, the initial flow depth is nonzero every-

where):
h; for x < 0,

h(z, 0) = { b for s > 0, (5.10)

and u(z, 0) everywhere, and we assume that ; > h;. The solution’s structure is shown by Fig. 5.3.
There is an intermediate state Q@ = (h., ¢.) separated from the left initial state Q; by a rarefaction
wave, and from the right initial state Q,. by a shock wave.

x=¢t T = sot

Ql Q* Qr

Figure 5.1 dambreak with an intermediate state separated from the left initial state by a rarefaction
wave, and from the right initial state by a shock wave.

The intermediate state satisfies the Rankine-Hugoniot condition:

S(Q* - Qr) = f(Q*) - f(Q'r‘)7 (511)

which implies that the shock speed is

q*_QT_ hr+h*
e, TR

and the flow rare depends on the initial rate (which is 0 here) and depth on the right:

hye — hy hy — hy
¢ = qr + (he — hy) (Ur + \/ghr <1 + h ) <1 + oh )) ) (5.12)

which can be transformed into

g1 1
=u, = (he — h = —+—). 5.13

The intermediate state has also to be compatible with a rarefaction wave solution. A rarefaction
wave is a similarity solution Q(§) with & = x/t. Substituting this form into the hyperbolic system (5.5)
gives:

—£Q'(9) + £(Q) - Q'(§) =0,
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which shows that Q'(£) is a right eigenvector of the Jacobian matrix f’, and thus there exists a scalar
coefficient a(§) such that

Q'(§) = a(§)wy,

with £ = 1,2, Let us assume that & = 1 and k = 1 (that is, we are looking for the 1-rarefaction wave),

then we have to solve )
Ve "\ 1
@@= )=(. Y )

We deduce by setting the first constant of integration to zero:
h(§) = &,

q'zg—Jg?:»q@:as—%ﬁ,

where a is constant of integration. As we have h = &, this means that we also have g(h) = ah—2h\/gh
We impose that the intermediate state lies on the rarefaction wave, and thus

qx = ahy — 2hi\/ghs = a = Uy + 2hs/ gh.

The 1-rarefaction is thus the curve

a(h) = hu, + 2h(\/ghs — \/gh). (5.14)

u (m/s)

Figure 5.2 Phase plane for h; = 3 and h, = 1 (with g = 1 m/s?).

5.2 Approximate solver: the Roe solver

5.2.1 Derivation

The idea underpinning the Roe solver’s derivation is a change of variable. The linearised flux matrix

has been defined in § 2.5
1
- d
0 q
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We make the following change of variable

_a _( Vh
Z_\/E_<ux/ﬁ>’ (5.16)
or by inversion
(s, 0 (5.17)
4= Z1292 8Z o Z9 Z1 ’ )

The flux function and its Jacobian are

. 2129 ﬂ_ z2 z1
f= < z%%—%gzil ) = dz < 2923 229 >

Using the change of variable, we now integrate

1
Q) - 1@ = [ L

o d§

along the straight line
z=Z; 1+ (Z;— Z;1)&.

Asz' =Z,— Z,_1, we have

g d
Q) - f(Qi,) = /Odjzc(z)dzdﬁ,

Ld
- (z-zo) [ Lo

_ 2 7 _z
- <2ngh 222’> (Zi=Zi1)

where 1 1
Zk: = §(Zk,i—1 + Zkﬂ) and B = Q(hifl + hz)

Now we have to return to the original variables by linking Z and Q. By integrating Eq. (5.16), we get

i 1 7
Qi—Qi :/ dfdz :/0 gz,dg - ( 2ZZ21 Z91 ) (ZimZi).

L dz

We eventually find:

i (B ZN (22 0 - 0 1
=127\ 947,k 27, Zs 74 T\ gh—(25/21)? 2Z5/7, )’

and after returning to the original variables

A Ll en e V hi—1ui—1 + vVhiu;
2T —a+gh 240 VR +Vh

The Roe matrix is thus the Jacobian matrix f/(q) evaluated at the intermediate state q) = (h, hi). It

has the eigenvalues
A\ =4 —/ghand Ay = 4 + 1/ gh,

associated with the right eigenvectors:

(5.18)

wl_(ﬂ—l\/gih)andum_(ﬂ—kl\/gih)‘ (5.19)
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We can decompose the initial jump Q, — Q,_; as

AQ=Q,-Q, =R q, (5.20)

where R = [w;, ws] is the right-eigenvector matrix. We then deduce the « coefficients by inverting

the matrix R
(04 ¢)AQ1 — AQ2 )

—a 4 )AQ: + AQs (5:21)

_R.AQ- L1
a=R AQ—%((

where ¢ = \/gh and AQ = (AQ1, AQs).

5.2.2 Wave form
To summarize the results, we need the following equations to write the Roe solver’s algorithm:

« The velocities associated with the intermediate state

= Qi—l%fjj%\/hj and ¢ = \/;(\/m +v/hi). (5.22)

« The waves W:
Wk = 0pWweg, k= 1, 2 (5.23)

where o, are the components of the ¢ vector given by Eq. (6.11) and wy, are the right eigenvec-
tors of the Roe matrix given by Eq. (5.19).

« the characteristic speeds

$1 =U—cand sy =U+¢C. (5.24)
« The fluctuations are

2
AT AQ; 1o = Zmin()‘?—um 0)Wii1/2,
k=1

2
A" - AQiq0 = Zmax(Af_l/Q, 0)Whi—1/2,
k=1

which gives in the present context:
- if s > 0, then amdq(m,1) = s*wave.

- if s <0, then apdq(m,i) = s*wave.

5.2.3 Implementation

Here is how the Roe solver is implemented in Clawpack (with the entropy fix to compute transonic
wave).

subroutine rpl(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
ql,qr,auxl,auxr,wave, s,amdq, apdq)

! waves: 2
! equations: 2

! Conserved quantities:
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8 ! 1 depth

9 ! 2 momentum

10

11 ! See http://www.clawpack.org/riemann.html for a detailed explanation
12 | of the Riemann solver API.

