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Foreword

This tutorial is primarily based on the material written by Randall LeVeque and his collaborators
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Notation
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notation: vectors and tensors are denoted by boldface symbols. I also use the operator · to refer to the
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contracted product (“produit une fois contracté” in French) and : for the double-contracted product: for
tensors A and B whose matrix representation is Aij (i row, j column index) and Bij , respectively, v
and w two vectors of coordinates vi and wi in a given basis, then

A ·B =
∑
j

AijBjk

A : B =
∑
i,j

AijBji

A · v =
∑
j

Aijvj

w · v =
∑
i

wivi



CHAPTER1
Hyperbolic equations

Let us start with linear hyperbolic systems. Nonlinear equations are more complex, but the solutions
to the Riemann problem have a similar structure to that exhibited by linear systems. Furthermore,
finite-volume numerical solvers involve approximate (linearised) solutions to this Riemann problem.

1.1 Riemann problems for linear hyperbolic equations

1.1.1 Linear system

For one-dimensional problems, a linear hyperbolic equation is defined by an equation of the form

∂

∂t
q +A · ∂

∂x
q = S, (1.1)

where q is a vector with m components representing the unknowns, A is a m × m matrix whose
eigenvalues are assumed to be real and distinct, and S is a vector (of dimension m) called the source
term, x is the spatial dimension, and t is time. For the moment, we assume that S = 0 (the equation is
said to be homogenous). The matrix A has m real eigenvalues λi, which are associated with m left vi

and m right eigenvectors wi:

A ·wi = λiwi and vi ·A = λivi. (1.2)

In the following, the eigenvalues are ranked in ascending order: λ1 < λ2 · · · < λm.

1.1.2 Diagonalization

If we multiply Eq. (1.1) by vi, we obtain:

vi ·
∂

∂t
q + vi ·A · ∂

∂x
q = vi · S. (1.3)

We introduce characteristic variable or Riemann variable (also called Riemann invariant when S = 0):

ri = vi · q and the vector r = (r1, · · · , rn), (1.4)

and the diagonal matrixΛ = diag(λ1, · · ·λm). With this notation, we transform Eq. (1.3) into a system
of m uncoupled equations:

∂

∂t
r +Λ · ∂

∂x
r = L · S, (1.5)

1



2 Chapitre 1 Hyperbolic equations

where L is a matrix whose rows are made of the left eigenvectors: L = [v1, · · · ,vm]T .

Similarly to L, we define R is a matrix whose columns are made of the right eigenvectors: R =
[w1, · · · ,wm]. The following relationships hold true

A ·R = R ·Λ, (1.6)
L ·A = Λ ·L. (1.7)

We also have:

A = R ·Λ ·R−1, (1.8)
A = L−1 ·Λ ·L. (1.9)

Because when taking the transpose of vi ·A = λivi we have

(vi ·A)T = AT · vT
i = λiv

T
i , (1.10)

the left eigenvectors vi of A is also the right eigenvector of AT .

Multiplying Eq. (1.6) by L and Eq. (1.7) by R, we get

L ·A ·R = L ·R ·Λ = Λ ·L ·R. (1.11)

When two matriceM andD (whereD is diagonal) satisfyD ·M = M ·D, thenM is diagonal. This
means here that M = L ·R is diagonal. There is no unique choice as any multiple of an eigenvector
is also an eigenvector. We can define the right eigenvectors such that:

R = L−1. (1.12)

A geometrical interpretation ofR andL is the following: as weR ·L = L−1 ·L = 1 (where 1 denotes
the identity matrix), then the left and right eigenvectors are orthogonal two by two: vi ·wi ̸= 0 and
vi ·wk = 0 for k ̸= i.

In practice, we determine the right eigenvectors wi. The left eigenvectors are the right eigenvec-
tors of the transpose of A. The resulting matrices R and L satisfy: R · LT = diag(wk · vk)1≤k≤1.
Furthermore, by normalizing the right eigenvectors (w̃i = wi/|wi|), we can enforce L = R−1, a
relationship that turns out to be helpful thereafter.

Example Let us consider the 3× 3 matrix

A =

 1 2 3
4 5 6
2 8 2

 .

The eigenvalues are λ1 = −3, λ2 = −1, λ3 = 12 associated with the right eigenvectors

w1 =

 −1
−1
2

 , w2 =

 −3
0
2

 , w3 =

 11
26
23

 ,

and the left eigenvectors

v1 =

 4
−7
6

 , v2 =

 5
−3
1

 , v3 =

 2
4
3

 .
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1.1.3 Characteristic form and solution to the Cauchy problem for ho-
mogenous equations

Each uncoupled equation of the system (1.3) can be put into a characteristic form

∂ri
∂t

+ λi
∂ri
∂x

= vi · S ⇔ dri
dt = vi · S along the straight line dx

dt = λi. (1.13)

For a homogenous problem, this means that ri is constant along the line x = λit+ x0. If we know the
initial value q0 = q(x, t = 0), then we know the initial condition for r: r0 = r(x, t = 0) = L · q0.
For a homogenous equation, the solution to Eq. (1.13) is

ri(x, t) = ri,0(x− λit), (1.14)

and thus the solution to the initial-value (Cauchy) problem is

q(x, t) = R · r =

m∑
i=1

ri(x, t)wi, (1.15)

=
m∑
i=1

r0,i(x− λit)wi, (1.16)

=
m∑
i=1

(vi ·q0 (x− λit))wi. (1.17)

The solution q is a combination of the right eigenvectors. In other words, the initial conditions prop-
agate along the directions wi. This propagation is a consequence of the travelling-wave structure.
Indeed, the linear hyperbolic system (1.1) is invariant to the travelling wave group. If we seek a solu-
tion in the form s(x, t) = s(ξ) where ξ = x − at and a is the wave velocity, then Eq. (1.1) leads to:

−a
d
dξs+A · d

dξs = 0. (1.18)

This shows that s′ is an eigenvector and a must be one of the eigenvalues, say λi. Substituting the
Cauchy solution Eq. (1.15) into Eq. (1.18) shows that this condition is met. For strictly hyperbolic
systems (i.e., when all eigenvalues are real and different), the right eigenvectors form a basis, and the
decomposition (1.15) is unique.

The solution to the Cauchy problem is the superposition ofmwaves, each is advected independently
at the velocity λi along the direction wi, with no change in shape when the system is homogenous.

1.1.4 Simple wave

When the initial conditions are constant for all but one value k

ri,0(x) = ri for i ̸= k and rk,0(x) = rk,0(x− λkt), (1.19)

then the solution
q(x, t) = q0(x− λkt) = rk,0(x− λkt)wk +

∑
i ̸=k

riwi (1.20)

is called a simple wave. Propagation concerns the direction k alone.
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1.1.5 Riemann problem: definition

A Riemann problem is an initial-value problem for which the initial value is piecewise constant with a
single jump discontinuity at some point, by default at x = 0:

q =

{
ql if x < 0,
qr if x > 0.

(1.21)

Because the right eigenvectors form a basis, we can decompose ql and qr in this basis

ql =
m∑
i=1

rl,iwi and qr =
m∑
i=1

rr,iwi (1.22)

and each Riemann variable satisfies the initial condition

ri,0 =

{
ri,l if x < 0,
ri,r if x > 0.

(1.23)

Each initial discontinuity propagates with speed λi:

ri =

{
ri,l if x < λit,
ri,r if x > λit.

(1.24)

Let us consider a point P at (x, t). We refer to I as the maximum index i for which x > λit. As
illustrated by the example of Fig. 1.1, we can decompose the solution into two parts, either reflecting
the left or right initial conditions

q =

I∑
i=1

ri,rwi +

m∑
i=I+1

ri,lwi. (1.25)

Figure 1.1 Characteristic lines emanating from the origin point (solid lines) and joining P (dashed
lines). In this figure, we have I = 1: P is on the right of the first characteristic curve x = λ1t, and on
the left of the two others. Here we have q = r1,rw1 + r2,lw2 + r3,lw3.

When crossing the ith characteristic, there is a jump from ri,l to ri,r while the other coefficients
remain constant. As illustrated in Fig. 1.1, the plane is split into different wedges separated by charac-
teristic lines oriented by wi. Across the ith characteristic, the solution q experiences a jump:

∆q = (ri,r − ri,l)wi, (1.26)
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which can be written as
∆q = αiwi with αi = ri,r − ri,l. (1.27)

For linear hyperbolic systems, a strategy of solving the Riemann problem is to decompose the initial
jump ∆qr − ql in the right eigenvector basis

∆q =

m∑
i=1

αiwi, (1.28)

which requires determining the coefficient αi

R ·α = ∆q ⇒ α = R−1 ·∆q = L ·∆q. (1.29)

As this decomposition is central to Clawpack, we introduce the wave

W i = αiwi. (1.30)

The solution to the Riemann problem can thus be written

∆q =

m∑
i=1

αiwi, (1.31)

q = ql +
I∑

i=1

W i, (1.32)

q = qr −
m∑

i=I+1

W i, (1.33)

q = ql +
m∑
i=1

H(x− λit)W i, (1.34)

where H is the Heaviside function. Equation (1.32) can also be written

q = ql +
∑

λi<x/t

W i, (1.35)

which can be interpreted as follows (see an example in Fig. 1.1): at time t and position x, the state q is
the left initial state to which contributions from the right initial state are added if this point is on the
right of the characteristic x = λit (that is, when x > λit).

1.1.6 Phase plane representation for m = 2 equations

For a linear system of two hyperbolic equations, the solution consists of two discontinuities x = λ1t and
x = λ2t, and within the wedge formed by these two discontinuities there is an intermediate (constant)
state

q∗ = r1,rw1 + rr,lw2. (1.36)

The jump from ql to q∗ is (r1,r − r1,l)w1, while the jump from qr to q∗ is (r2,r − r2,l)w2. In other
words, starting from the left state ql, we follow the directionwl to reach the intermediate state q∗, and
finally the direction w2 to reach the right state qr , shown by Fig. 1.2.



6 Chapitre 1 Hyperbolic equations

(a)

-0.5 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

2

3

4

(b)

Figure 1.2 (a) Solution to the Riemann problem in the x− t plane. (b) Phase plane representation.

1.2 Nonlinear scalar problem

Let us consider the nonlinear hyperbolic equation (nonlinear advection equation):

∂

∂t
q +

∂

∂x
f(q) = s(q, x, t) ⇔ ∂

∂t
q + c(q)

∂

∂x
q = S(q, x, t), (1.37)

where f is the flux function (a function of q, and possibly of x and t), q is the unknown, S is the source
term, and c = f ′(q) is the celerity. We assume that the celerity is an increasing function of q, which
implies that the flux function is convex (f ′′ > 0). Nonconvex functions are possible, but they lead to
difficulties that we will not address here.

1.2.1 Characteristic form

Equation (1.37) can be put in the characteristic form

d
dtq = s(q, x, t) along +

dx
dt = c(q). (1.38)

When the source term is zero (S = 0), then q is constant along the characteristic curve, which is
therefore a straight line of slope c.

1.2.2 Rankine-Hugoniot equation

As the celerity c(q) is function of q, the characteristic curves are not parallel like in the linear case, and
may intersect. As multivalued functions are not possible (this would otherwise break the assumptions
of smoothness and uniqueness of the solution), then a shock takes place and connects two continuous
branches of the solution. By taking a control volume around the shock position x = s(t), we can
deduce that its velocity ṡ is given by the Rankine-Hugoniot equation:

ṡ =
Jf(q)KJqK , (1.39)
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where the double brackets denote the flux jump across the shock wave

Jf(u)K = lim
x→s, x>s

f(q)− lim
x→s, x<s

f(q).

-0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a)

Figure 1.3 (a) multivalued function. (b)Themultivalued part is replaced by a discontinuities. The areas
of the two lobes are identical.

1.2.3 Riemann problem

Let us consider the Riemann problem for a homogeneous hyperbolic equation:

∂

∂t
q +

∂

∂x
f(q) = 0, (1.40)

subject to the initial condition

q(x, 0) = q0(x) =

{
qL if x < 0,
qR if x > 0,

where qL and qR are constant. When the flux function is convex, two solutions are possible depending
on these constants:

• rarefaction waves,

• show waves.

Let us start with rarefaction waves. This equation is invariant to the transformation x → αx et
t → αt. A solution can be sought in the form q(ξ) with ξ = x/t. Substituting this form into Eq. (1.40):(

f ′(q(ξ))− ξ
)
q′ = 0.

The solution is
q(x, t) = f ′(−1)(ξ)
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where f ′(−1) is the inverse of f ′. The whole solution is

q(x, t) =


qL if x

t
≤ f ′(qL),

f ′(−1)(ξ) if f ′(qL) ≤
x

t
≤ f ′(qR)

qR if x

t
≥ f ′(qR).

Let us now consider a shock wave. It position is x = s(t) = ṡt. The Rankine-Hugoniot equation
(1.39): Jf(q)K = ṡJqK. The whole solution is:

q(x, t) =

{
qL if x < ṡt,
qR if x > ṡt.

The shock velocity ṡ is given by:

ṡ =
f(qL)− f(qR)

qL − qR
.

Let us summarise the two possible solutions: Recall that when f ′′ > 0, the celerity c(q) = f ′(q) is
an increasing function of q, which is also the slope of the characteristic curves (straight lines):

• qR > qL, λ(uR) > λ(uL). At time t = 0, the two families of characteristic curves fan out.
Equation ξ = f ′(U(ξ)) is an implicit solution over the interval λ(qR) > ξ > λ(qL).

• qR < qL. The two families of characteristic curves cross each other as of t = 0. The shock wave
moves at speed λ(qR) < ṡ < λ(qL). This condition is called the Lax condition, which defines
whether a shock is physically admissible.

1.3 Nonlinear systems

Let us now consider the nonlinear case for one-dimensional problems

∂

∂t
q +

∂

∂x
f(q) = S ⇔ ∂

∂t
q +A(q) · ∂

∂x
q = S, (1.41)

where q is a vector with m components representing the unknowns, f is the flux function, A = ∇f
is its Jacobian (the gradient involves the derivatives with respect to the q components). We assume
that A is m ×m matrix whose eigenvalues λi are assumed to be real and distinct—like for the linear
case—over a certain domain.

1.3.1 Riemann invariants

The computational strategy closely follows the one taken for the linear case. It relies on the concept of
differential invariants. Let us illustrate this concept form = 2. The unknown vector q has components
(q1, q2). We seek a new variable r = {r1, r2} such that:

v1 · dq = µ1dr1,

v2 · dq = µ2dr2,

where µi are the integrating factors such that dri are exact differentials. By expanding the differential
dr1, we get:

µ1dr1 = µ1

(
∂r1
∂q1

dq1 +
∂r1
∂q2

dq2
)

= v11dq1 + v12dq2.
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Upon identification with the former equation, we deduce:

∂r1
∂q1

=
v11
µ1

,

and
∂r1
∂q2

=
v12
µ1

.