13

14 implicit none

15

16 integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &

17 num_cells

18 real(kind=8), intent(in), dimension(num_eqn, 1-num_ghost:maxmx+num_ghost
) :: ql, gr

19 real (kind=8), intent(in), dimension(num_aux, 1-num_ghost:maxmx+num_ghost
) :: auxl, auxr

20 real(kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)

21 real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1-num_ghost:maxmx
+num_ghost)

22 real(kind=8), intent(out), dimension(num_eqn, 1-num_ghost :maxmx+
num_ghost) :: amdq,apdq

23

24 ! local variables:

25 real(kind=8) :: al,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl12,uhl2,sfract,df

26 real(kind=8) :: delta(2)

27 integer :: i,m,mw

28

29 logical :: efix

3(

31 data efix /.true./ '# Use entropy fix for transonic rarefactions

33 ! Gravity constant set in setprob.f or the shallowlD.py file
34 real(kind=8) :: grav
35 common /cparam/ grav

37 ! Main loop of the Riemann solver.

38 do 30 i=2-num_ghost,num_cells+num_ghost

39

40

41 ! compute Roe-averaged quantities:

42 ubar = (qr(2,i-1)/dsqrt(qr(1,i-1)) + ql(2,i)/dsqrt(ql(1,i)))/ &
43 ( dsqrt(qr(1,i-1)) + dsqrt(ql(1l,i)) )

44 cbar=dsqrt(0.5d0*grav* (qr(1,i-1) + ql(1,1i)))

45

46 ! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)

47 delta(l) = ql(1,i) - qr(1,i-1)

48 delta(2) = ql(2,i) - qr(2,i-1)

49

50 ! Compute coeffs in the evector expansion of delta(l),delta(2)
51 al = 0.5d0* (-delta(2) + (ubar + cbar) * delta(l))/cbar
52 a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(l))/cbar
53

54 ! Finally, compute the waves.

55 wave(1l,1,i) = al

56 wave(2,1,i) = al*(ubar - cbar)

57 s(1,i) = ubar - cbar

58

59 wave(1l,2,i) = a2

60 wave(2,2,1) = a2* (ubar + cbar)
61 s(2,i) = ubar + cbar
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5.2 Approximate solver: the Roe solver

30 enddo

! Compute fluctuations amdq and apdq

if (efix) go to 110
! No entropy fix

! amdqg = SUM s*wave over left-going waves
! apdq = SUM s*wave over right-going waves

do m=1, 2
do i=2-num_ghost, num_cells+num_ghost
amdq(m,i) = 0.dO
apdq(m,i) = 0.dO
do mw=1,num_waves
if (s(mw,i) < 0.d0) then
amdq(m,i) = amdq(m,i) + s(mw,i)*wave(m,mw,i)

else
apdq(m,i) = apdq(m,i) + s(mw,1i)*wave(m,mw, 1)
endif
enddo
enddo
enddo

! with no entropy fix we are done...
return

110 continue

! With entropy fix

compute flux differences amdq and apdq.

First compute amdq as sum of s*wave for left going waves.
Incorporate entropy fix by adding a modified fraction of wave
if s should change sign.

do 200 i=2-num_ghost,num_cells+num_ghost

! check 1-wave:

! u-c in left state (cell i-1)
sO0 = qr(2,i-1)/qr(1,i-1) - dsqrt(grav*qr(1l,i-1))

! check for fully supersonic case:
if (sO0 >= 0.d0 .and. s(1,i) > 0.d0) then
! everything is right-going
do m=1,2
amdq(m,i) = 0.dO
enddo
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go to 200

f

! u-c to right of 1-wave

= qr(1l,i-1) + wave(1l,1,1i)
qr(2,i-1) + wave(2,1,1)

uhrl/hr1l - dsqrt(grav*hril)

hri
uhri
sl =

if (sO0 < 0.d0 .and. s1 > 0.d0) then
transonic rarefaction in the 1-wave
sfract = s0 * (s1-s(1,i)) / (s1-s0)
else if (s(1,i) < 0.d0) then

l1-wave is leftgoing

sfract = s(1,1)

else

endi

f

l1-wave is rightgoing
sfract = 0.d0 '# this shouldn't happen since sO < 0

do m=1,2
amdq(m,i) = sfract*wave(m,1,1i)
enddo

! check 2-wave:

! u+c in right state (cell i)
ql(2,i)/ql(1,i) + dsqrt(grav*ql(1l,i))

s3 =

! u+c to left of 2-wave

= ql(1,i) - wave(1,2,1i)
ql(2,i) - wave(2,2,1i)
uhl2/hl12 + dsqrt(grav*hl2)

hl2
uhl2
s2 =

if (s2 < 0.d0 .and. s3 > 0.d0) then
transonic rarefaction in the 2-wave
sfract = s2 * (s3-s(2,i)) / (s3-s2)
else if (s(2,i) < 0.d0) then

! 2-wave is leftgoing

sfract = s(2,1)

else
! 2-wave is rightgoing
go to 200

endif

do m=1,2
amdq(m,i) = amdq(m,i) + sfract*wave(m,2,i)
enddo

200 enddo

! compute the rightgoing flux differences:
! df = SUM s*wave 1is the total flux difference and apdq = df - amdq

do m=1, 2
do i

df

2-

num_ghost, num_cells+num_ghost
0.do
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do mw=1,num_waves
df = df + s(mw,1i)*wave(m,mw,1i)

enddo
apdq(m,i) = df - amdq(m,i)
enddo
enddo
return

end subroutine rpl

Here is how the Roe solver is implemented in Pyclaw

def shallow_roe_1D(q_1l, q_r, aux_1l, aux_r, problem_data):
r" nmn
Roe shallow water solver in 1d::
# Array shapes
num_xrp = g_l.shape[1]

# Output arrays

wave = np.empty( (num_eqn, num_waves, num_rp) )
s = np.zeros( (num_waves, num_rp) )

amdq = np.zeros( (num_eqn, num_rp) )

apdq = np.zeros( (num_eqn, num_rp) )

# Compute roe-averaged quantities

ubar = ( (q_1[1,:]/np.sqrt(q_1[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
(np.sqrt(q_1[0,:]) + np.sqrt(q_r[0,:])) )

cbar = np.sqrt(0.5 * problem_data['grav'] * (q_1[0,:] + q_r[0,:]))

# Compute Flux structure

delta = g r - q_1

al = 0.5 * (-delta[1,:] + (ubar + cbar) * delta[0,:]) / cbar
a2 = 0.5 * ( delta[1,:] - (ubar - cbar) * delta[0,:]) / cbar

# Compute each family of waves
wave[0,0,:] = al

wave[1,0,:] = al * (ubar - cbar)
s[0,:] = ubar - cbar

wave[0,1,:] = a2
wave[l,1,:] = a2 * (ubar + cbar)
s[1,:] = ubar + cbar

s_index = np.zeros((2,num_xrp))
for m in range(num_eqn) :
for mw in range(num_waves):
s_index[0,:] = s[mw, :]
amdq[m, : ] += np.min(s_index,axis=0) * wave[m,mw, : ]
apdq[m, : ] += np.max(s_index,axis=0) * wave[m,mw, : ]

return wave, s, amdq, apdq

51
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5.2.4 Sonic entropy fix

When the solution to the Riemann problem is a transonic wave, the Roe approximate solution may be
incorrect. In that case, there is an intermediate state @, between the left and right states Q;_; and Q,,
and the associated speeds are

Ali—1 = Ui—1 — \/ghi—1, ALx = U — 1/ gh.
and
)\2’* = Ux + gil*, )\2’7; = Uu; + gﬁi.

When A ;1 <0 < Ap4 (resp. A2« < 0 < Ag;), we can suspect that the 1-wave (resp. the 2-wave) is a
transonic rarefaction wave. By using the analytical expression for a centred rarefaction wave (LeVeque,
2002, see, § 13.8.5), we can deduce the interface values

1 2
hi—1/2 = @ (Uifl + 2y ghz‘f1) ; (5.25)

Uj—1/2 = Ui—1 + 2 (\/ ghi—1 — \/ghi—1/2) (5.26)

The flux fluctuations are computed using Egs. (2.32) and (2.33).

5.3 HLLE solver

5.3.1 Principle

The HLL method is a two-wave solver that considers that the solution to the Riemann problem consists
of two shock waves separating the intermediate state Q, @, from the left and right initial states Q,_;
and Q;. In § 2.6, we have seen that this intermediate state and the associated flux can be determined
by solving the Rankine-Hugoniot equations for the discontinuities across the two shock waves. Here
we provide another proof based on volume integrals.

Integrating the shallow water equations (5.5) over the domain [z1, 23] X [0, At] in the 2 — ¢ plane
(see Fig. 2.3) gives

x2 To At At
/ g(z, At)dz = / ale. 0o+ [ flater )= [ flataa. D)

where x1 = s1At and x5 = s9At. Since q(z, 0) is fixed by the initial conditions, we deduce

1 *2 Lo — Q. At
Q, = / q(z, At)dz = Qir2 = Qiam1 _ (F; — Fi_1),
T2 —T1 Jgy Ty — X1 Ty — T
where
1 At 1 At
F, 1=— , F,=— , .
N, ; f(q(z1, t))dt and At ), f(Q(z2, t))dt

We find that the intermediate state is:

_ Q52 —-Qis1 Fi—Fiy

§2 — 81 $2 — 81

Q. (5.27)
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In § 2.3.3, we derived the general expression (2.20) for computing the interface flux from the left and

right flux

Foup =@+ 20 -+ [ q, s
i—1/2 — i—1 5t i—1 St s x, x.
which gives us when we take dz = —x9 = —s2At:
Fii —s1F; i-1— Wi
F* - u — 8282@_ (5.28)
S9 — 81 S92 — 81

This expression of the flux holds when the two shock waves fan out on either side of x = 0. In that
case, the interface flux is defined as F';_; , = F'.. If both shock waves go to the right (i.e., if s; > 0)
then F';_y/5 = F;_1. In the opposite case, then F'; 1/, = F':

F, 1if 51 >0,
Fi 1p=14 Fxrifs1 202> s9, (5.29)
F;if s5 <0,

The last problem to be settled is the determination of the shock speed s; and s3. We use the suggest
of Einfeldt, which explains why the solver is called HLLE. Let us first consider the 1-wave. If this wave
is a rarefaction wave, its speeds ranges from A\;(Q;_;) to \1(Q;) = ui—1 — \/ghi_1; we select the
minimum value A\ (Q,_;). If it is a shock, its speed can be estimated using the Roe matrix (5.18):
$1 = U — ¢. As we do not know whether the 1-wave is a shock or rarefaction wave, we take the lower

bound:
s1 = min(uj—1 — \/ghi—1, 4 — ¢). (5.30)

The same applies for the 2-wave. We define s9 as the upper bound
s9 = max(u; + \/gh;, U+ ¢). (5.31)

In short, we compute the Roe averages, and deduce the shock speeds (5.30) and (5.31). The inter-
mediate state is given by Eq (5.27). The waves are

Wi=Q,-Q,_and Wy =Q, - Q,. (5.32)

The fluctuations are then

AT AQ; )y =51V
.A.+ . AQ’i—l/Z = SlWQ.
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5.3.2 Implementation in Pyclaw

def shallow_hll_1D(q_1l,q_r,aux_1,aux_r,problem_data):
r" "n
HLL shallow water solver ::

AN s W N =

W_1=0Qhat - Q 1 s 1
lambda_roe_2)
7 W 2 = Q. 1r - Q hat s_2 = max(u_r-c_r,u_r+c_xr,lambda_roe_1,
lambda_roe_2)

min(u_l-c_1,u_l+c_1,lambda_roe_1,

9 Q hat = ( f(q_.r) - f(q. 1) - s 2 *qr+s_.1*ql)/ (s_1-5s_2)
10

11 *problem_data* should contain:

12 - *g* - (float) Gravitational constant

13

14 :Version: 1.0 (2009-02-05)

15 mnn

16 # Array shapes

17 num_rp = q_1l.shape[1]

18 num_eqn = 2

19 num_waves = 2

20

21 # Output arrays

22 wave = np.empty( (num_eqn, num_waves, num_rp) )

23 s = np.empty( (num_waves, num_rp) )

24 amdq = np.zeros( (num_eqn, num_xrp) )

25 apdq = np.zeros( (num_eqn, num_rp) )

26

27 # Compute Roe and right and left speeds

28 ubar = ( (q_1[1,:]/np.sqrt(q_1[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
29 (np.sqrt(q_1[0,:]) + np.sqrt(q_r[0,:])) )

30 cbar = np.sqrt(0.5 * problem_data['grav'] * (q_1[0,:] + q_r[0,:]))
31 ur =q_r[1,:] / q.r[O0,:]

32 c_r = np.sqrt(problem_data['grav'] * q_r[0,:])

33 ul =q_1[1,:] / q_1[0, :]

34 c_l = np.sqrt(problem_data['grav'] * q_1[0,:])

36 # Compute Einfeldt speeds

37 s_index = np.empty((4,num_rp))