We deduce the governing equations for r1 and µ1. By dividing the two equations above, we obtain:

∂r1
∂q1

=
v11
v12

∂r1
∂q2

, (1.42)

while the integrating factor is obtained by applying the Schwarz theorem

∂

∂q1

v12
µ1

=
∂

∂q2

v11
µ1

.

We have seen above that the left and right eigenvectors are orthogonal two by two, which means here
that v1 ·w2 = 0 (that is, v12 = w21 and −v11 = w22). We can then transform Eq. (1.42) into

w21
∂r1
∂q1

+ w22
∂r1
∂q2

= 0 ⇒ w2 · ∇r1 = 0. (1.43)

Note that :

• in the literature, the k-invariant rk is defined simply as the solution towk ·∇rk = 0, and its label
differs from the one used here: r1 was associated with the eigenvalue λ1, and is a 2-invariant of
Eq. (1.41).

• when there are m > 2 equations, then there are usually m − 1 distinct functions rk that are
k-invariants.

Equation (1.42) can be cast in the form

dq1
v12

=
dq2
v11

=
dr1
0

,

whose integration provides r1. Equation (1.41) leads to:

v1 ·
dq
dt

∣∣∣∣
x=X1(t)

+ v1 · S = 0,

where the characteristic curve x = X1(t) satisfies dX1/dt = λ1. It is called the 1-characteristic. We
have:

µ1
dr1
dt

∣∣∣∣
x=X1(t)

= v1 · S.

Similarly for r2:

µ2
dr2
dt

∣∣∣∣
x=X2(t)

= v2 · S.

The compact form of Eq. (1.41) after the change of variable is:

dr
dt

∣∣∣∣
r=X(t)

= L · S, (1.44)

where L = [v1, v2]
T and r = {r1, r2}.
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1.3.2 Rarefaction wave

Definition

The homogeneous hyperbolic system

∂

∂t
q +A(q) · ∂

∂x
q = 0 (1.45)

is invariant to the stretching group x → αx and t → αt. We define the similarity variable ξ = x/t.
We are seeking a similarity solution q = q(ξ). Substituting this form into Eq. (1.45) gives

−ξq′ +A · q′ = 0,

which shows that q′ is a right eigenvector of A, imposing ξ = λk and q′ colinear with the right
eigenvector wk. We can arbitrarily pose

d
dξq = wk. (1.46)

A geometric interpretation is that the curve q(ξ) is tangent to the vector field wk (q(ξ) is called the
integral curve of wk). Note that if we seek a function R(q) that remains constant along this integral
curve, then we recover the definition (1.42) of the Riemann invariant:

d
dξR(q) = 0 ⇒ ∇R · q′ = 0,

and since q′ = wk, then the invariance condition is: ∇R ·wk = 0.

Simple wave

Rarefaction waves are a special case of simple wave. As for the linear case (see § 1.1.4), a simple wave
propagates in a single direction. If there is a smooth mapping (x, t) → η, a simple wave is defined as
the special solution

q(x, t) = q(η(x, t)).

Substituting this form into Eq. (1.45) gives

∂η

∂t
q′ +

∂η

∂x
A · q′ = 0.

Reiterating the same reasoning as just above, we deduce that q is an integral curve of one right eigen-
vector kk, and thus η must satisfy the nonlinear advection equation

∂η

∂t
+ λk

∂η

∂x
= 0 ⇔ dη

dt = along dx
dt = λk.

Characteristic curves in the x− t plane are thus straight lines of slope λk(q(η)).

Exemple: Saint-Venant equations

For water waves over horizontal frictionless beds, the governing equations (called Saint-Venant or shal-
low water equations) are given by Eq. (1.45) with:

q =

(
h
q

)
and A = f ′ =

(
0 1

−q2/h2 + gh 2q/h

)
, (1.47)
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where h and q = hu denote the flow depth and momentum, g is gravity acceleration, and u is velocity.
The eigenvalues are

λ1 = u− c and λ2 = u+ c,

where c =
√
gh and the right eigenvectors are

w1 =

(
1

u− c

)
and w2 =

(
1

u+ c

)
.

If we define the 1-Riemann invariant r1 as ∇r1 ·wk = 0, then r1 is the solution to

∂r1
∂h

+ (u+ c)
∂r1
∂q

= 0 ⇔ dh
1

=
dq

u+ c
=

dr1
0

.

Integrating the first pair of equations gives

q = −2h3/2
√
g + ha ⇔ r1 = u+ 2

√
gh,

where a is a constant of integration. As r1 is an arbitrary function of a, we select the simplest form.
Similarly for the 2-invariant r2, we find

r2 = u− 2
√

gh

The Saint-Venant equations are thus equivalent to

dr1
dt = 0 along dx

dt = λ1 = u− c and dr2
dt = 0 along dx

dt = λ2 = u+ c. (1.48)

0 1 2 3 4
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0
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(a)

0 1 2 3 4

0
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(b)

Figure 1.4 (a) lambda, -2.5, 1, 0.5. (b) lambda, -1, 2.5, 0.5.





CHAPTER2
Finite volume methods

2.1 General formulation

Let us consider a hyperbolic equation in one space dimension and in a conservative form

∂

∂t
q +

∂

∂x
f(q) = 0, (2.1)

where q is a vector with m components representing the unknowns and f is the flux function. We
consider a uniform grid, whose mesh size is constant: ∆x. We define the cell Ci = [xi−1/2, xi+1/2),
centred around the cell middle xi = x0+i∆x and whose interfaces are xi±1/2. The time step is denoted
by ∆t = tn+1 − tn.

Figure 2.1 Computation grid in the x− t plane.

We integrate Eq. (2.1) over the cell Ci:∫ xi+1/2

xi−1/2

∂q

∂t
dx+ [f(q)]

xi+1/2
xi−1/2

= 0, (2.2)

Integrating this equation over (tn, tn+1] gives:∫ xi+1/2

xi−1/2

(q(x, tn+1)− q(x, tn))dx+

∫ tn+1

tn

[f(q)]
xi+1/2
xi−1/2

dt = 0. (2.3)

We define the cell-averaged value of q at time tn:

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn)dx, (2.4)

13
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and a time-averaged flux

F n
i±1/2 =

1

∆t

∫ tn+1

tn

f(q(xi±1/2, t))dt. (2.5)

We can develop an explicit time-marching algorithm by rearranging Eq. (2.3) and introducing the time-
and grid-averaged variables

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
. (2.6)

2.2 Godunov’s method for linear systems

Godunov’smethod has been amajor achievement in the field of hyperbolic equations, which has opened
up the way to modern finite-volume techniques. It consists of three steps: reconstructing, evolving, and
averaging:

1. Reconstruction. We assume that we can approximate the solution q(x, t) by a piecewise constant
function q̃ni (x, tn) = Qn

i for x ∈ Ci = (xi−1/2, xi+1/2): Note that to second order, we have

Qn
i = q(xi, tn) +

∆x

6
∂xq(xi, tn) +

∆x2

24
∂xxq(xi, tn).

AlthGodunov’s method is a first-order accurate scheme. We can use higher-order reconstruc-
tions of the approximate the function q(x, t) (e.g., a piecewise linear function with a nonzero
slope in each grid cell).

2. Evolution. Using Eq. (2.6) or another method, we look at how the solution q̃n+1
i evolves from its

state at time tn. This step amounts to solve Riemann problems at each cell boundary xi±1/2.

3. Averaging. We average this function over each grid cell

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

q̃(x, tn+1)dx, (2.7)

We can piece together the Riemann solutions provided that the waves from two adjacent inter-
faces have not started to interact. This condition is usually met when the Courant-Friedrichs-
Lewy (CFL) condition is satisfied (no wave passes through more than one grid cell within ∆t):

smax∆t

∆x
≤ 1, (2.8)

where smax represents the largest wave speed.

Godunov’s method was initially used to solve the Euler equations in gas dynamics. The flux F n
i+1/2

was determined from the exact solution to the Riemann problem for the Euler equations. Approximate
Riemann solvers are today used because they are faster. Godunov’s method is robust and stable when
the CFL condition is met. When approximate solvers are used, this may not be the case, and thus
special care has to be paid to robustness and stability. Moreover, Godunov’s method tends to smear
out solutions near discontinuities. By using limiters, approximate Riemann solvers deal more effi-
ciently with discontinuities. They also build numerical solutions as linear combinations of travelling
discontinuities—they do not use rarefactionwaves, which are therefore approximated as discontinuities.
Transonic waves1 may need more care.

1see Fig. 2.4 for a quick definition.
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2.3 Wave decomposition for linear systems

2.3.1 Introductive example

In Clawpack, we will use a variant of Godunov’s method based on the wave decomposition seen in
Chapter 1. There are other strategies such as flux differencing (Toro, 2001; LeVeque, 2002; Guinot, 2010).
The advantage of wave decomposition over other approaches is that it can also be applied to non-
conservative equations.

Let illustrate how Clawpack proceeds with the flux estimation by considering a problem of dimen-
sion m = 3. Let us assume that we have three different eigenvalues such that λ1 < 0 < λ2 < λ3. As
shown by Fig. 2.2, from the node xi−1/2 emerge three characteristics xi−1/2 + λit, which will create
three discontinuities in q̃ at time tn+1. Recall that in Chapter 1, we learned from Eq. (1.28) that the
initial jump in the Riemann problem at xi−1/2 can be decomposed into three waves

Qi −Qi−1 =
m∑
k=1

W k,i−1/2, (2.9)

whereW k,i−1/2 is related to the right eigenvectors αk,i−1/2wk,i−1/2. As seen in Fig. 2.2, the first wave
W 1,i−1/2 will not modify the value of the solution at time tn+1, but the two other waves will do. For
instance, the second wave will modify the value of q over a fraction of the grid cell λ2∆t/∆x by the
amount

−λ2
∆t

∆x
W 2,i−1/2

relative to the initial value Qi.

Figure 2.2 Wave structure for the node xi−1/2.

2.3.2 General formulation

If we repeat the reasoning seen in the previous section for all waves, we obtain

Qn+1
i = Qn

i − ∆t

∆x

(
λ2W 2,i−1/2 + λ3W 3,i−1/2 + λ1W 1,i+1/2.

)
, (2.10)
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This can be readily generalised to arbitrary hyperbolic systems. Let us introduce the notation

λ+ = max(λ, 0) and λ− = min(λ, 0). (2.11)

The updated value Qn+1
i is then

Qn+1
i = Qn

i − ∆t

∆x

(
m∑
k=1

λ+
k W k,i−1/2 +

m∑
k=1

λ−
k W k,i+1/2.

)
, (2.12)

The cell average depends on the right-going waves from xi−1/2 and left-going waves from xi+1/2.

LeVeque (2002) introduced a shorthand notation

A+ ·∆Qi−1/2 =

m∑
k=1

λ+
k W k,i−1/2, (2.13)

A− ·∆Qi+1/2 =

m∑
k=1

λ−
k W k,i+1/2, (2.14)

which are interpreted as fluctuations: A+ ·∆Qi−1/2 represents the effect of all right-going waves from
xi−1/2 (where there is a discontinuity ∆Qi−1/2 = Qi −Qi−1) on the cell average at time tn+1. This
formulation that holds for linear problems will be generalized to nonlinear problems.

2.3.3 Interface flux

Note that that the interface between two cells, the interface value can be written (see Eq. (1.35)):

Qi−1/2 = Qi−1 +
∑
λk<0

W k,i−1/2. (2.15)

We then deduce that for a linear system, the flux at the interface is:

F n
i−1/2 = f(Qi−1/2) = A ·Qi−1/2 = A ·Qi−1 +

∑
λk<0

A ·W k,i−1/2. (2.16)

As W k is an eigenvector of A, we can rearrange the terms

F n
i−1/2 = A ·Qi−1 +

m∑
k=1

λ−
k W k,i−1/2 = A ·Qi−1 +A− ·∆Qi−1/2. (2.17)

This expression will be generalised to nonlinear systems (which, once linearised, involve only shock
waves), for which we will assume that

F n
i−1/2 = f(Qi−1) +A−∆Qi−1/2. (2.18)

or equivalently:
F n

i−1/2 = f(Qi)−A+∆Qi−1/2. (2.19)

Can we proceed differently for nonlinear systems? For a nonlinear problem, the theoretical expres-
sion of the flux is more complicated. Integrating the hyperbolic equation (2.1) over [−δx, 0] × [0, δt]
(see Fig. 2.3) gives∫ 0

−δx
q(x, δt)dx =

∫ 0

−δx
q(x, 0)dx+

∫ δt

0
f(q(−δx, t))dt−

∫ δt

0
f(q(0, t))dt,
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Figure 2.3 Calculating the interface flux F i−1/2.

and if δx is chosen such that it lies in the domain controlled by the initial conditions Qi−1 or Qi, then
we can rearrange the terms∫ 0

−δx
q(x, δt)dx = δxQi−1 + δtf(Qi−1)− δtF i−1/2.

This gives us the relation:

F i−1/2 = f(Qi−1) +
δx

δt
Qi−1 −

1

δt

∫ 0

−δx
Q(x, δt)dx. (2.20)

The relation leads to no formal result, but it can be exploited to provide approximate solvers such as
the HLL solver (Toro, 2019).

2.4 Approximate Riemann solvers for nonlinear prob-
lems

Earlier in this chapter, we have seen that a general time-marching algorithm to solve the hyperbolic
equation (2.1) is given by Eq. (2.6):

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
.

At each interface xi−1/2, the flux function is given by

F n
i−1/2 = f(Qn

i−1/2),

where Qn
i−1/2 is the value of Q obtained along the ray x = xi−1/2. It depends on the values Qn

i and
Qn

i of either side of the interface. In the absence of a source terme,Qn
i remains constant along this ray.
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2.4.1 Scalar problems

Scalar Riemann problem are associated with five possible wave configurations (see Fig. 2.4):

(a) Left-going shock wave: Qn
i−1/2 = Qn

i .

(b) Left-going rarefaction wave: Qn
i−1/2 = Qn

i .

(c) Transonic2 rarefaction wave: Qn
i−1/2 = qs(Q

n
i , Q

n
i ). This is the only case for which we cannot

set the Qi−1/2 value. Further calculations are needed to evaluate the value qs. The unknown
value qs satisfies

Qn
i−1 < qs < Qn

i ,

and this is associated with the vertical ray, its characteristic speed is zero. Therefore, qs is the
solution to

f ′(qs) = 0. (2.21)

(d) Right-going rarefaction wave: Qn
i−1/2 = Qn

i−1.