38 s_index[O0, :] = ubar+cbar

39 s_index[1,:] = ubar-cbar

40 s_index[2,:] = u_1l + c_1

41 s_index[3,:] = u_l - c_1

42 s[0,:] = np.min(s_index,axis=0)

43 s_index[2,:] = u_r + c_xr

44 s_index[3,:] = ur - c_r

45 s[1,:] = np.max(s_index,axis=0)

46

47 # Compute middle state

48 q_hat = np.empty((2,num_xrp))

49 q_hat[0,:] = ((q_r[1,:] - q_1[1,:] - s[1,:] * q_r[O,:]

50 + s[0,:] * q_1[0,:]) / (s[0,:] - s[1,:]))

51 q_hat[1,:] = ((q_r[1,:]**2/q_xr[0,:] + 0.5 * problem_data['grav'] * q_r
[0,:]**2

52 - (q_1[1,:]1**2/q_1[0,:] + 0.5 * problem_data['grav'] * q_1

[0,:1772)
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- s[1,:] * qr[1,:] + s[0,:] * g 1[1,:1) / (s[0,:] - s
[1,:1))
# Compute each family of waves
wave[:,0,:] = q_hat - q_1
wave[:,1,:] = q_r - q_hat
# Compute variations
s_index = np.zeros((2,num_xrp))
for m in range(num_eqn):
for mw in range(num_waves) :
s_index[0,:] = s[mw, : ]
amdq[m, : ] += np.min(s_index,axis=0) * wave[m,mw, : ]

apdq[m, :] += np.max(s_index,axis=0) * wave[m,mw, : ]

return wave, s, amdq, apdq

5.4 F-wave formulation

5.4.1 Principle

The f-wave method consists of decomposing the flux jump into f-waves
Lz
f(Qy) — F(Qi—1) = Z Zii-1/2,
k=1

where the f-wave Zy ;_ /o can be related to the right eigenvector wy, ;1 /2 of the Roe matrix:
Zyi 12 = Bri-1/2Wki—1/2
where the coefficient 3} ;_; /7 is the linear solution (see § 2.7):
51—1/2 =L (f(Qi) - f(Qi—l))'

with L = R~!. We find that

L (@ —¢r+(2+6)(ar —a) )
i—1/2 = 52 N4 ) 5.33
8=z (o i o (659
where ® is the shorthand notation: ® = u2h + gh?/2. The f-waves are then
O — @, + (4 +¢)(gr — q1) 1
Zy;i 12 =Bri—1pw1 = % PP (5.34)
and
Q=@ — (4 —¢)(gr —aq1) 1
Zai-1/2 = Bay = ) 5.35
2,i—1/2 52,1—1/2102 E PP (5.35)

5.4.2 Implementation in Pyclaw
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1 def shallow_water_ fwave_1d(q_1l, q_r, aux_1, aux_r, problem data):

44
45
46
47
48
49
50

r"""Shallow water Riemann solver using fwaves

*problem_data* should contain:

- *grav* - (float) Gravitational constant
- *dry_tolerance* - (float) Set velocities to zero if h is below this
tolerance.

nmnn

g = problem_data['grav']
dry_tolerance = problem_data['dry_tolerance']

num_rp = q_l.shape[1]
num_eqn = 2
num_waves = 2

# initializing f-waves

fwave = np.empty( (num_eqn, num_waves, num_rp) )
# right eigenvectors

rl = np.empty( (num_waves, num_xrp) )

r2 = np.empty( (num_waves, num_rp) )

# initializing fluctuations and shock speeds
amdq = np.zeros( (num_eqn, num_xrp) )

apdq = np.zeros( (num_eqn, num_rp) )

s = np.empty( (num_waves, num_rp) )

# Extract state
hl = q_1[0, :]
ql = q 1[1, :]

ul = np.where(hl > dry_tolerance, ql/hl , 0.0)
hr = q_r[0, :]

qr = q_r[1, :]

ur = np.where(hr > dry_tolerance, qr/hr, 0.0)
phi_l = hl * ul**2 + 0.5 * g * hl**2

phi_r = hr * ur**2 + 0.5 * g * hr**2

h_bar = 0.5 * (hr + hl)

# Speeds

u_hat = (np.sqrt(hl) * ul + np.sqrt(hr) * ur) / (np.sqrt(hl) + np.sqrt(
hr) )

c_hat = np.sqrt(g * h_bar)

lambdal = u_hat - c_hat

lambda2 = u_hat + c_hat

betal = (phi_l - phi_r +lambda2*(qr-ql))/2/c_hat
beta2 = (phi_r - phi_l -lambdal®(qr-ql))/2/c_hat

ri[0, :] = 1.
r1[1, :] = u_hat - c_hat
r2[0, :] =1

0]

r2[1, = u_hat + c_hat
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75
76

5.4 F-wave formulation

s[0,:] = u_hat - c_hat
s[1,:] u_hat + c_hat

# 1st f-wave
fwave[0,0, : ]
fwave[1,0, :]
# 2nd f-wave
fwave[0,1, :] beta2*r2[0, : ]
fwave[1l,1,:] = beta2*r2[1, :]

betal*ri1[o0, :]
betal*ri[1, :]

for m in range(num_eqn) :
for mw in range(num_waves) :
amdq[m, :] += (s[mw,

] * fwave[m, mw,
apdq[m, :] += (s[mw, :]

0.0)
0.0) * fwave[m, mw,

VvV A

* fwave[m, mw,

amdq[m, :] += (s[mw, 0.0)
= 0.0) * fwave[m, mw,

:]
apdq[m, :] += (s[mw, :]

return fwave, s, amdq, apdq

0]
:]

]
]

*

*

0.
0.

5
5
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5.5 Example: dam break

We consider a dam break problem with the following initial conditions: h; = 10 m et u; = 0 for x < 0,
and h; = 0.5 m et u; = 0 for x > 0. We compare the three solvers: Roe (with or without the entropy
fix), the HLLE solver, and the f-wave formulation. Figures 5.3 and 5.4 show the comparison.

Solutions at = 1.00 s

—— Exact
10.07 —e— HLLE
7.5 A —o— Roe
-~
k=}
g 5.0
()
2.5 1 ‘
0.0 A
10 4 - —— Exact
—e— HLLE
2 —o— Roe
£ 59
=
Q
=)
=]
S )
_5 T T T

x (m)

Figure 5.3 Comparison between the analytical solution, the Roe (with entropy fix) and HLLE solution.
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Solutions at t = 1.00 s

. — Exact
0.01 —o— f-wave
754 —e— Roe with no efix
~
<
& 5.0
A
2.5
0.0 1
104 —— Exact
—o— f-wave
3 Roe with no efix
£
=
Q
g
]
s 0
75 T T T T T
—4 -2 0 2 4
x (m)

Figure 5.4 Comparison between the analytical solution, the Roe (with no entropy fix) and f-wave
solution.






6.1 Theory

Let us consider the shallow water equations seen in Chap. 5, supplemented with an equation represent-
ing the advection of a scalar quantity ¢(x, t) (for instance, the concentration of a pollutant that does
not interplay with the water flow):

Oh 0q
o + Fr 0, (6.1)
dq Ohu? oh
En + e + gh£ =0, (6.2)
Ohe  Oqp
5t o 0, (6.3)

where h denotes the flow depth, ¢ = hu is the flow rate, and u the depth-averaged velocity. where g is
gravitational acceleration, and the unknowns are ¢, h and ¢. In a matrix form, Eqs. (6.1)-(6.3) takes the
form:

0 0
EQ + £f(Q) =0, (6.4)
where
q h
f=1 #/h+gh?/2 | andQ=1| q |. (6.5)
q¢ he
The Jacobian is
0 1 0
ff=| —u?+gh 2u 0 |, (6.6)
—ug ¢ u
whose eigenvalues are
)\1=u—\/ﬁ,)\2=uand)\3=u+\/ﬁ, (6.7)
associated with the right eigenvectors:
1 0 1
wi=| u—+vgh |, wo=| 0 | andws=| uv++gh |. (6.8)
¢ 1 )

The scalar quantity ¢ is decoupled from the water flow, and its speed depends only on the water flow
velocity: A\ = u. The associated field is said to be linearly degenerate because Vg - wo = 0. This gives
rise to contact discontinuities: when ¢ experiences a shock, there is a discontinuity in u, and thus the
characteristic speeds are equal on either side of the shock waves (the characteristic curves are parallel
to the shock cuves). The condition Vg - wo = 0 means that the eigenvalue is unchanged when we
move along the integral curve ws(().

61
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6.2 Roe solver

6.2.1 Derivation

The Roe solver is close to the version derived in Chap. 5. The only difference lies in the adding of a
third wave. We need the following equations to write the Roe solver’s algorithm:

« The velocities associated with the intermediate state
i—1/\/ i— i/ i _ /1
i = 91/ 1+ a/ and ¢ = {/ = (hj—1 + hy). (6.9)
Vhic1+Vhy 2

Wi =opwg, k=1, 3 (6.10)

o The waves Wy:

where oy, are the components of the o vector obtained by inverting the matrix R

1 (ﬂ + é)AQl - AQQ
a=R ' AQ= % AQ3 — ¢AQ (6.11)
“\ (—i+)AQ + AQ,

where ¢ = \/gh and AQ = (AQ1, AQ2,, AQ3). For the second wave, we impose that there
is no jump AQ); associated with the contact discontinuity, and thus we impose

g = AQg
« the characteristic speeds
$1=uU—¢, So =uand s3 =1U+¢. (6.12)

« The fluctuations are

3
AT AQ;_1)p = Zmin(/\ffl/% 0O)Wii 172,
k=1

3
A" AQuypy =Y max(A ), )W, 1),
k=1

which gives in the present context:

- if s > 0, then amdq(m,1) = s*wave.

- if s < 0, then apdq(m,1i) = s*wave.

6.2.2 Implementation in Clawpack

subroutine rpl(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
ql,qr,auxl,auxr,wave, s,amdq, apdq)

! Solve Riemann problems for the 1D shallow water equations
! with an additional passively advected tracer:

! (h)_t + (uh) x=0

! (uh)_t + ( uuh + .5*gh?2 ) x =0



32
33
34

36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

6.2 Roe solver 63

ct+ucx=20
using Roe's approximate Riemann solver with entropy fix for
transonic rarefractions.

waves: 3
equations: 3

Conserved quantities:
1 depth
2 momentum
3 tracer

See http://www.clawpack.org/riemann.html for a detailed explanation
of the Riemann solver API.

implicit none

integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &
num_cells

real(kind=8), intent(in), dimension(num_eqn, 1-num_ghost:maxmx+num_ghost

) :: ql, qr

real(kind=8), intent(in), dimension(num_aux, 1-num_ghost:maxmx+num_ghost

) :: auxl, auxr

real (kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)

real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1l-num_ghost:maxmx

+num_ghost)

real (kind=8), intent(out), dimension(num_eqn, 1-num_ghost :maxmx+

num_ghost) :: amdq,apdq

! local variables:
real(kind=8) :: al,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl12,uhl2,sfract,df
real (kind=8) :: delta(2)

integer :: i,m,mw
logical :: efix
data efix /.true./ ! Use entropy fix for transonic rarefactions

! Gravity constant set in setprob.f or the shallowlD.py file
real(kind=8) :: grav
common /cparam/ grav

! Main loop of the Riemann solver.
do 30 i=2-num_ghost,num_cells+num_ghost

! compute Roe-averaged quantities:

ubar = (qr(2,i-1)/dsqrt(qr(1l,i-1)) + ql(2,i)/dsqrt(ql(1,1)))/ &
( dsqrt(qr(1,i-1)) + dsqrt(ql(1l,i)) )

cbar=dsqrt(0.5d0*grav* (qr(1,i-1) + ql(1,1)))

! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)
delta(l) = ql(1,i) - qr(1,i-1)
delta(2) = ql(2,i) - qr(2,i-1)

! Compute coeffs in the evector expansion of delta(l),delta(2)
al = 0.5d0* (-delta(2) + (ubar + cbar) * delta(l))/cbar
a2 = 0.5d0* ( delta(2) - (ubar - cbar) * delta(1l))/cbar

! Finally, compute the waves.
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62 wave(1l,1,i) = al

63 wave(2,1,1) = al*(ubar - cbar)

64 wave(3,1,1i) = 0.dO0

65 s(1,i) = ubar - cbar

66

67 wave(1l,2,i) = a2

68 wave(2,2,1) = a2* (ubar + cbar)

69 wave(3,2,1) = 0.d0

70 s(2,i) = ubar + cbar

71

72 wave(1,3,i) = 0.dO

73 wave(2,3,1) = 0.dO0

74 wave(3,3,1) = ql(3,1) - qr(3,i-1)

75 s(3,1i) = ubar

76

77 30 enddo

78

79 ! Compute fluctuations amdq and apdq

80 | e

81

82 if (efix) go to 110

83

84 ! No entropy fix

85 | ceccoscocsssccoscscossososscsoscossssosossssss
86 ! amdq = SUM s*wave over left-going waves
87 ! apdqg = SUM s*wave over right-going waves
88

89 do m=1,num_waves

90 do i=2-num_ghost, num_cells+num_ghost

91 amdq(m,i) = 0.dO

92 apdq(m,i) = 0.dO

93 do mw=1,num_waves

94 if (s(mw,i) < 0.d0) then

95 amdq(m,i) = amdq(m,i) + s(mw,1i)*wave(m,mw, i)
96 else

97 apdq(m,i) = apdq(m,i) + s(mw,i)*wave(m,mw, i)
98 endif

99 enddo

100 enddo

101 enddo

102

103 ! with no entropy fix we are done. ..