(e) Right-going shock wave: Qn
i−1/2 = Qn

i−1.

(a) (b) (c) (d) (e)

Figure 2.4 The five possible solutions to a scalar Riemann problem: (a) left-going shock wave; (b)
left-going rarefaction wave; (c) transonic rarefaction wave; (d) right-going rarefaction wave; and (e)
right-going shock wave.

For a convex scalar flux, we can summarise all these possibilities

Fn
i−1/2 =


f(Qn

i−1) if Qn
i−1 > qs and s > 0

f(Qn
i ) if Qn

i < qs and s < 0
f(qs) if Qn

i−1 < qs < Qn
i ,

(2.22)

where the shock speed s is given by:

s =
f(Qn

i )− f(Qn
i−1)

Qn
i −Qn

i−1

.

A more compact way used in Clawpack is given

Fn
i−1/2 =


min

Qn
i−1≤q≤Qn

i

f(q) if Qn
i−1 ≤ Qn

i

max
Qn

i ≤q≤Qn
i−1

f(q) if Qn
i−1 ≥ Qn

i
(2.23)

2It is called transonic because it moves with velocity 0. In gas dynamics, this happens when one of the
eigenvalues u± c (c: sound speed) takes the value 0, thus when the fluid moves at the same speed as sound. In
Fig. 2.4(c) the fluid is accelerated from a subsonic velocity to a supersonic one through a rarefaction wave.
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The Lax entropy condition is an extra condition imposed to shock waves solution for them to be
physically admissible. A shock wave must dissipate energy, not create energy (or from a thermody-
namical standpoint, entropy increases through a shock, and does not decrease). A shock wave satisfies
the Lax entropy condition if its speed lies between bounds fixed by the initial data

f ′(ql) > s > f ′(qr). (2.24)

For a scalar problem, the time-marching algorithm to solve the hyperbolic equation (2.1) is given
by this variant of Eq. (2.6):

Qn+1
i = Qn

i − ∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
,

or equivalently
Qn+1

i = Qn
i − ∆t

∆x

(
Fn
i+1/2 − f(Qi)− (Fn

i−1/2 − f(Qi))
)
.

We can make an analogy with the formulation for linear equations, which emphasizes the role of fluc-
tuations (see § 2.3). We put the equation above in a form consistent with the LeVeque’s notation:

Qn+1
i = Qn

i − ∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
,

where the fluctuations A±∆Qi±1/2 are defined by

A+∆Qi−1/2 = f(Qn
i )− f(Qn

i−1/2),

A−∆Qi+1/2 = f(Qn
i+1/2)− f(Qn

i ).

High-resolution techniques involve defining the wave Wi−1/2 and speed si−1/2 associated with the
Riemann problem:

Wi−1/2 = Qi −Qi−1,

si−1/2 =


f(Qn

i )− f(Qn
i−1)

Qn
i −Qn

i−1

if Qi ̸= Qi−1,

f ′(Qn
i ) if Qi = Qi−1.

When the Riemann solution is a shock wave, the speed chosen is the one given by the Rankine-
Hugoniot equation. When it is a rarefaction wave, the speed chose provides a proper estimate of the
actual wave speed, and the wave behaviour can be approximated by a shock wave even the latter would
not satisfy the entropy condition (2.24). The big advantage is that we can treat all waves as shock waves
regardless of their actual nature. When the solution is not a transonic wave, we can also express the
fluctuations as:

A+∆Qi−1/2 = s+i−1/2Wi−1/2, (2.25)

A−∆Qi+1/2 = s−i+1/2Wi+1/2, (2.26)

where s+ = max(s, 0) and s− = min(s, 0). Equation (2.25) is used in Clawpack for solving scalar
problems.

When the Riemann solution consists of a transonic rarefaction wave, the fluctuation terms
A±∆Qi±1/2 need to be corrected using an entropy fix. In Clawpack, the wave W and speed s are first
computed, and from them, we determine the fluctuations using Eq. (2.25). If f ′(Qi−1) < 0 < f ′(Qi),
then the fluctuations in Eq. (2.25) are replaced by one of the equations (for the interface from which
the transonic wave originates):

A+∆Qi−1/2 = f(Qn
i )− f(qs), (2.27)

A−∆Qi+1/2 = f(qs)− f(Qn
i ). (2.28)

Although this approach based on an entropy fix is unnecessary for scalar problems, it is easy to gen-
eralize to nonlinear systems of hyperbolic equations, for which there is no easy way to determine the
rarefaction wave structure exactly.
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2.4.2 Systems of equations

The method used for scalar problems can be generalised to systems of hyperbolic equations. The crux
lies in the determination of the interface value Qn

i−1/2. This value is usually one of the intermediate
states that connect the left and right states through a series of shock and rarefaction waves. When
Qn

i−1/2 is part of a transonic rarefaction wave, additional work is required to determine the wave struc-
ture.

The computational approach to solving the nonlinear Riemann problem is the same as the one
taken for linear problems. When dealing with Godunov’s equation (2.6), Clawpack still uses the wave-
propagation form

Qn+1
i = Qn

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
,

= Qn
i − ∆t

∆x

(
A+∆Qn

i−1/2 +A−∆Qn
i+1/2

)
, (2.29)

where the fluctuations are defined by generalizing the linear case (see § 2.3.3):

A−∆Qn
i+1/2 = f(Qn

i+1/2)− f(Qn
i ), (2.30)

A+∆Qn
i−1/2 = f(Qn

i )− f(Qn
i−1/2), (2.31)

These definitions are useful when the solution to the Riemann problem is a transonic wave. When the
solution is a shock or rarefaction wave, the fluctuations can be approximated by considering that in the
close vicinity of the initial state the solution behaves like a shock wave, and like in the linear case, the
fluctuations are given by:

A−∆Qn
i+1/2 =

Mw∑
k=1

s−k,i+1/2W
n
k,i+1/2, (2.32)

A+∆Qn
i−1/2 =

Mw∑
k=1

s+k,i−1/2W
n
k,i−1/2, (2.33)

where Mw is the number of waves (usually Mw = m), s− = min(0, s) and s+ = max(0, s).

The computation cost is high if we use exact Riemann solvers. A variety of approximate Riemann
solvers have been proposed to reduce this cost (Toro, 2001; LeVeque, 2002).

Linearised solvers

Nonlinear equations
∂

∂t
q +

∂

∂x
f(q) = 0

can be linearised when the initial values ql and qr are sufficiently close to each other, and put in the
linear form

∂q

∂t
+ Â · ∂q

∂x
= 0,

where the constant matrix Â is an approximation of f ′(q) for q ≈ ql ≈ qr . The Roe function (studied
later) is an example of linearised solvers (Roe, 1981).
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Two-wave solvers

Several approximate solvers are based on the idea that the Riemann solution can be approximated
by picking up two of the m waves, W 1 and W 2, and defining an intermediate state Q∗ such that
W 1 = Q∗ −Ql and W 2 = Qr −Q∗. The Rankine-Hugoniot implies that f(Ql) − f(Q∗) = s1W 1

and f(Qr)−f(Q∗) = s2W 2. By adding these two equations, we end up with a system ofm equations

f(Qr)− f(Ql) = s1W 1 + s2W 2,

which gives

Q∗ =
f(Qr)− f(Ql)− s2Qr + s1Ql

s1 − s2
.

The various solvers proposed so far differ by the choice of the speeds s1 and s2 along with the waves
W 1 and W 2. Lax-Friedrichs and Harten-Lax-van Leer (HLL) are classic solvers.

The advantage of HLL solvers is that they usually do not need an entropy fix to compute transonic
rarefaction waves. As they involve only two waves (thereby ignoring all other waves), they may lead
to poorer resolutions for systems made of m > 2 equations (Toro, 2019).

2.5 Roe solver

The Roe solver linearises the governing equation (2.1):

∂q

∂t
+ Â

∂q

∂x
= 0.

The matrix Â is constructed so that it approximates f ′(q) in the neighbourhood of Qi and Qi−1 and
satisfies the conditions

1. Continuity condition:
Âi−1/2 → f ′(q) when Qi−1,Qi → q.

2. Hyperbolicity: Âi−1/2 is diagonisable, withm right eigenvectors ŵk,i−1/2 associatedwith eigen-
values sk,i−1/2 = λk,i−1/2.

3. Roe linearisation. This third property states that if Qi−1 and Qi are connected by a single wave
W = Qi − Qi−1 in the original Riemann problem, then W should also be an eigenvector of
Âi−1/2 :

f(Qi)− f(Qi−1) = Âi−1/2 · (Qi −Qi−1) = s(Qi −Qi−1),

where s is the wave speed. Formally, the matrix Âi−1/2 can be determined by integrating the
Jacobian over a straight-line path q(ξ) = Qi−1 + ξQi −Qi−1)

Âi−1/2 =

∫ 1

0

df(q(ξ))
dq dξ

There is no guarantee that the resulting matrix is diagonisable with m real eigenvalues and that
it takes an analytical form. Bymaking a change of variable, Roe (1981) showed that this difficulty
can often be overcome (LeVeque, 2002, see pp. 317-323).

An alternative choice to Roe’s linearisation is to set a particular value, for instance

Âi−1/2 =
1

2
(f ′(Qi−1) + f ′(Qi)).
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2.6 Two-wave solver: HLL solver

The idea underpinning the HLL solver’s derivation is that the solution to the Riemann problem consists
of two shock waves separating an intermediate state from the left and right initial states. The speeds
s1 and s2 of these waves are given by the Rankine-Hugoniot equation

f(Qi−1)− f(Q∗) = s1(Qi−1 −Q∗), (2.34)

f(Q∗)− f(Qi) = s2(Q∗ −Qi) (2.35)

Solving Eqs. (2.34) and (2.35) for Q∗ and F ∗ = f(Q∗) gives

Q∗ =
s2Qi − s1Qi−1

s2 − s1
+

F i−1 − F i

s2 − s1
(2.36)

F ∗ =
s2F i−1 − s1F i

s2 − s1
− s2s2

Qi−1 −Qi

s2 − s1
, (2.37)

with F i = f(Qi). For the Harten–Lax–van-Leer (HLL) solver, the speeds are defined as the lower and
upper bounds of all characteristic speeds:

s1,i−1/2 = min
1≤k≤m

(
min(λk,i−1, λ̂k,i−1/2)

)
, (2.38)

s2,i−1/2 = min
1≤k≤m

(
min(λk,i, λ̂k,i−1/2)

)
, (2.39)

where λk,i is the kth eigenvalue of the Jacobian f ′(Qi) and λ̂k,i−1/2 is kth eigenvalue of the Roe matrix
(linearised Jacobian).

2.7 Alternative: the f-wave method

An alternative approach to the wave decomposition is to first split the jump in f into f-waves:

f(Qi)− f(Qi−1) =

mw∑
k=1

Zk,i−1/2, (2.40)

moving at speeds sk,i−1/2, then express the fluctuations in terms of the f-waves. This method is useful
to study the second-order accuracy of wave-propagation methods or in the context of spatially-varying
flux functions f(x, q) (LeVeque, 2002, see § 15.5). It also guarantees that approximate Riemann solvers
are conservative.

When dealing with a linear or linearised problems, we can decompose f(Qi)−f(Qi−1) as a linear
combination of the right eigenvectors ŵk,i−1/2 of the linearised matrix Âi−1/2:

f(Qi)− f(Qi−1) =

mw∑
k=1

βk,i−1/2ŵk,i−1/2, (2.41)

where the coefficient vector βi−1/2 is the solution to the linear system (2.41):

βi−1/2 = R−1 · (f(Qi)− f(Qi−1)) = L · (f(Qi)− f(Qi−1)). (2.42)

The f-waves are then
Zk,i−1/2 = βk,i−1/2ŵk,i−1/2. (2.43)
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These f-waves are related to the waves W k,i−1/2 when the wave speeds are nonzero

W k,i−1/2 =
Zk,i−1/2

sk,i−1/2
, (2.44)

and the fluctuations are
A−

i−1/2∆Qi−1/2 =
∑

k: sk<0

Zk,i−1/2, (2.45)

A+
i−1/2∆Qi−1/2 =

∑
k: sk>0

Zk,i−1/2. (2.46)

2.8 High-resolutions methods

High-resolutions methods aim to increase the approximation accuracy when evaluating Qn+1
i from

Qn
i and avoid the occurrence of large fluctuations near discontinuities. They take the form

Qn+1
i = Qn

i − ∆t

∆x

(
A−∆Qn

i+1/2 +A+∆Qn
i−1/2

)
− ∆t

∆x

(
F̂ i+1/2 − F̂ i−1/2

)
, (2.47)

where F̂ i+1/2 is the flux correction

F̂ i+1/2 =
1

2

Mw∑
k=1

|sk,i−1/2|
(
1− ∆t

∆x
|sk,i−1/2|

)
W̃ k,i−1/2 (2.48)

where W̃ k,i−1/2 is the limited version of the kth waveW k,i−1/2 obtained by comparing this wave with
the jump W k,I−1/2 in the upwind direction (I = i − 1 is sk,i−1/2 > 0 and I = i + 1 is sk,i−1/2 < 0)
(LeVeque, 2002, see Chaps. 6 and 15).

2.9 Implementation in Clawpack

Clawpack is a Fortran-based library developed to solve hyperbolic partial differential equations in the
form

κ
∂

∂t
q +∇ · f(q) = S, (2.49)

where κ is the capacity function (or constant), q the unknown, f the flux function, and S the source
term.

2.9.1 Clawpack installation

Linux is best suited to run the Clawpack library. Installation requires a few additional libraries (see
www.clawpack.org/prereqs.html)

• Compiler: gfortran (available from most linux distributions) or ifort (which needs a license, free
for academic activities).

• Python: version 3, scipy, numpy, pip, and git

http://www.clawpack.org/prereqs.html
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• It can be useful to install anaconda. This environment makes it possible to manage the python
packages and offers several functionalities like jupyter (a system of Python-based notebooks
that can be read by a web browser), spyder (a scientific environment written for Python), R, and
julia. Jupyter notebooks available from github can be read locally on the computer or via a web
interface such as nbviewer.jupyter.org/.

Following the procedure with pip (see www.clawpack.org/installing.html) is the easy way to install
Clawpack.

Finally, it is necessary to edit the .bashrc file by providing the required environment variables
1 export CLAW=$HOME/clawpack-v5.7.0
2 export FC=gfortran

2.9.2 Legacy Clawpack

In its original form developed by Randall Leveque, Clawpack has been based on a set of Fortran 77
routines (LeVeque, 2002).

The main programme was originally located in the file driver.f. This file allocated storage for the
arrays used by Clawpack. This is done now automatically, and the user does not need to fill this file. This
programme then calls claw1ez, which reads the file claw.data created by the python script setrun.py (it
can be created by typing make .data).