104 return

105

106 | cecccoccssssccsocccssssssscsosssssossssssssossss
107 110 continue

108

109 ! compute the rightgoing flux differences:
110 ! df = SUM s*wave is the total flux difference and apdq = df - amdq
111

112 do 1 = 2-num_ghost, num_cells+num_ghost

113 do m=1,2

114 df = 0.d0

115 do mw=1, 2

116 df = df + s(mw,i)*wave(m,mw, i)
117 enddo

118 apdq(m,i) = df - amdq(m,1i)

119 enddo
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120

121 ! tracer (which is in non-conservation form)
122 if (s(3,1) < 0) then

123 amdq(m,i) = amdq(m,i) + s(3,i)*wave(m,3,1)
124 else

125 apdq(m,i) = apdq(m,i) + s(3,i)*wave(m,3,1)
126 endif

127

128 enddo

129

130 return

131
132 end subroutine rpl

6.2.3 Implementation in Pyclaw

def shallow_roe_1D(q_1l, q_r, aux_1l, aux_r, problem_data):

1
2 r" nn
3 Roe shallow water solver in 1d
4 nmon
5
6 # Array shapes
num_xrp = g_l.shape[1]
8 num_eqn =3
9 num_waves = 3

11 g = problem_data['grav']

13 # Output arrays

14 wave = np.empty( (num_eqn, num_waves, num_rp) )
15 s = np.zeros( (num_waves, num_rp) )
16 amdq = np.zeros( (num_eqn, num_xrp) )
17 apdq = np.zeros( (num_eqn, num_rp) )

19 # Compute roe-averaged quantities

20 ubar = ( (q_1[1,:]/np.sqrt(q_L1[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
21 (np.sqrt(q_1[0,:]) + np.sqrt(q_r[0,:])) )

22 cbar = np.sqrt(0.5 * g * (q_1[0,:] + q_r[0,:]))

23

24 # Compute Flux structure

25 delta =q.1r - q_l

26 deltal = q_r[0,:] - g_1[0, :]

27 delta2 = q_r[1,:] - q_1[1,:]

28 alphal = 0.5 * (-delta2 + (ubar + cbar) * deltal) / cbar
29 alpha2 = 0.5 * ( delta2 - (ubar - cbar) * deltal) / cbar
30

31 # Compute each family of waves

32 wave[0,0,:] = alphal

33 wave[1,0,:] = alphal * (ubar - cbar)

34 wave[2,0,:] = 0.

35 s[o0, :] = ubar - cbar

36

37 wave[0,2,:] = alpha2

38 wave([1l,2,:] = alpha2 * (ubar + cbar)

39 wave[2,2,:] = 0.
40 s[2,:] = ubar + cbar
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wave[0,1,:] = O.
wave[1l,1,:] = 0.
wave[2,1,:] = q_r[2,:] - q_1[2,:]
s[1,:] = ubar
s_index = np.zeros((3,num_rp))
for m in range(num_eqn):
for mw in range(num_waves):
s_index[0,:] = s[mw, :]
amdq[m, : ] += np.min(s_index,axis=0) * wave[m,mw, : ]
apdq[m, : ] += np.max(s_index,axis=0) * wave[m,mw, : ]

return wave, s, amdq, apdq

6.3 HLLC Solver

6.3.1 Principle

The HLLC solver is an extension of the HLL scheme proposed by Eleuterio Toro (Toro, 2001) to cope
with the existence of a contact discontinuity. The HLL solver defines an intermediate state separating
the left and right initial states. The HLLC introduces two distinct intermediate states split by the second
characteristic x = At (see Fig. 6.1). The fluxes associated with the two intermediate states are defined

using the Rankine-Hugoniot equation:

F., - F =35(Q,,—Q), (6.13)

F*ﬂ“ - FT = 53(Q*,r - Qr) (614)

where F,; = f(Q, ;) and F.., = f(Q, ).

x =Mt T = At T = Agt

Ql Ql,* /’/ Qr,* Qr

Figure 6.1 The three waves separating the left and right initial states.
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In the absence of the advection equation (6.3), there would be only one intermediate state. As
tracer advection does not interplay with water flow, we impose that the first two components (those
associated with the water flow) of F, . and F, ; are identical:

A3Fp1— MFq Az — A\
Fujy = Fopy = 23507 ALy , 6.15
21 ol J— E yv— (6.15)
A3Fj o — AMFrp Az — A\
Fujg—=Fug= 3027 Afr2 M7 6.16
12 2 J— RS v (6.16)

where Fy = huand F» = hu®+gh? /2. For the third component, we impose that there is no jump across
the 1- and 3-characteristics. The only jump in hu¢ is across x = Aat. Because the third component
hug is the product of ¢ and the first F' component hu, then we can write

Fi13= Fai191, (6.17)

F*,r,?) = F*,T,2¢T' (6.18)
The flux at the interface x = 0 is thus F} ; 3 if Ao > 0, and F} ;.3 if Ay > 0.

An estimate of the wave speed A3 is (Toro, 2001):

_ Ay (uy — A3) — Ashy(ug — Aq)

A
2 By (Ur — Ag) — hy(ug — A7)

(6.19)

We consider three waves
Wl = Ql,* - Qla W2 - Q’r,* - Ql,* and W3 - Qr - Qr,*' (620)

In § 2.6 and 5.3.1, we have shown that the intermediate state for the water flow is:

53Qf — lezr B Fi— F;r
83 — 81 $3— 581

Q! =

where QI = (h, hu) and F' = (¢, ®) (with ¢ = hu and & = hu® + gh?/2) are the first two
components of @) and F'. We thus have

sshy —sihy  s3q; — s1qu

hye =
83 — 81 §3 — 81
and
s3qr — s1q1 $3Pr — 519y
g = (hu), = - - - :
83 — 81 83 — 81
We then deduce:

he — Iy ; <o> ; <m—m>
wi = , W= and W = .
! (%—m) 2 0 3 4 — s

For the third component, we have

Wiz =0, Wao3 = ¢, — ¢, and Wy 3 =0.
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6.3.2 Implementation in Pyclaw

def shallow_hllc_1D(q_l,q_r,aux_l,aux_r,problem_data):

1

2 r" nn

3 HLLC shallow water solver ::

4 nmnn

5 # Array shapes

6 num_rp = g_l.shape[1]
num_eqn =3

8 num_waves = 3

10 g = problem_data['grav']

12 # Output arrays

13 wave = np.empty( (num_eqn, num_waves, num_rp) )
14 S = np.empty( (num_waves, num_rp) )

15 amdq = np.zeros( (num_eqn, num_xrp) )

16 apdq = np.zeros( (num_eqn, num_xrp) )

18 h 1 =q_1[0,:]

19 h r = q_r[0,:]

20 hu 1 = q_1[1,:]

21 hu r = q_r[1,:]

22 ur =hur/hr

23 c_r = np.sqrt(g * h_r)

24 ul =hu l/h 1

25 c_1l = np.sqrt(g * h_1)

26 Phi_ 1 = u_1**2*h_1+0.5*g*h_1**2

27 Phi_ r = u_r**2*h_r+0.5*g*h_r**2

28

29 # Compute Roe and right and left speeds

30 u_hat = (hu_l/np.sqrt(h_1) + hu_r/np.sqrt(h_r))/(np.sqrt(h_1) + np.sqrt
(h_r))

31 c_hat = np.sqrt(0.5 * g * (h_r + h_1))

33 # Compute Einfeldt speeds

34 s_index = np.empty((2,num_xrp))
35 s_index[0,:] = u_hat - c_hat

36 s_index[1,:] = u_l - c_1

37 s[0,:] = np.min(s_index,axis=0)
38 s_index[0,:] = u_r + c_r

39 s_index[1,:] = u_hat + c_hat

40 s[2,:] = np.max(s_index,axis=0)

42 lambda_ 1 = u_hat - c_hat

43 lambda_3 = u_hat + c_hat

44 u_toro = (lambda_1*h_r* (u_r-lambda_3) - lambda_3*h_1* (u_l-lambda_1) )
\

45 /(h_r* (u_r-lambda_3) - h_1*(u_l-lambda_1))

46 s[1,:] = u_hat

47

48 # Compute middle state

49 h_star = (h_r * s[2,:] - h_1 * s[0,:]-(hu_r-hu_1))/(s[2,:]-s[0,:])

50 hu_star = (hu_r * s[2,:] - hu_l * s[0,:]-(Phi_r-Phi_1))/(s[2,:]-s[0,:])

51

52 # Compute each family of waves

53 wave[0,0,:] = h_star - h_1

54 wave[1,0,:] = hu_star - hu_l1l
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wave[2,0,:] = 0.

wave[0,1,:] = O.

wave[1l,1,:] = 0.

wave[2,1,:] = q_r[2,:]-q_1[2, :]
wave[0,2,:] = h_r - h_star
wave[1,2,:] = hu_r - hu_star
wave[2,2,:] = 0.

# Compute variations
s_index = np.zeros((3,num_xrp))
for m in range(num_eqn) :
for mw in range(num_waves) :
s_index[0,:] = s[mw, : ]

amdq[m, :] += np.min(s_index,axis=0) * wave[m,mw, : ]
apdq[m, : ] += np.max(s_index,axis=0) * wave[m,mw, : ]

return wave, s, amdq, apdq

6.4 F-wave formulation

6.4.1 Principle

The f-wave method consists of decomposing the jump in the flux (6.5) into three f-waves

where the f-wave Zy ; 1/, can be related to the right eigenvector wy, ;1 /2 of the Roe matrix:

3
FQ) = F(Qi) =) Zii
k=1

Zyi 12 = Bri-1/2Wki—1/2

where the coefficient 5} ;_1 /7 is the linear solution (see § 2.7):

Bi1e =L - (£(Q;) — £(Qi-1))-

with L = R~!. We find that:

L[ &=t (@40 (g —q)
Bi—12 = 2% 2¢(¢rgr — o1 + (ar — 1))
N\ e -0 (- &) (a —a)

where ® = hu? + gh?/2. The f-waves are then:

and

O -0, + (4 ¢)(qr — q)
2¢

Zl,i71/2 = IBI,i—l/le =

Zji-1/2 = Bai—1ow2 = (drqr — d1q1 — H(qr — 1))

®r — @ — (4 —¢)(gr —a1)
2¢

Z3; 1/2 = B3 1/2W3 =

F-wave formulation

i

U

>

S+ =

1

—_ o o 9 |

¢

>

69

(6.21)
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As for the Roe solver, we assume that there is no jump in ¢ for the 1- and 3- shock waves while for the
2-wave, there is no jump in h and hu (and so ¢, = q; = § = uh), and so the correct f-waves are:

1
O -+ (@t —a) [ .,
Zy ;172 = Bri—1pw1 = - 2 - u—c |, (6.22)
c
0
0
Zyi1/2=PBai—1/pw2 = (¢ — )G | O (6.23)
1
and
1
B~ — (= —a) [ .
Z3; 1/2 = B3 i_10ws = - E - u+c (6.24)
c
0
6.4.2 Implementation in Pyclaw
1 def shallow_hllc_fwave_1d(q_l, q_r, aux_1, aux_r, problem_data):
2 r"""Shallow water Riemann solver using fwaves
3 nman
4
5 g = problem_data['grav']
6 dry_tolerance = problem_data['dry_tolerance']
8 num_rp = g_l.shape[1]
9 num_eqn =3
10 num_waves = 3
11
12 # Initializing arrays
13 fwave = np.empty( (num_eqn, num_waves, num_rp) )
14 s = np.empty( (num_waves, num_rp) )
15 amdq = np.zeros( (num_eqn, num_rp) )
16 apdq = np.zeros( (num_eqn, num_rp) )
17 rl = np.zeros( (num_waves, num_rp) )
18 r2 = np.zeros( (num_waves, num_rp) )
19 r3 = np.zeros( (num_waves, num_rp) )
20
21 # Extract state
22 h 1 =q_1[0, :]
23 h r = q_r[0, :]
24 hu 1 = q_1[1, :]
25 hu r = q_r[1, :]
26 u_l = np.where(h_1l > dry_tolerance, hu_1 / h_1, 0.0)
27 u_r = np.where(h_r > dry_tolerance, hu_r / h_r, 0.0)
28
29 # Flux and Roe depth
30 phi 1 =h 1 * u 1**2 + 0.5 * g * h_1**2
31 phi_r =h r * ur**2+ 0.5 " g * h r**2
32 h_bar = 0.5 * (h_1 + h_r)
33
34 # Speeds
35 u_hat = (np.sqrt(h_1)*u_1 + np.sqrt(h_r)*u_r)/ (np.sqrt(h_1l) + np.sqrt(
h_r))