The initial condition is contained in the file qinit.f. We should define the cell average value for the
entire domaine, but for a continuous function, this average value is the value taken by f at xi (cell
midpoint).

The initial conditions are processed in the file bc1.f. The type of boundary conditions is prescribed
in the file claw.data.

The Riemann solver is contained in the file rp1.f. The idea is to decompose any discontinuity into
a set of waves W k :

Qi −Qi−1 =
m∑
k=1

W k

avec m is the wave number (which is usually equal to the dimension of the system). For Godunov’s
method, the value W i is updated as follows:

Qn+1
i = Qn

i − ∆t

∆x
(A+ ·∆Qi−1/2 +A− ·∆Qi+1/2),

where we distinguish between the left-going wave (coming from the right endpoint xi+1/2) :

A+ ·∆Qi+1/2 =
∑
k

min(λk
i+1/2, 0)W k,i+1/2,

and the right-going wave

A− ·∆Qi+1/2 =
∑
k

max(λk
i−1/2, 0)W k,i−1/2,

The left-going wave is zero if λk,i+1/2 > 0 (because this the wave moves from right to left) and the
right-going wave is zero if λk,i−1/2 < 0. The Riemann solver needs two input data: the two arrays ql
and qr related to the left and right states. High-resolution methods require further information. Note
that for the Riemann solver at the interface xi−1/2, we use the following notation for referring to cells

https://www.anaconda.com/products/individual
https://nbviewer.jupyter.org/
http://www.clawpack.org/installing.html
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i − 1 and i: qr(i-1,:)= Qr,i−1/2 and ql(i1,:)= Ql,i−1/2, and in this notation, left and right
refer to the left and right of the cell i or i− 1, and not what happens relative to the interface.

The solver provides

• the functions amdq (literally “a minus delta q”, which is the vector A− · ∆Qi+1/2) and apdq
(vecteur A+ ·∆Qi+1/2),

• wave (the vawe W k,i−1/2), and

• s (the eigenvalue λk,i−1/2).

Caveat. Note3 that the Riemann problem at the interface xi−1/2 between cells i−1 and i has data:

• Left state: qRi−1 = qr(:, i-1).

• Right state: qLi−1 =ql(:,i).

This notation is confusing since in the solver direction we use ql to denote the left state and qr to denote
the right state in specifying Riemann data.

There are many other routines, which are not always required. They are called by the main driver
by default, but do not return anything. Among the most important:

• setprob.f: the routine claw1ez calls setprob.f before each execution, which makes it possible to
initialize some parameters.

• setaux.f: the routine claw1ez calls the routine setaux.f before each execution to initialize the
auxiliary variables (for instance, bed topography).

• b4step1.f: the routine claw1 calls the routine bc4step1.f before each step to perform additional
tasks.

• src1.f: if the equation involves a source term, this file is used to correct the solution to the
homogenous equation.

2.9.3 Pyclaw

Pyclaw is a python package that offers a convenient framework for pre- and post-processing informa-
tion, interfacing and running Clawpack or Sharpclaw (Ketcheson et al., 2012; Mandli et al., 2016). It
can call Fortran or Python routines. Interfaced with PyWENO and PETSc, Pyclaw provides extended
functionality in terms of parallel computing (Ketcheson et al., 2012).

3See www.clawpack.org/riemann.html.

http://www.clawpack.org/riemann.html




CHAPTER3
Examples

3.1 Acoustic waves

3.1.1 Governing equation

When linearised, the acoustic wave equation takes the form

∂p

∂t
+K

∂u

∂x
= 0,

∂u

∂t
+

1

ϱ

∂p

∂x
= 0,

where K is the bulk modulus, ϱ the density, u(x, t) and p(x, t) the velocity and pressure. We define
the speed of sound as c =

√
K/ϱ and impedance Z =

√
Kϱ. In a tensorial form, the acoustic wave

equation is:
∂q

∂t
+A · ∂q

∂x
, with q =

(
p
u

)
and A =

(
O K
ϱ−1 0

)
.

We define the right and left eigenvector matrices R and L

R =

(
−Z Z
1 1

)
et L =

1

2

(
Z−1 1
Z 1

)
and the eigenvalue matrix Λ

Λ =

(
λ1 0
0 λ2

)
avec λ1 = −c et λ2 = +c.

We diagonalize the matrix A

A = R ·Λ ·L.

By introducing the Riemann variables
r = L · q

we want to solve
∂r

∂t
+Λ · ∂r

∂x
= 0,

subject to the initial conditions

ri =

{
ri,l if x < 0
ri,r if x > 0

27



28 Chapitre 3 Examples

x = λ
2
t

x = λ
1
t

t t

x

w
1

l
w

1

r w
2

l
w

2

r

ql
qr

x = λ
2
t

x = λ
1
t

q∗

x = 0

t

Figure 3.1 Solution to the Riemann problem.

In a Riemann problem, the left and right states can be connected using the right eigenvectors:

qr − ql = α1w1 + α2w2 = R ·α,

thus
α = R−1 · (qr − ql) = L · (qr − ql),

which leads to:
α1 =

1

2

(
−pr − pl

Z
+ ur − ul

)
,

α2 =
1

2

(
pr − pl

Z
+ ur − ul

)
,

The jump from ql to q∗ is W 1 = α1r1 while the jump from q∗ to qr is W 2 = α2r2.

3.1.2 Implementation

In classic Clawpack, the algorithm for the solver is quite simple.
1 ! =====================================================
2 subroutine rp1(maxm,meqn,mwaves,maux,mbc,mx,ql,qr,auxl,auxr,wave,s,amdq,

apdq)
3 ! =====================================================
4
5 implicit double precision (a-h,o-z)
6
7 dimension wave(meqn, mwaves, 1-mbc:maxm+mbc)
8 dimension s(mwaves,1-mbc:maxm+mbc)
9 dimension ql(meqn, 1-mbc:maxm+mbc)

10 dimension qr(meqn, 1-mbc:maxm+mbc)
11 dimension apdq(meqn, 1-mbc:maxm+mbc)
12 dimension amdq(meqn, 1-mbc:maxm+mbc)
13
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14 ! local arrays
15 ! ------------
16 dimension delta(2)
17
18 ! # density, bulk modulus, and sound speed, and impedance of medium:
19 ! # (should be set in setprob.f)
20 common /cparam/ rho,bulk,cc,zz
21
22 ! # find a1 and a2, the coefficients of the 2 eigenvectors:
23 do 20 i = 2-mbc, mx+mbc
24 delta(1) = ql(1,i) - qr(1,i-1)
25 delta(2) = ql(2,i) - qr(2,i-1)
26 a1 = (-delta(1) + zz*delta(2)) / (2.d0*zz)
27 a2 = (delta(1) + zz*delta(2)) / (2.d0*zz)
28
29 ! # Compute the waves.
30
31 wave(1,1,i) = -a1*zz
32 wave(2,1,i) = a1
33 s(1,i) = -cc
34
35 wave(1,2,i) = a2*zz
36 wave(2,2,i) = a2
37 s(2,i) = cc
38
39 20 END DO
40
41
42 ! # compute the leftgoing and rightgoing flux differences:
43 ! # Note s(1,i) < 0 and s(2,i) > 0.
44
45 do 220 m=1,meqn
46 do 220 i = 2-mbc, mx+mbc
47 amdq(m,i) = s(1,i)*wave(m,1,i)
48 apdq(m,i) = s(2,i)*wave(m,2,i)
49 220 END DO
50
51 return
52 end subroutine rp1

3.1.3 Implementation in Pyclaw

Here is an example of notebook setting up a solver for the acoustic wave equations.
1 %matplotlib inline
2
3 from numpy import sqrt, exp, cos
4 from clawpack import riemann
5 from clawpack import pyclaw
6
7 def setup(outdir='./_output', output_style=1):
8
9 riemann_solver = riemann.acoustics_1D_py.acoustics_1D

10 solver = pyclaw.ClawSolver1D(riemann_solver)
11 solver.limiters = pyclaw.limiters.tvd.MC
12 solver.kernel_language = 'Python'
13
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14 x = pyclaw.Dimension(0.0, 1.0, 100, name='x')
15 domain = pyclaw.Domain(x)
16 num_eqn = 2
17 state = pyclaw.State(domain, num_eqn)
18
19 solver.bc_lower[0] = pyclaw.BC.periodic
20 solver.bc_upper[0] = pyclaw.BC.periodic
21
22 rho = 1.0 # Material density
23 bulk = 1.0 # Material bulk modulus
24
25 state.problem_data['rho'] = rho
26 state.problem_data['bulk'] = bulk
27 state.problem_data['zz'] = sqrt(rho*bulk) # Impedance
28 state.problem_data['cc'] = sqrt(bulk/rho) # Sound speed
29
30 xc = domain.grid.x.centers
31 beta = 100
32 gamma = 0
33 x0 = 0.75
34 state.q[0, :] = exp(-beta * (xc-x0)**2) * cos(gamma * (xc - x0))
35 state.q[1, :] = 0.0
36
37 solver.dt_initial = domain.grid.delta[0] / state.problem_data['cc'] *

0.1
38
39 claw = pyclaw.Controller()
40 claw.solution = pyclaw.Solution(state, domain)
41 claw.solver = solver
42 claw.outdir = outdir
43 claw.output_style = output_style
44 output_style = 1
45 claw.tfinal = 1.0
46 claw.num_output_times = 10
47 claw.keep_copy = True
48 claw.setplot = setplot
49
50 return claw
51
52
53 def setplot(plotdata):
54 """
55 Specify what is to be plotted at each frame.
56 Input: plotdata, an instance of visclaw.data.ClawPlotData.
57 Output: a modified version of plotdata.
58 """
59 plotdata.clearfigures() # clear any old figures,axes,items data
60
61 # Figure for pressure
62 plotfigure = plotdata.new_plotfigure(name='Pressure', figno=1)
63
64 # Set up for axes in this figure:
65 plotaxes = plotfigure.new_plotaxes()
66 plotaxes.axescmd = 'subplot(211)'
67 plotaxes.ylimits = [-0.2, 1.0]
68 plotaxes.title = 'Pressure'
69
70 # Set up for item on these axes:
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71 plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
72 plotitem.plot_var = 0
73 plotitem.plotstyle = '-o'
74 plotitem.color = 'b'
75 plotitem.kwargs = {'linewidth': 2, 'markersize': 5}
76
77 # Set up for axes in this figure:
78 plotaxes = plotfigure.new_plotaxes()
79 plotaxes.axescmd = 'subplot(212)'
80 plotaxes.xlimits = 'auto'
81 plotaxes.ylimits = [-0.5, 1.1]
82 plotaxes.title = 'Velocity'
83
84 # Set up for item on these axes:
85 plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
86 plotitem.plot_var = 1
87 plotitem.plotstyle = '-'
88 plotitem.color = 'b'
89 plotitem.kwargs = {'linewidth': 3, 'markersize': 5}
90
91 return plotdata

To run the script and plot one result here (frame 10) using setplot, the following can be done:
1 claw = setup()
2 claw.run()
3
4 from clawpack.visclaw import data
5 from clawpack.visclaw import frametools
6 plotdata = data.ClawPlotData()
7 plotdata.setplot = setplot
8 claw.plotdata = frametools.call_setplot(setplot,plotdata)
9

10 frame = claw.load_frame(10)
11 f=claw.plot_frame(frame)

1 We can also plot a frame directly
2
3 %matplotlib inline
4 import numpy as np
5 import matplotlib.pyplot as plt
6
7 frame = claw.frames[5]
8 w = frame.q[0,:]
9 x = frame.state.grid.c_centers

10 x = x[0]
11
12 plt.plot(x, w)

Here is how Pyclow has encoded the solver of the Riemann problem.
1 def acoustics_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 Basic 1d acoustics riemann solver, with interleaved arrays
4
5 *problem_data* is expected to contain -
6 - *zz* - (float) Impedence
7 - *cc* - (float) Speed of sound
8
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9 See :ref:`pyclaw_rp` for more details.
10
11 :Version: 1.0 (2009-02-03)
12 """
13 import numpy as np
14
15 # Convenience
16 num_rp = np.size(q_l,1)
17
18 # Return values
19 wave = np.empty( (num_eqn, num_waves, num_rp) )
20 s = np.empty( (num_waves, num_rp) )
21 amdq = np.empty( (num_eqn, num_rp) )
22 apdq = np.empty( (num_eqn, num_rp) )
23
24 # Local values
25 delta = np.empty(np.shape(q_l))
26
27 delta = q_r - q_l
28 a1 = (-delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 *

problem_data['zz'])
29 a2 = (delta[0,:] + problem_data['zz']*delta[1,:]) / (2.0 * problem_data

['zz'])
30
31 # Compute the waves
32 # 1-Wave
33 wave[0,0,:] = -a1 * problem_data['zz']
34 wave[1,0,:] = a1
35 s[0,:] = -problem_data['cc']
36
37 # 2-Wave
38 wave[0,1,:] = a2 * problem_data['zz']
39 wave[1,1,:] = a2
40 s[1,:] = problem_data['cc']
41
42 # Compute the left going and right going fluctuations
43 for m in range(num_eqn):
44 amdq[m,:] = s[0,:] * wave[m,0,:]
45 apdq[m,:] = s[1,:] * wave[m,1,:]
46
47 return wave, s, amdq, apdq
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Burger’s equations

4.1 Theory

Let us consider the Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0, (4.1)

or in the flux form
∂u

∂t
+

∂f(u)

∂x
= 0 where f(u) = u2

2
.

The solution to the Riemann problem has two types of solution:

• rarefaction wave: u = U(ξ) with ξ = x/t. Substituting this form into Eq. (4.1)

U(ξ) = ξ.

• shock wave: The Rankine-Hugoniot equation tells us that the shock moves at speed:

ṡ =
Jf(u)KJuK .

The solution to the Riemann problem depends on the sign of ur − ul:

• If ur > ul, we have a rarefaction wave separating two constant states. The characteristic curves
separating U(ξ) from ul and ur are, respectively, x = ult and x = urt.

• If ur < ul, we have a shock wave moving at speed

ṡ =
1

2
(ur + ul)

4.2 Approximate solvers

In Clawpack, the Riemann solver expresses the idea the Qi values evolve because of fluctuations:

Qn+1
i = Qn

i − ∆t

∆x
(A+∆Qi−1/2 +A−∆Qi+1/2),

33
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where the fluctuations are

A+∆Qi−1/2 = f(Qi)− f(Q↓
i−1/2),

A−∆Qi+1/2 = f(Q↓
i+1/2)− f(Qi),

where Qi±1/2 represents the value advected along the characteristic coming from the xi±1/2 interface.
When the solution to the Riemann problem is not a transonic wave, the idea is to approximate this
solution as a shock wave (even though it is a rarefaction wave). The show propagates the wave W at a
speed s:

Wi−1/2 = Qi −Qi−1,

si−1/2 =
f(Qi)− f(Qi−1)

Qi −Qi−1
,

for Qi ̸= Qi−1. We then deduce

A+∆Qi−1/2 = si−1/2Wi−1/2,

A−∆Qi−1/2 = si−1/2Wi−1/2,

When the solution to the Riemann problem is a transonic wave, we use the definition of the fluctuations

A+∆Qi−1/2 = f(Qi)− f(qs),

A−∆Qi−1/2 = f(Qs)− f(Qi−1),

where qs is the value such as f ′(qs) = 0 (vertical characteristic corresponding to x − xi−1/2 = 0 · t).
For the Burgers equation we have qs = 0.

To summarize, we express the functions amdp, apdp, s, and W:

A+∆Ui−1/2 = si−1/2Wi−1/2,

A−∆Ui−1/2 = si−1/2Wi−1/2,

with

Wi−1/2 = Ui − Ui−1,

si−1/2 =
1

2
(Ui + Ui−1),

but if Ui−1 < 0 et Ui > 0 then

A+∆Ui−1/2 =
1

2
U2
i ,

A−∆Ui−1/2 = −1

2
U2
i−1,

In Clawpack, the treatment of the transonic wave is called an entropy fix, and its use in the Riemann
solver is indicated through the Boolean variable efix.

The Roe solver involves linearising Burger’s equation (4.1):

∂q

∂t
+ q̂

∂q

∂x
= 0, (4.2)

where q̂ is the intermediate state
q̂ =

ql + qr
2

to be consistent with the Rankine-Hugoniot equation. This solver is equivalent to the one described
above.
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4.2.1 Implementation in Clawpack

1 c
2 c
3 efix = .true. !# Compute correct flux for transonic rarefactions
4 c
5 do 30 i=2-mbc,mx+mbc
6 c
7 c # Compute the wave and speed
8 c
9 wave(i,1,1) = ql(i,1) - qr(i-1,1)

10 s(i,1) = 0.5d0 * (qr(i-1,1) + ql(i,1))
11 c
12 c
13 c # compute left-going and right-going flux differences:
14 c ------------------------------------------------------
15 c
16 amdq(i,1) = dmin1(s(i,1), 0.d0) * wave(i,1,1)
17 apdq(i,1) = dmax1(s(i,1), 0.d0) * wave(i,1,1)
18 c
19 if (efix) then
20 c # entropy fix for transonic rarefactions:
21 if (qr(i-1,1).lt.0.d0 .and. ql(i,1).gt.0.d0) then
22 amdq(i,1) = - 0.5d0 * qr(i-1,1)**2
23 apdq(i,1) = 0.5d0 * ql(i,1)**2
24 endif
25 endif
26 30 continue

4.2.2 Implementation in Pyclaw

1 def burgers_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 Riemann solver for Burgers equation in 1d
4 *problem_data* should contain -
5 - *efix* - (bool) Whether a entropy fix should be used, if not present

,
6 false is assumed
7 """
8
9 num_rp = q_l.shape[1]

10 # Output arrays
11 wave = np.empty( (num_eqn, num_waves, num_rp) )
12 s = np.empty( (num_waves, num_rp) )
13 amdq = np.empty( (num_eqn, num_rp) )
14 apdq = np.empty( (num_eqn, num_rp) )
15
16 # Basic solve
17 wave[0,:,:] = q_r - q_l
18 s[0,:] = 0.5 * (q_r[0,:] + q_l[0,:])
19
20 s_index = np.zeros((2,num_rp))
21 s_index[0,:] = s[0,:]
22 amdq[0,:] = np.min(s_index,axis=0) * wave[0,0,:]
23 apdq[0,:] = np.max(s_index,axis=0) * wave[0,0,:]
24
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25 # Compute entropy fix
26 if problem_data['efix']:
27 transonic = (q_l[0,:] < 0.0) * (q_r[0,:] > 0.0)
28 amdq[0,transonic] = -0.5 * q_l[0,transonic]**2
29 apdq[0,transonic] = 0.5 * q_r[0,transonic]**2
30
31 return wave, s, amdq, apdq

In this routine, ql is the left initial condition. It is a p ×N array (p = 1 the problem dimension, and
N the number of cells). So, num_rp = q_l.shape[1] gives N . First, the amdp, apdp, s, and
W are initialised, then s and W are defined. Finally, the fluctuations are defined using the numpy func-
tion numpy.min, which provides the minimum value: absolute, for each column (with the axis=0
option), or for each row (with the axis=1 option). For instance, the lines

1 import numpy as np
2 x=np.array([[1,4],[2,5],[3,-2]])
3 np.min(x,axis=None)
4 np.min(x,axis=0)
5 np.min(x,axis=1)

provide the values: -2, array([ 1, -2]) and array([ 1, 2, -2]), respectively.

4.2.3 Examples
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Figure 4.1 Solutions to the Riemann problem: (a) rarefaction wave; (b) shock wave; (c) transonic rar-
efaction wave.
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4.3 Nonlinear advection equation with a source term

4.3.1 Theoretical considerations

Let us consider a rainfall of intensity I over a sloping bed inclined at α (see Fig. 4.2). There are two
possible runoff mechanisms: superficial or hyporheic flow. For both cases, we assume that the flow
depth is h(x, t) and velocity u(x, t) related to h: u = ahb, where a and b are two coefficients: a = C

√
α

et b = 1/2 if one considers runoff with a Chézy friction C .

Figure 4.2 Flow generated by a rainfall.

The governing equation is given by mass conservation:

∂h

∂t
+

∂hu

∂x
= I. (4.3)

As we have u = ahb, we obtain:

∂h

∂t
+ c(h)

∂h

∂x
= I with c(h) = a(b+ 1)hb.

or in a characteristic form:

dh
dt = I along dx

dt = c(h) = a(b+ 1)hb,

and we assume that initially the flow depth is zero (dry bed: h(x, 0) = 0) and no water comes from
upstream of x0 (h(x0, t) = 0). The solution to the characteristic equation is h = It along the charac-
teristic curve:

x =

∫
a(b+ 1)hbdt+ x1 = aIbt1+b + x1, (4.4)

where x1 is constante of integration (such that at x = x1, we have h = 0). This implies for any x
(0 ≤ x ≤ x0, with the frame used in Fig. 4.2, x0 = L0), we have:
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• a linear growth h(x, t) = It until time t∞ such that aIbt1+b
∞ = x0 − x ;

• a stationary state for:

h(x, t) = h∞(x) =

(
I(x0 − x)

a

)1/(1+b)

.
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Figure 4.3 (a) characteristic curves (4.4). The thick line represents x = aIbt1+b, the path of a fluid
parcel emitted from x0. The coloured area represents the domain controlled by the initial condition
h = 0 for which we observe a linear growth h(x, t) = It. Above the curve x = aIbt1+b, the depth
is constant and equal to h∞(x). (b) Flow depth variation at x = 0. Computation for arbitrary values
a = 1 1/s b = 1, I = 1 m/s, and x0 = 3 m.

4.3.2 Numerical implementation

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import os
4 from clawpack import riemann
5 plt.ioff()
6
7 #!/usr/bin/env python
8 # encoding: utf-8
9

10 r"""
11 Burgers' equation
12 """
13 def source_term(solver, state, dt):
14 i = state.problem_data['i']
15 h = state.q[0, :]
16 # Update to momentum
17 state.q[0, :] += dt * i
18
19 def inlet_bc(state,dim,t,qbc,auxbc,num_ghost):
20 "inlet boundary conditions"
21 qbc[0, :num_ghost] = 0.
22
23 def b4step(solver,state):
24 h = state.q[0,:]
25 t = state.t
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26 hf = h[-1]
27 front.append([t,hf])
28
29
30 def setup(use_petsc=0,kernel_language='Fortran',outdir='./_output',

solver_type='classic'):
31
32 if use_petsc:
33 import clawpack.petclaw as pyclaw
34 else:
35 from clawpack import pyclaw
36
37 if kernel_language == 'Python':
38 riemann_solver = riemann.burgers_1D_py.burgers_1D
39 elif kernel_language == 'Fortran':
40 riemann_solver = riemann.burgers_1D
41
42 if solver_type=='sharpclaw':
43 solver = pyclaw.SharpClawSolver1D(riemann_solver)
44 else:
45 solver = pyclaw.ClawSolver1D(riemann_solver)
46 solver.limiters = pyclaw.limiters.tvd.vanleer
47 solver.kernel_language = kernel_language
48
49 solver.bc_lower[0] = pyclaw.BC.custom
50 solver.user_bc_lower = inlet_bc
51 solver.bc_upper[0] = pyclaw.BC.extrap
52 solver.step_source = source_term
53 solver.before_step = b4step
54
55 x = pyclaw.Dimension(0.0,10.0,1000,name='x')
56 domain = pyclaw.Domain(x)
57 num_eqn = 1
58 state = pyclaw.State(domain,num_eqn)
59 xc = state.grid.x.centers
60 state.q[0,:] = 0.
61 state.problem_data['efix']=True
62 state.problem_data['i'] = 1
63
64 claw = pyclaw.Controller()
65 claw.tfinal = 10
66 claw.num_output_times = 20
67 claw.solution = pyclaw.Solution(state,domain)
68 claw.solver = solver
69 claw.outdir = outdir
70 claw.setplot = setplot
71 claw.keep_copy = True
72
73 return claw
74
75 def setplot(plotdata):
76 """
77 Plot solution using VisClaw.
78 """
79 plotdata.clearfigures() # clear any old figures,axes,items data
80 # Figure for q[0]
81 plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)
82
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83 # Set up for axes in this figure:
84 plotaxes = plotfigure.new_plotaxes()
85 plotaxes.xlimits = 'auto'
86 plotaxes.ylimits = [-1., 2.]
87 plotaxes.title = 'q[0]'
88 # Set up for item on these axes:
89 plotitem = plotaxes.new_plotitem(plot_type='1d')
90 plotitem.plot_var = 0
91 plotitem.plotstyle = '-o'
92 plotitem.color = 'b'
93
94 return plotdata

1 front = []
2 claw = setup()
3 claw.run()
4
5 ind=5
6 ind2=20
7 delta_t=claw.tfinal/claw.num_output_times
8
9 fig = plt.figure(figsize=(8,4))

10 left, bottom, width, heigth = 0.2, 0.2, 0.8, 0.8
11 ax = fig.add_axes((left ,bottom, width, heigth ))
12 ax.ylimits = [0,0.1]
13 frame = claw.frames[ind]
14 h = frame.q[0,:]
15 frame = claw.frames[ind2]
16 h2 = frame.q[0,:]
17
18 x = frame.state.grid.x.centers
19 ax.plot(x,h,label='t = {:.2f}'.format(ind*delta_t))
20 ax.plot(x,h2, 'k-.',label='t {:.2f}'.format(ind2*delta_t))
21
22 ax.set_xlabel(r'$x$ (m)')
23 ax.set_ylabel(r'$y$ (m)')
24 ax.legend()
25 plt.show()
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Figure 4.4 Numerical solutions at time t = 2.5 s and t = 10 s.



CHAPTER5
Shallow water equations

5.1 Theory

The shallow water equations (also called the Saint-Venant) equations consists of the mass and momen-
tum balance equation for a depth-averaged water flow. In this chapter, we consider the simplest case,
in which the bottom is horizonal and exerts no resistance, and the flow is one-directional. In this case,
the conservative form of the governing equations comprises the mass balance equation

∂h

∂t
+

∂q

∂x
= 0, (5.1)

where h denotes the flow depth, q = hu is the flow rate, and u the depth-averaged velocity. The second
equation is the momentum balance equation

∂q

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
= 0, (5.2)

where g is gravitational acceleration, and the unknowns are q and h. The non-conservative form is
useful when the solution is smooth:

∂h

∂t
+

∂q

∂x
= 0, (5.3)

where h denotes the flow depth, q = hu is the flow rate, and u the depth-averaged velocity. The second
equation is the momentum balance equation

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0. (5.4)

In a matrix form, Eqs. (5.1)-(5.2) takes the form:
∂

∂t
Q+

∂

∂x
f(Q) = 0, (5.5)

where
f =

(
q

q2/h+ gh2/2

)
and Q =

(
h
q

)
. (5.6)

The Jacobian is

f ′ =

(
0 1

−q2/h2 + gh 2q/h

)
, (5.7)

whose eigenvalues are
λ1 = u−

√
gh and λ2 = u+

√
gh, (5.8)

associated with the right eigenvectors:

w1 =

(
1

u−
√
gh

)
and w2 =

(
1

u+
√
gh

)
. (5.9)

43
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5.1.1 Dam break solution

Let us consider the dam break problem on a wet bed (that is, the initial flow depth is nonzero every-
where):

h(x, 0) =

{
hl for x < 0,
hr for x > 0,

(5.10)

and u(x, 0) everywhere, and we assume that hl > hl. The solution’s structure is shown by Fig. 5.3.
There is an intermediate state Q = (h∗, q∗) separated from the left initial state Ql by a rarefaction
wave, and from the right initial state Qr by a shock wave.

Figure 5.1 dambreak with an intermediate state separated from the left initial state by a rarefaction
wave, and from the right initial state by a shock wave.

The intermediate state satisfies the Rankine-Hugoniot condition:

s(Q∗ −Qr) = f(Q∗)− f(Qr), (5.11)

which implies that the shock speed is

s =
q∗ − qr
h∗ − hr

= u∗ ∓
√
ghr

hr + h∗
2h∗

,

and the flow rare depends on the initial rate (which is 0 here) and depth on the right:

q∗ = qr + (h∗ − hr)

(
ur ±

√
ghr

(
1 +

h∗ − hr
hr

)(
1 +

h∗ − hr
2hr

))
, (5.12)

which can be transformed into

u∗ = ur ± (h∗ − hr)

√
g

2

(
1

hr
+

1

h∗

)
. (5.13)

The intermediate state has also to be compatible with a rarefaction wave solution. A rarefaction
wave is a similarity solutionQ(ξ)with ξ = x/t. Substituting this form into the hyperbolic system (5.5)
gives:

−ξQ′(ξ) + f ′(Q) ·Q′(ξ) = 0,
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which shows that Q′(ξ) is a right eigenvector of the Jacobian matrix f ′, and thus there exists a scalar
coefficient α(ξ) such that

Q′(ξ) = α(ξ)wk,

with k = 1, 2, Let us assume that α = 1 and k = 1 (that is, we are looking for the 1-rarefaction wave),
then we have to solve

Q′(ξ) =

(
h′

q′

)
=

(
1

u−
√
gh

)
.