36 c_hat = np.sqrt(g * h_bar)
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69
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s[0, :] = np.amin(np.vstack((u_l1 - np.sqrt(g * h_1), u_hat - c_hat)),
axis=0)

s[1, :] = u_hat

s[2, :] = np.amax(np.vstack((u_r + np.sqrt(g * h_r), u_hat + c_hat)),
axis=0)

betal = (phi_l - phi_r + (u_hat+c_hat)* (hu_r-hu_1))/2./c_hat
beta2 (q_r[2, :]- q_1[2, :])*u_hat
beta3 = (phi_r - phi_l - (u_hat-c_hat)*(hu_r-hu_1))/2./c_hat

rl[o, = 1.
r1[1, :] = u_hat - c_hat
ri[2, :] = 0.

—
|

r2[0, :] = 0.
r2[(1, :] = 0.
r2[2, :] = 1.

r3[0, :] = 1.
r3[1, :] = u_hat + c_hat
r3[2, :] = 0.

fwave[0, O, :] = betal * r1[0, :]
fwave[1l, 0, :] = betal * ri1[1, :]
fwave[2, 0, :] = betal * r1[2, :]

fwave[0, 1, :] = beta2 * r2[0, :]
fwave[1l, 1, :] = beta2 * r2[1, :]
fwave[2, 1, :] = beta2 * r2[2, :]

fwave[0, 2, :] = beta3 * r3[0, :]
fwave[1l, 2, :] = beta3 * r3[1, :]
fwave[2, 2, :] = beta3 * r3[2, :]

for m in range(num_eqn):
for mw in range(num_waves):
amdq[m, :] += (s[mw, :] < 0.0) * fwave[m, mw, :]
apdq[m, :] += (s[mw, :] 0.0) * fwave[m, mw, :]

return fwave, s, amdq, apdq

6.5 Example: dam break

We consider a dam break problem with the following initial conditions: A; = 3 m et u; = 0 for x < 0,
and Ay = 1 metu; = 0 for x > 0. We compare the two solvers: Roe (with no entropy fix) and the
f-wave formulation of the HLLC solver. Figures 6.2 shows the comparison.
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Solutions at t = 1.00 s
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Figure 6.2 Comparison of the three methods: Roe solver, HLLC, and the f-wave variant of the HLLC
algorithm. Computations done with g = 1 m/s?.



7.1 Theory

7.1.1 flow resistance
In an one-dimensional fixed Cartesian frame, the Saint-Venant equations take the tensorial form

0
aQ +Vf@Q) =S, (7.1)

where Q = (h, hu) is the unknown, and S = (0, .5) is the source term. The computation strategy
involves first solving the homogenous problem (LeVeque, 2002) :

0
EQ +V£(Q) =0, (7.2)
then correcting the solution by taking the effect of the source term on the momentum ¢ = hu:
Ca=5(Q). 73
el '

where S(Q) takes the following form if we consider a flow experiencing flow resistance:

09
SU) = —WMU, (7.4)
= K2h7/3 lqla, (7.5)

where K is the Manning-Strickler coefficient.

Let us assume that we have computed the solution g, to the homogenous equation (7.2), and we
are now seeking the solution at time k + 1. Using a semi-implicit discretization of (7.3) leads to

qk+1 - q* - d K2h7/3 |q |qk+1 (76)
« gdt
¢ = ¢! (1 MINIE lq |) , (7.7)
q*
¢t = (7.8)
1+ dth2h7/3 ral

73
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averaging, 13

CFL, see Curant-Friedrichs-Lewy14
characteristic
curve, 6
form, 3, 6
variable, 1
Clawpack, 5, 15, 18-20, 23, 24, 28, 47
condition
Courant-Friedrichs-Lewy, 14
entropy, 18
Lax, 8
Rankine-Hugoniot, 44
contact discontinuity, 61
convexity, 6
Courant, 14
curve
characteristic, 9
integral, 10

dam break, 44, 58, 71

degenerate, 61

discontinuity
contact, 61, 66

eigenvalue, 1

eigenvector
left, 1
right, 1, 4

entropy, 18
fix, 19, 34, 52

equation
advection, 6
Burger, 33
homogenous, 73
nonlinear, 6
Rankine-Hugoniot, 6
Saint-Venant, 10, 43, 61
shallow water, 10, 43, 61
tracer, 61

f-wave, 22
factor
integrating, 9
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flow resistance, 73
fluctuation, 15, 16, 20
flux, 6

interface, 16

Godunov, see aso solver14
method, 14, 15

high-resolution, 23
homogenous, 1
hyperbolic, 1

Lax
entropy, 18
limiter, 14

Manning-Strickler, 73
mesh, 13
method
f-wave, 22
high-resolution, 23

phase
plane, 5
problem
Cauchy, 3
Pyclaw, 25, 29, 39, 51, 54, 55
pyclaw, 65, 68

Riemann
invariant, 1, 8-10
problem, 4, 7
variable, 1, 8, 9
Roe, 20
matrix, 46, 47, 53, 55, 69

Saint-Venant, see equation
shallow water, see equation
Solver
Roe, 62
solver
approximate, 17
f-wave, 22, 55, 69
HLL, 17, 21, 22
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HLLC, 66
HLLE, 52
linearised, 20
Roe, 20, 21, 34, 45, 71
two-wave, 21, 52
source
term, 1, 73
stability, 14
system
nonlinear, 8

transonic, see wave

wave
acoustic, 27
rarefaction, 7, 10, 17, 18, 20, 33, 44
shock, 17, 18, 20, 33, 44
simple, 3, 10
transonic, 14, 17-20, 34, 52
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