We deduce by setting the first constant of integration to zero:

h(ξ) = ξ,

q′ =
q

ξ
−
√

gξ ⇒ q(ξ) = aξ − 2ξ
√

gξ,

where a is constant of integration. As we have h = ξ, this means that we also have q(h) = ah−2h
√
gh

We impose that the intermediate state lies on the rarefaction wave, and thus

q∗ = ah∗ − 2h∗
√
gh∗ ⇒ a = u∗ + 2h∗

√
gh∗.

The 1-rarefaction is thus the curve

q(h) = hu∗ + 2h(
√
gh∗ −

√
gh). (5.14)
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Figure 5.2 Phase plane for hl = 3 and hr = 1 (with g = 1 m/s2).

5.2 Approximate solver: the Roe solver

5.2.1 Derivation

The idea underpinning the Roe solver’s derivation is a change of variable. The linearised flux matrix
has been defined in § 2.5

Âi−1/2 =

∫ 1

0

df(q(ξ))
dq dξ. (5.15)
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We make the following change of variable

z =
q√
h
=

( √
h

u
√
h

)
, (5.16)

or by inversion

q =

(
z21
z1z2

)
⇒ ∂q

∂z
=

(
2z1 0
z2 z1

)
. (5.17)

The flux function and its Jacobian are

f =

(
z1z2

z22 +
1
2gz

4
1

)
⇒ df

dz =

(
z2 z1

2gz31 2z2

)
.

Using the change of variable, we now integrate

f(Qi)− f(Qi−1) =

∫ 1

0

df
dξ (z)dξ

along the straight line
z = Zi−1 + (Zi −Zi−1)ξ.

As z′ = Zi −Zi−1, we have

f(Qi)− f(Qi−1) =

∫ 1

0

df
dz (z)

dz
dξ dξ,

= (Zi −Zi−1)

∫ 1

0

df
dz (z)dξ,

=

(
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2
,

)
· (Zi −Zi−1)

where
Z̄k =

1

2
(Zk,i−1 + Zk,i) and h̄ =

1

2
(hi−1 + hi).

Now we have to return to the original variables by linking Z and Q. By integrating Eq. (5.16), we get

Qi −Qi−1 =

∫ i

i−1

df
dz dz =

∫ 1

0

df
dz z

′dξ =

(
2Z̄1 0
Z̄2 Z̄1

)
· (Zi −Zi−1).

We eventually find:

Âi−1/2 =

(
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2

)
·
(

2Z̄1 0
Z̄2 Z̄1

)−1

=

(
0 1

gh̄− (Z̄2/Z1)
2 2Z̄2/Z1

)
,

and after returning to the original variables

Âi−1/2 =

(
1 1

−û+ gh̄ 2û

)
where û =

√
hi−1ui−1 +

√
hiui√

hi−1 +
√
hi

. (5.18)

The Roe matrix is thus the Jacobian matrix f ′(q) evaluated at the intermediate state q) = (h̄, h̄û). It
has the eigenvalues

λ1 = û−
√
gh̄ and λ2 = û+

√
gh̄,

associated with the right eigenvectors:

w1 =

(
1

û−
√

gh̄

)
and w2 =

(
1

û+
√

gh̄

)
. (5.19)
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We can decompose the initial jump Qi −Qi−1 as

∆Q = Qi −Qi−1 = R ·α, (5.20)

where R = [w1, w2] is the right-eigenvector matrix. We then deduce the α coefficients by inverting
the matrix R

α = R−1 ·∆Q =
1

2ĉ

(
(û+ ĉ)∆Q1 −∆Q2

(−û+ ĉ)∆Q1 +∆Q2

)
(5.21)

where ĉ =
√
gh̄ and ∆Q = (∆Q1, ∆Q2).

5.2.2 Wave form

To summarize the results, we need the following equations to write the Roe solver’s algorithm:

• The velocities associated with the intermediate state

û =
qi−1/

√
hi−1 + qi/

√
hi√

hi−1 +
√
hi

and c̄ =

√
1

2
(
√
hi−1 +

√
hi). (5.22)

• The waves W k:
W k = αkwk, k = 1, 2 (5.23)

where αk are the components of the α vector given by Eq. (6.11) and wk are the right eigenvec-
tors of the Roe matrix given by Eq. (5.19).

• the characteristic speeds
s1 = û− c̄ and s2 = û+ c̄. (5.24)

• The fluctuations are

A+ ·∆Qi−1/2 =

2∑
k=1

min(λk
i−1/2, 0)W k,i−1/2,

A− ·∆Qi+1/2 =

2∑
k=1

max(λk
i−1/2, 0)W k,i−1/2,

which gives in the present context:

– if sk > 0, then amdq(m,i) = s*wave.
– if sk < 0, then apdq(m,i) = s*wave.

5.2.3 Implementation

Here is how the Roe solver is implemented in Clawpack (with the entropy fix to compute transonic
wave).

1 subroutine rp1(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
2 ql,qr,auxl,auxr,wave,s,amdq,apdq)
3
4 ! waves: 2
5 ! equations: 2
6
7 ! Conserved quantities:
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8 ! 1 depth
9 ! 2 momentum

10
11 ! See http://www.clawpack.org/riemann.html for a detailed explanation
12 ! of the Riemann solver API.
13
14 implicit none
15
16 integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &
17 num_cells
18 real(kind=8), intent(in), dimension(num_eqn,1-num_ghost:maxmx+num_ghost

) :: ql, qr
19 real(kind=8), intent(in), dimension(num_aux,1-num_ghost:maxmx+num_ghost

) :: auxl, auxr
20 real(kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)
21 real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1-num_ghost:maxmx

+num_ghost)
22 real(kind=8), intent(out), dimension(num_eqn,1-num_ghost:maxmx+

num_ghost) :: amdq,apdq
23
24 ! local variables:
25 real(kind=8) :: a1,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl2,uhl2,sfract,df
26 real(kind=8) :: delta(2)
27 integer :: i,m,mw
28
29 logical :: efix
30
31 data efix /.true./ !# Use entropy fix for transonic rarefactions
32
33 ! Gravity constant set in setprob.f or the shallow1D.py file
34 real(kind=8) :: grav
35 common /cparam/ grav
36
37 ! Main loop of the Riemann solver.
38 do 30 i=2-num_ghost,num_cells+num_ghost
39
40
41 ! compute Roe-averaged quantities:
42 ubar = (qr(2,i-1)/dsqrt(qr(1,i-1)) + ql(2,i)/dsqrt(ql(1,i)))/ &
43 ( dsqrt(qr(1,i-1)) + dsqrt(ql(1,i)) )
44 cbar=dsqrt(0.5d0*grav*(qr(1,i-1) + ql(1,i)))
45
46 ! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)
47 delta(1) = ql(1,i) - qr(1,i-1)
48 delta(2) = ql(2,i) - qr(2,i-1)
49
50 ! Compute coeffs in the evector expansion of delta(1),delta(2)
51 a1 = 0.5d0*(-delta(2) + (ubar + cbar) * delta(1))/cbar
52 a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(1))/cbar
53
54 ! Finally, compute the waves.
55 wave(1,1,i) = a1
56 wave(2,1,i) = a1*(ubar - cbar)
57 s(1,i) = ubar - cbar
58
59 wave(1,2,i) = a2
60 wave(2,2,i) = a2*(ubar + cbar)
61 s(2,i) = ubar + cbar
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62
63 30 enddo
64
65 ! Compute fluctuations amdq and apdq
66 ! ------------------------------------
67
68 if (efix) go to 110
69
70 ! No entropy fix
71 ! ----------------------------------------------
72 ! amdq = SUM s*wave over left-going waves
73 ! apdq = SUM s*wave over right-going waves
74
75 do m=1,2
76 do i=2-num_ghost, num_cells+num_ghost
77 amdq(m,i) = 0.d0
78 apdq(m,i) = 0.d0
79 do mw=1,num_waves
80 if (s(mw,i) < 0.d0) then
81 amdq(m,i) = amdq(m,i) + s(mw,i)*wave(m,mw,i)
82 else
83 apdq(m,i) = apdq(m,i) + s(mw,i)*wave(m,mw,i)
84 endif
85 enddo
86 enddo
87 enddo
88
89 ! with no entropy fix we are done...
90 return
91
92
93 ! -----------------------------------------------
94
95 110 continue
96
97 ! With entropy fix
98 ! ------------------
99

100 ! compute flux differences amdq and apdq.
101 ! First compute amdq as sum of s*wave for left going waves.
102 ! Incorporate entropy fix by adding a modified fraction of wave
103 ! if s should change sign.
104
105 do 200 i=2-num_ghost,num_cells+num_ghost
106
107 ! ------------------------------------------------------
108 ! check 1-wave:
109 ! ---------------
110
111 ! u-c in left state (cell i-1)
112 s0 = qr(2,i-1)/qr(1,i-1) - dsqrt(grav*qr(1,i-1))
113
114 ! check for fully supersonic case:
115 if (s0 >= 0.d0 .and. s(1,i) > 0.d0) then
116 ! everything is right-going
117 do m=1,2
118 amdq(m,i) = 0.d0
119 enddo
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120 go to 200
121 endif
122
123 ! u-c to right of 1-wave
124 hr1 = qr(1,i-1) + wave(1,1,i)
125 uhr1 = qr(2,i-1) + wave(2,1,i)
126 s1 = uhr1/hr1 - dsqrt(grav*hr1)
127
128 if (s0 < 0.d0 .and. s1 > 0.d0) then
129 ! transonic rarefaction in the 1-wave
130 sfract = s0 * (s1-s(1,i)) / (s1-s0)
131 else if (s(1,i) < 0.d0) then
132 ! 1-wave is leftgoing
133 sfract = s(1,i)
134 else
135 ! 1-wave is rightgoing
136 sfract = 0.d0 !# this shouldn't happen since s0 < 0
137 endif
138
139 do m=1,2
140 amdq(m,i) = sfract*wave(m,1,i)
141 enddo
142
143 ! -------------------------------------------------------
144 ! check 2-wave:
145 ! ---------------
146 ! u+c in right state (cell i)
147 s3 = ql(2,i)/ql(1,i) + dsqrt(grav*ql(1,i))
148
149 ! u+c to left of 2-wave
150 hl2 = ql(1,i) - wave(1,2,i)
151 uhl2 = ql(2,i) - wave(2,2,i)
152 s2 = uhl2/hl2 + dsqrt(grav*hl2)
153
154 if (s2 < 0.d0 .and. s3 > 0.d0) then
155 ! transonic rarefaction in the 2-wave
156 sfract = s2 * (s3-s(2,i)) / (s3-s2)
157 else if (s(2,i) < 0.d0) then
158 ! 2-wave is leftgoing
159 sfract = s(2,i)
160 else
161 ! 2-wave is rightgoing
162 go to 200
163 endif
164
165 do m=1,2
166 amdq(m,i) = amdq(m,i) + sfract*wave(m,2,i)
167 enddo
168
169 200 enddo
170
171
172 ! compute the rightgoing flux differences:
173 ! df = SUM s*wave is the total flux difference and apdq = df - amdq
174
175 do m=1,2
176 do i = 2-num_ghost, num_cells+num_ghost
177 df = 0.d0
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178 do mw=1,num_waves
179 df = df + s(mw,i)*wave(m,mw,i)
180 enddo
181 apdq(m,i) = df - amdq(m,i)
182 enddo
183 enddo
184
185 return
186
187 end subroutine rp1

Here is how the Roe solver is implemented in Pyclaw

1 def shallow_roe_1D(q_l, q_r, aux_l, aux_r, problem_data):
2 r"""
3 Roe shallow water solver in 1d::
4 """
5 # Array shapes
6 num_rp = q_l.shape[1]
7
8 # Output arrays
9 wave = np.empty( (num_eqn, num_waves, num_rp) )

10 s = np.zeros( (num_waves, num_rp) )
11 amdq = np.zeros( (num_eqn, num_rp) )
12 apdq = np.zeros( (num_eqn, num_rp) )
13
14 # Compute roe-averaged quantities
15 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
16 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
17 cbar = np.sqrt(0.5 * problem_data['grav'] * (q_l[0,:] + q_r[0,:]))
18
19 # Compute Flux structure
20 delta = q_r - q_l
21 a1 = 0.5 * (-delta[1,:] + (ubar + cbar) * delta[0,:]) / cbar
22 a2 = 0.5 * ( delta[1,:] - (ubar - cbar) * delta[0,:]) / cbar
23
24 # Compute each family of waves
25 wave[0,0,:] = a1
26 wave[1,0,:] = a1 * (ubar - cbar)
27 s[0,:] = ubar - cbar
28
29 wave[0,1,:] = a2
30 wave[1,1,:] = a2 * (ubar + cbar)
31 s[1,:] = ubar + cbar
32
33 s_index = np.zeros((2,num_rp))
34 for m in range(num_eqn):
35 for mw in range(num_waves):
36 s_index[0,:] = s[mw,:]
37 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
38 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
39
40 return wave, s, amdq, apdq
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5.2.4 Sonic entropy fix

When the solution to the Riemann problem is a transonic wave, the Roe approximate solution may be
incorrect. In that case, there is an intermediate stateQ∗ between the left and right statesQi−1 andQi,
and the associated speeds are

λ1,i−1 = ui−1 −
√
ghi−1, λ1,∗ = u∗ −

√
gĥ∗

and
λ2,∗ = u∗ +

√
gĥ∗, λ2,i = ui +

√
gĥi.

When λ1,i−1 < 0 < λ1,∗ (resp. λ2,∗ < 0 < λ2,i), we can suspect that the 1-wave (resp. the 2-wave) is a
transonic rarefaction wave. By using the analytical expression for a centred rarefaction wave (LeVeque,
2002, see, § 13.8.5), we can deduce the interface values

hi−1/2 =
1

9g

(
ui−1 + 2

√
ghi−1

)2
, (5.25)

ui−1/2 = ui−1 + 2
(√

ghi−1 −
√
ghi−1/2

)
(5.26)

The flux fluctuations are computed using Eqs. (2.32) and (2.33).

5.3 HLLE solver

5.3.1 Principle

TheHLL method is a two-wave solver that considers that the solution to the Riemann problem consists
of two shock waves separating the intermediate state Q∗ Qi from the left and right initial states Qi−1

and Qi. In § 2.6, we have seen that this intermediate state and the associated flux can be determined
by solving the Rankine-Hugoniot equations for the discontinuities across the two shock waves. Here
we provide another proof based on volume integrals.

Integrating the shallow water equations (5.5) over the domain [x1, x2]× [0,∆t] in the x− t plane
(see Fig. 2.3) gives∫ x2

x1

q(x, ∆t)dx =

∫ x2

x1

q(x, 0)dx+

∫ ∆t

0
f(q(x1, t))dt−

∫ ∆t

0
f(q(x2, t))dt,

where x1 = s1∆t and x2 = s2∆t. Since q(x, 0) is fixed by the initial conditions, we deduce

Q∗ =
1

x2 − x1

∫ x2

x1

q(x, ∆t)dx =
Qix2 −Qi−1x1

x2 − x1
− ∆t

x2 − x1
(F i − F i−1),

where

F i−1 =
1

∆t

∫ ∆t

0
f(q(x1, t))dt and F i =

1

∆t

∫ ∆t

0
f(Q(x2, t))dt.

We find that the intermediate state is:

Q∗ =
Qis2 −Qi−1s1

s2 − s1
− F i − F i−1

s2 − s1
. (5.27)
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In § 2.3.3, we derived the general expression (2.20) for computing the interface flux from the left and
right flux

F i−1/2 = f(Qi−1) +
δx

δt
Qi−1 −

1

δt

∫ 0

−δx
Q(x, δt)dx.

which gives us when we take δx = −x2 = −s2∆t:

F ∗ =
s2F i−1 − s1F i

s2 − s1
− s2s2

Qi−1 −Qi

s2 − s1
. (5.28)

This expression of the flux holds when the two shock waves fan out on either side of x = 0. In that
case, the interface flux is defined as F i−1/2 = F ∗. If both shock waves go to the right (i.e., if s1 > 0)
then F i−1/2 = F i−1. In the opposite case, then F i−1/2 = F i:

F i−1/2 =


F i−1 if s1 > 0,
F ∗ if s1 ≥ 0 ≥ s2,
F i if s2 < 0,

(5.29)

The last problem to be settled is the determination of the shock speed s1 and s2. We use the suggest
of Einfeldt, which explains why the solver is called HLLE. Let us first consider the 1-wave. If this wave
is a rarefaction wave, its speeds ranges from λ1(Qi−1) to λ1(Qi) = ui−1 −

√
ghi−1; we select the

minimum value λ1(Qi−1). If it is a shock, its speed can be estimated using the Roe matrix (5.18):
s1 = û− ĉ. As we do not know whether the 1-wave is a shock or rarefaction wave, we take the lower
bound:

s1 = min(ui−1 −
√
ghi−1, û− ĉ). (5.30)

The same applies for the 2-wave. We define s2 as the upper bound

s2 = max(ui +
√
ghi, û+ ĉ). (5.31)

In short, we compute the Roe averages, and deduce the shock speeds (5.30) and (5.31). The inter-
mediate state is given by Eq (5.27). The waves are

W 1 = Q∗ −Qi−1 and W 2 = Qi −Q∗. (5.32)

The fluctuations are then
A− ·∆Qi−1/2 = s1W 1

A+ ·∆Qi−1/2 = s1W 2.
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5.3.2 Implementation in Pyclaw

1 def shallow_hll_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 HLL shallow water solver ::
4
5
6 W_1 = Q_hat - Q_l s_1 = min(u_l-c_l,u_l+c_l,lambda_roe_1,

lambda_roe_2)
7 W_2 = Q_r - Q_hat s_2 = max(u_r-c_r,u_r+c_r,lambda_roe_1,

lambda_roe_2)
8
9 Q_hat = ( f(q_r) - f(q_l) - s_2 * q_r + s_1 * q_l ) / (s_1 - s_2)

10
11 *problem_data* should contain:
12 - *g* - (float) Gravitational constant
13
14 :Version: 1.0 (2009-02-05)
15 """
16 # Array shapes
17 num_rp = q_l.shape[1]
18 num_eqn = 2
19 num_waves = 2
20
21 # Output arrays
22 wave = np.empty( (num_eqn, num_waves, num_rp) )
23 s = np.empty( (num_waves, num_rp) )
24 amdq = np.zeros( (num_eqn, num_rp) )
25 apdq = np.zeros( (num_eqn, num_rp) )
26
27 # Compute Roe and right and left speeds
28 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
29 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
30 cbar = np.sqrt(0.5 * problem_data['grav'] * (q_l[0,:] + q_r[0,:]))
31 u_r = q_r[1,:] / q_r[0,:]
32 c_r = np.sqrt(problem_data['grav'] * q_r[0,:])
33 u_l = q_l[1,:] / q_l[0,:]
34 c_l = np.sqrt(problem_data['grav'] * q_l[0,:])
35
36 # Compute Einfeldt speeds
37 s_index = np.empty((4,num_rp))
38 s_index[0,:] = ubar+cbar
39 s_index[1,:] = ubar-cbar
40 s_index[2,:] = u_l + c_l
41 s_index[3,:] = u_l - c_l
42 s[0,:] = np.min(s_index,axis=0)
43 s_index[2,:] = u_r + c_r
44 s_index[3,:] = u_r - c_r
45 s[1,:] = np.max(s_index,axis=0)
46
47 # Compute middle state
48 q_hat = np.empty((2,num_rp))
49 q_hat[0,:] = ((q_r[1,:] - q_l[1,:] - s[1,:] * q_r[0,:]
50 + s[0,:] * q_l[0,:]) / (s[0,:] - s[1,:]))
51 q_hat[1,:] = ((q_r[1,:]**2/q_r[0,:] + 0.5 * problem_data['grav'] * q_r

[0,:]**2
52 - (q_l[1,:]**2/q_l[0,:] + 0.5 * problem_data['grav'] * q_l

[0,:]**2)
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53 - s[1,:] * q_r[1,:] + s[0,:] * q_l[1,:]) / (s[0,:] - s
[1,:]))

54
55 # Compute each family of waves
56 wave[:,0,:] = q_hat - q_l
57 wave[:,1,:] = q_r - q_hat
58
59 # Compute variations
60 s_index = np.zeros((2,num_rp))
61 for m in range(num_eqn):
62 for mw in range(num_waves):
63 s_index[0,:] = s[mw,:]
64 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
65 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
66
67 return wave, s, amdq, apdq

5.4 F-wave formulation

5.4.1 Principle

The f-wave method consists of decomposing the flux jump into f-waves

f(Qi)− f(Qi−1) =

mw∑
k=1

Zk,i−1/2,

where the f-wave Zk,i−1/2 can be related to the right eigenvector ŵk,i−1/2 of the Roe matrix:

Zk,i−1/2 = βk,i−1/2ŵk,i−1/2

where the coefficient βk,i−1/2 is the linear solution (see § 2.7):

βi−1/2 = L · (f(Qi)− f(Qi−1)).

with L = R−1. We find that

βi−1/2 =
1

2ĉ

(
Φl − ϕr + (û+ ĉ)(qr − ql)
Φr − ϕl − (û− ĉ)(qr − ql)

)
, (5.33)

where Φ is the shorthand notation: Φ = u2h+ gh2/2. The f-waves are then

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

(
1

û− ĉ

)
(5.34)

and

Z2,i−1/2 = β2,i−1/2w2 =
Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

(
1

û+ ĉ

)
. (5.35)

5.4.2 Implementation in Pyclaw
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1 def shallow_water_fwave_1d(q_l, q_r, aux_l, aux_r, problem_data):
2 r"""Shallow water Riemann solver using fwaves
3
4 *problem_data* should contain:
5 - *grav* - (float) Gravitational constant
6 - *dry_tolerance* - (float) Set velocities to zero if h is below this
7 tolerance.
8 """
9

10 g = problem_data['grav']
11 dry_tolerance = problem_data['dry_tolerance']
12
13
14 num_rp = q_l.shape[1]
15 num_eqn = 2
16 num_waves = 2
17
18 # initializing f-waves
19 fwave = np.empty( (num_eqn, num_waves, num_rp) )
20 # right eigenvectors
21 r1 = np.empty( (num_waves, num_rp) )
22 r2 = np.empty( (num_waves, num_rp) )
23 # initializing fluctuations and shock speeds
24 amdq = np.zeros( (num_eqn, num_rp) )
25 apdq = np.zeros( (num_eqn, num_rp) )
26 s = np.empty( (num_waves, num_rp) )
27
28
29 # Extract state
30 hl = q_l[0, :]
31 ql = q_l[1, :]
32 ul = np.where(hl > dry_tolerance, ql/hl , 0.0)
33 hr = q_r[0, :]
34 qr = q_r[1, :]
35 ur = np.where(hr > dry_tolerance, qr/hr, 0.0)
36
37 phi_l = hl * ul**2 + 0.5 * g * hl**2
38 phi_r = hr * ur**2 + 0.5 * g * hr**2
39 h_bar = 0.5 * (hr + hl)
40
41 # Speeds
42 u_hat = (np.sqrt(hl) * ul + np.sqrt(hr) * ur) / (np.sqrt(hl) + np.sqrt(

hr) )
43 c_hat = np.sqrt(g * h_bar)
44 lambda1 = u_hat - c_hat
45 lambda2 = u_hat + c_hat
46
47
48 beta1 = (phi_l - phi_r +lambda2*(qr-ql))/2/c_hat
49 beta2 = (phi_r - phi_l -lambda1*(qr-ql))/2/c_hat
50
51
52
53 r1[0, :] = 1.
54 r1[1, :] = u_hat - c_hat
55 r2[0, :] = 1.
56 r2[1, :] = u_hat + c_hat
57
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58 s[0,:] = u_hat - c_hat
59 s[1,:] = u_hat + c_hat
60
61 # 1st f-wave
62 fwave[0,0,:] = beta1*r1[0,:]
63 fwave[1,0,:] = beta1*r1[1,:]
64 # 2nd f-wave
65 fwave[0,1,:] = beta2*r2[0,:]
66 fwave[1,1,:] = beta2*r2[1,:]
67
68 for m in range(num_eqn):
69 for mw in range(num_waves):
70 amdq[m, :] += (s[mw, :] < 0.0) * fwave[m, mw, :]
71 apdq[m, :] += (s[mw, :] > 0.0) * fwave[m, mw, :]
72
73 amdq[m, :] += (s[mw, :] == 0.0) * fwave[m, mw, :] * 0.5
74 apdq[m, :] += (s[mw, :] == 0.0) * fwave[m, mw, :] * 0.5
75
76 return fwave, s, amdq, apdq
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5.5 Example: dam break

We consider a dam break problem with the following initial conditions: hl = 10 m et ul = 0 for x ≤ 0,
and hl = 0.5 m et ul = 0 for x > 0. We compare the three solvers: Roe (with or without the entropy
fix), the HLLE solver, and the f-wave formulation. Figures 5.3 and 5.4 show the comparison.
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Figure 5.3 Comparison between the analytical solution, the Roe (with entropy fix) and HLLE solution.
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Figure 5.4 Comparison between the analytical solution, the Roe (with no entropy fix) and f-wave
solution.





CHAPTER6
Shallow water equation with transport

6.1 Theory

Let us consider the shallow water equations seen in Chap. 5, supplemented with an equation represent-
ing the advection of a scalar quantity ϕ(x, t) (for instance, the concentration of a pollutant that does
not interplay with the water flow):

∂h

∂t
+

∂q

∂x
= 0, (6.1)

∂q

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
= 0, (6.2)

∂hϕ

∂t
+

∂qϕ

∂x
= 0, (6.3)

where h denotes the flow depth, q = hu is the flow rate, and u the depth-averaged velocity. where g is
gravitational acceleration, and the unknowns are q, h and ϕ. In a matrix form, Eqs. (6.1)-(6.3) takes the
form:

∂

∂t
Q+

∂

∂x
f(Q) = 0, (6.4)

where

f =

 q
q2/h+ gh2/2

qϕ

 and Q =

 h
q
hϕ

 . (6.5)

The Jacobian is

f ′ =

 0 1 0
−u2 + gh 2u 0

−uϕ ϕ u

 , (6.6)

whose eigenvalues are
λ1 = u−

√
gh, λ2 = u and λ3 = u+

√
gh, (6.7)

associated with the right eigenvectors:

w1 =

 1
u−

√
gh

ϕ

 , w2 =

 0
0
1

 and w3 =

 1
u+

√
gh

ϕ

 . (6.8)

The scalar quantity ϕ is decoupled from the water flow, and its speed depends only on the water flow
velocity: λ2 = u. The associated field is said to be linearly degenerate because∇λ2 ·w2 = 0. This gives
rise to contact discontinuities: when ϕ experiences a shock, there is a discontinuity in u, and thus the
characteristic speeds are equal on either side of the shock waves (the characteristic curves are parallel
to the shock cuves). The condition ∇λ2 · w2 = 0 means that the eigenvalue is unchanged when we
move along the integral curve w2(ζ).

61
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6.2 Roe solver

6.2.1 Derivation

The Roe solver is close to the version derived in Chap. 5. The only difference lies in the adding of a
third wave. We need the following equations to write the Roe solver’s algorithm:

• The velocities associated with the intermediate state

û =
qi−1/

√
hi−1 + qi/

√
hi√

hi−1 +
√
hi

and c̄ =

√
1

2
(hi−1 + hi). (6.9)

• The waves W k:
W k = αkwk, k = 1, 3 (6.10)

where αk are the components of the α vector obtained by inverting the matrix R

α = R−1 ·∆Q =
1

2ĉ

 (û+ ĉ)∆Q1 −∆Q2

∆Q3 − ϕ∆Q1

(−û+ ĉ)∆Q1 +∆Q2

 (6.11)

where ĉ =
√
gh̄ and ∆Q = (∆Q1, ∆Q2, , ∆Q3). For the second wave, we impose that there

is no jump ∆Q1 associated with the contact discontinuity, and thus we impose

α2 = ∆Q3.

• the characteristic speeds

s1 = û− c̄, s2 = û and s3 = û+ c̄. (6.12)

• The fluctuations are

A+ ·∆Qi−1/2 =
3∑

k=1

min(λk
i−1/2, 0)W k,i−1/2,

A− ·∆Qi+1/2 =

3∑
k=1

max(λk
i−1/2, 0)W k,i−1/2,

which gives in the present context:

– if sk > 0, then amdq(m,i) = s*wave.
– if sk < 0, then apdq(m,i) = s*wave.

6.2.2 Implementation in Clawpack

1 subroutine rp1(maxmx,num_eqn,num_waves,num_aux,num_ghost,num_cells, &
2 ql,qr,auxl,auxr,wave,s,amdq,apdq)
3
4 ! Solve Riemann problems for the 1D shallow water equations
5 ! with an additional passively advected tracer:
6 ! (h)_t + (u h)_x = 0
7 ! (uh)_t + ( uuh + .5*gh^2 )_x = 0
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8 ! c_t + uc_x = 0
9 ! using Roe's approximate Riemann solver with entropy fix for

10 ! transonic rarefractions.
11
12 ! waves: 3
13 ! equations: 3
14
15 ! Conserved quantities:
16 ! 1 depth
17 ! 2 momentum
18 ! 3 tracer
19
20 ! See http://www.clawpack.org/riemann.html for a detailed explanation
21 ! of the Riemann solver API.
22
23 implicit none
24
25 integer, intent(in) :: maxmx, num_eqn, num_waves, num_aux, num_ghost, &
26 num_cells
27 real(kind=8), intent(in), dimension(num_eqn,1-num_ghost:maxmx+num_ghost

) :: ql, qr
28 real(kind=8), intent(in), dimension(num_aux,1-num_ghost:maxmx+num_ghost

) :: auxl, auxr
29 real(kind=8), intent(out) :: s(num_waves, 1-num_ghost:maxmx+num_ghost)
30 real(kind=8), intent(out) :: wave(num_eqn, num_waves, 1-num_ghost:maxmx

+num_ghost)
31 real(kind=8), intent(out), dimension(num_eqn,1-num_ghost:maxmx+

num_ghost) :: amdq,apdq
32
33 ! local variables:
34 real(kind=8) :: a1,a2,ubar,cbar,s0,s1,s2,s3,hr1,uhr1,hl2,uhl2,sfract,df
35 real(kind=8) :: delta(2)
36 integer :: i,m,mw
37 logical :: efix
38
39 data efix /.true./ ! Use entropy fix for transonic rarefactions
40
41 ! Gravity constant set in setprob.f or the shallow1D.py file
42 real(kind=8) :: grav
43 common /cparam/ grav
44
45 ! Main loop of the Riemann solver.
46 do 30 i=2-num_ghost,num_cells+num_ghost
47
48 ! compute Roe-averaged quantities:
49 ubar = (qr(2,i-1)/dsqrt(qr(1,i-1)) + ql(2,i)/dsqrt(ql(1,i)))/ &
50 ( dsqrt(qr(1,i-1)) + dsqrt(ql(1,i)) )
51 cbar=dsqrt(0.5d0*grav*(qr(1,i-1) + ql(1,i)))
52
53 ! delta(1)=h(i)-h(i-1) and delta(2)=hu(i)-hu(i-1)
54 delta(1) = ql(1,i) - qr(1,i-1)
55 delta(2) = ql(2,i) - qr(2,i-1)
56
57 ! Compute coeffs in the evector expansion of delta(1),delta(2)
58 a1 = 0.5d0*(-delta(2) + (ubar + cbar) * delta(1))/cbar
59 a2 = 0.5d0*( delta(2) - (ubar - cbar) * delta(1))/cbar
60
61 ! Finally, compute the waves.
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62 wave(1,1,i) = a1
63 wave(2,1,i) = a1*(ubar - cbar)
64 wave(3,1,i) = 0.d0
65 s(1,i) = ubar - cbar
66
67 wave(1,2,i) = a2
68 wave(2,2,i) = a2*(ubar + cbar)
69 wave(3,2,i) = 0.d0
70 s(2,i) = ubar + cbar
71
72 wave(1,3,i) = 0.d0
73 wave(2,3,i) = 0.d0
74 wave(3,3,i) = ql(3,i) - qr(3,i-1)
75 s(3,i) = ubar
76
77 30 enddo
78
79 ! Compute fluctuations amdq and apdq
80 ! ------------------------------------
81
82 if (efix) go to 110
83
84 ! No entropy fix
85 ! ----------------------------------------------
86 ! amdq = SUM s*wave over left-going waves
87 ! apdq = SUM s*wave over right-going waves
88
89 do m=1,num_waves
90 do i=2-num_ghost, num_cells+num_ghost
91 amdq(m,i) = 0.d0
92 apdq(m,i) = 0.d0
93 do mw=1,num_waves
94 if (s(mw,i) < 0.d0) then
95 amdq(m,i) = amdq(m,i) + s(mw,i)*wave(m,mw,i)
96 else
97 apdq(m,i) = apdq(m,i) + s(mw,i)*wave(m,mw,i)
98 endif
99 enddo

100 enddo
101 enddo
102
103 ! with no entropy fix we are done...
104 return
105
106 ! -----------------------------------------------
107 110 continue
108
109 ! compute the rightgoing flux differences:
110 ! df = SUM s*wave is the total flux difference and apdq = df - amdq
111
112 do i = 2-num_ghost, num_cells+num_ghost
113 do m=1,2
114 df = 0.d0
115 do mw=1,2
116 df = df + s(mw,i)*wave(m,mw,i)
117 enddo
118 apdq(m,i) = df - amdq(m,i)
119 enddo
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120
121 ! tracer (which is in non-conservation form)
122 if (s(3,i) < 0) then
123 amdq(m,i) = amdq(m,i) + s(3,i)*wave(m,3,i)
124 else
125 apdq(m,i) = apdq(m,i) + s(3,i)*wave(m,3,i)
126 endif
127
128 enddo
129
130 return
131
132 end subroutine rp1

6.2.3 Implementation in Pyclaw

1 def shallow_roe_1D(q_l, q_r, aux_l, aux_r, problem_data):
2 r"""
3 Roe shallow water solver in 1d
4 """
5
6 # Array shapes
7 num_rp = q_l.shape[1]
8 num_eqn = 3
9 num_waves = 3

10
11 g = problem_data['grav']
12
13 # Output arrays
14 wave = np.empty( (num_eqn, num_waves, num_rp) )
15 s = np.zeros( (num_waves, num_rp) )
16 amdq = np.zeros( (num_eqn, num_rp) )
17 apdq = np.zeros( (num_eqn, num_rp) )
18
19 # Compute roe-averaged quantities
20 ubar = ( (q_l[1,:]/np.sqrt(q_l[0,:]) + q_r[1,:]/np.sqrt(q_r[0,:])) /
21 (np.sqrt(q_l[0,:]) + np.sqrt(q_r[0,:])) )
22 cbar = np.sqrt(0.5 * g * (q_l[0,:] + q_r[0,:]))
23
24 # Compute Flux structure
25 delta = q_r - q_l
26 delta1 = q_r[0,:] - q_l[0,:]
27 delta2 = q_r[1,:] - q_l[1,:]
28 alpha1 = 0.5 * (-delta2 + (ubar + cbar) * delta1) / cbar
29 alpha2 = 0.5 * ( delta2 - (ubar - cbar) * delta1) / cbar
30
31 # Compute each family of waves
32 wave[0,0,:] = alpha1
33 wave[1,0,:] = alpha1 * (ubar - cbar)
34 wave[2,0,:] = 0.
35 s[0,:] = ubar - cbar
36
37 wave[0,2,:] = alpha2
38 wave[1,2,:] = alpha2 * (ubar + cbar)
39 wave[2,2,:] = 0.
40 s[2,:] = ubar + cbar
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41
42 wave[0,1,:] = 0.
43 wave[1,1,:] = 0.
44 wave[2,1,:] = q_r[2,:] - q_l[2,:]
45 s[1,:] = ubar
46
47 s_index = np.zeros((3,num_rp))
48 for m in range(num_eqn):
49 for mw in range(num_waves):
50 s_index[0,:] = s[mw,:]
51 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
52 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
53
54
55 return wave, s, amdq, apdq

6.3 HLLC Solver

6.3.1 Principle

The HLLC solver is an extension of the HLL scheme proposed by Eleuterio Toro (Toro, 2001) to cope
with the existence of a contact discontinuity. The HLL solver defines an intermediate state separating
the left and right initial states. The HLLC introduces two distinct intermediate states split by the second
characteristic x = λ2t (see Fig. 6.1). The fluxes associated with the two intermediate states are defined
using the Rankine-Hugoniot equation:

F ∗,l − F l = s1(Q∗,l −Ql), (6.13)

F ∗,r − F r = s3(Q∗,r −Qr) (6.14)

where F ∗,l = f(Q∗,l) and F ∗,r = f(Q∗,r).

Figure 6.1 The three waves separating the left and right initial states.
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In the absence of the advection equation (6.3), there would be only one intermediate state. As
tracer advection does not interplay with water flow, we impose that the first two components (those
associated with the water flow) of F ∗,r and F ∗,l are identical:

F∗,l,1 = F∗,r,1 =
λ3Fl,1 − λ1Fr,1

λ3 − λ1
− λ1λ3

λ3 − λ1

hl − hr
, (6.15)

F∗,l,2 = F∗,r,2 =
λ3Fl,2 − λ1Fr,2

λ3 − λ1
− λ1λ3

λ3 − λ1

hlul − hrur
, (6.16)

whereF1 = hu andF2 = hu2+gh2/2. For the third component, we impose that there is no jump across
the 1- and 3-characteristics. The only jump in huϕ is across x = λ2t. Because the third component
huϕ is the product of ϕ and the first F component hu, then we can write

F∗,l,3 = F∗,l,1ϕl, (6.17)

F∗,r,3 = F∗,r,2ϕr. (6.18)

The flux at the interface x = 0 is thus F∗,l,3 if λ2 > 0, and F∗,r,3 if λ2 > 0.

An estimate of the wave speed λ2 is (Toro, 2001):

λ2 =
λ1hr(ur − λ3)− λ3hl(ul − λ1)

hr(ur − λ3)− hl(ul − λ1)
. (6.19)

We consider three waves

W 1 = Ql,∗ −Ql, W 2 = Qr,∗ −Ql,∗ and W 3 = Qr −Qr,∗. (6.20)

In § 2.6 and 5.3.1, we have shown that the intermediate state for the water flow is:

Q†
∗ =

s3Q
†
r − s1Q

†
l

s3 − s1
−

F †
r − F †

l

s3 − s1
,

where Q†
∗ = (h, hu) and F † = (q, Φ) (with q = hu and Φ = hu2 + gh2/2) are the first two

components of Q and F . We thus have

h∗ =
s3hr − s1hl
s3 − s1

− s3qr − s1ql
s3 − s1

,

and
q∗ = (hu)∗ =

s3qr − s1ql
s3 − s1

− s3Φr − s1Φl

s3 − s1
.

We then deduce:

W †
1 =

(
h∗ − hl
q∗ − ql

)
, W †

2 =

(
0
0

)
and W †

3 =

(
hr − h∗
qr − q∗

)
.

For the third component, we have

W1,3 = 0, W2,3 = ϕr − ϕl, and W1,3 = 0.
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6.3.2 Implementation in Pyclaw

1 def shallow_hllc_1D(q_l,q_r,aux_l,aux_r,problem_data):
2 r"""
3 HLLC shallow water solver ::
4 """
5 # Array shapes
6 num_rp = q_l.shape[1]
7 num_eqn = 3
8 num_waves = 3
9

10 g = problem_data['grav']
11
12 # Output arrays
13 wave = np.empty( (num_eqn, num_waves, num_rp) )
14 s = np.empty( (num_waves, num_rp) )
15 amdq = np.zeros( (num_eqn, num_rp) )
16 apdq = np.zeros( (num_eqn, num_rp) )
17
18 h_l = q_l[0,:]
19 h_r = q_r[0,:]
20 hu_l = q_l[1,:]
21 hu_r = q_r[1,:]
22 u_r = hu_r/h_r
23 c_r = np.sqrt(g * h_r)
24 u_l = hu_l/h_l
25 c_l = np.sqrt(g * h_l)
26 Phi_l = u_l**2*h_l+0.5*g*h_l**2
27 Phi_r = u_r**2*h_r+0.5*g*h_r**2
28
29 # Compute Roe and right and left speeds
30 u_hat = (hu_l/np.sqrt(h_l) + hu_r/np.sqrt(h_r))/(np.sqrt(h_l) + np.sqrt

(h_r))
31 c_hat = np.sqrt(0.5 * g * (h_r + h_l))
32
33 # Compute Einfeldt speeds
34 s_index = np.empty((2,num_rp))
35 s_index[0,:] = u_hat - c_hat
36 s_index[1,:] = u_l - c_l
37 s[0,:] = np.min(s_index,axis=0)
38 s_index[0,:] = u_r + c_r
39 s_index[1,:] = u_hat + c_hat
40 s[2,:] = np.max(s_index,axis=0)
41
42 lambda_1 = u_hat - c_hat
43 lambda_3 = u_hat + c_hat
44 u_toro = (lambda_1*h_r*(u_r-lambda_3) - lambda_3*h_l*(u_l-lambda_1) )

\
45 /(h_r*(u_r-lambda_3) - h_l*(u_l-lambda_1))
46 s[1,:] = u_hat
47
48 # Compute middle state
49 h_star = (h_r * s[2,:] - h_l * s[0,:]-(hu_r-hu_l))/(s[2,:]-s[0,:])
50 hu_star = (hu_r * s[2,:] - hu_l * s[0,:]-(Phi_r-Phi_l))/(s[2,:]-s[0,:])
51
52 # Compute each family of waves
53 wave[0,0,:] = h_star - h_l
54 wave[1,0,:] = hu_star - hu_l
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55 wave[2,0,:] = 0.
56 wave[0,1,:] = 0.
57 wave[1,1,:] = 0.
58 wave[2,1,:] = q_r[2,:]-q_l[2,:]
59 wave[0,2,:] = h_r - h_star
60 wave[1,2,:] = hu_r - hu_star
61 wave[2,2,:] = 0.
62
63 # Compute variations
64 s_index = np.zeros((3,num_rp))
65 for m in range(num_eqn):
66 for mw in range(num_waves):
67 s_index[0,:] = s[mw,:]
68 amdq[m,:] += np.min(s_index,axis=0) * wave[m,mw,:]
69 apdq[m,:] += np.max(s_index,axis=0) * wave[m,mw,:]
70
71 return wave, s, amdq, apdq

6.4 F-wave formulation

6.4.1 Principle

The f-wave method consists of decomposing the jump in the flux (6.5) into three f-waves

f(Qi)− f(Qi−1) =

3∑
k=1

Zk,i−1/2,

where the f-wave Zk,i−1/2 can be related to the right eigenvector ŵk,i−1/2 of the Roe matrix:

Zk,i−1/2 = βk,i−1/2ŵk,i−1/2

where the coefficient βk,i−1/2 is the linear solution (see § 2.7):

βi−1/2 = L · (f(Qi)− f(Qi−1)).

with L = R−1. We find that:

βi−1/2 =
1

2ĉ

 Φl − Φr + (û+ ĉ)(qr − ql)
2ĉ(ϕrqr − ϕlql + ϕ(qr − ql))
Φr − Φl − (û− ĉ)(qr − ql)

 , (6.21)

where Φ = hu2 + gh2/2. The f-waves are then:

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

 1
û− ĉ
ϕ

 ,

Z2,i−1/2 = β2,i−1/2w2 = (ϕrqr − ϕlql − ϕ(qr − ql))

 0
0
1


and

Z3,i−1/2 = β3,i−1/2w3 =
Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

 1
û+ ĉ
ϕ

 .
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As for the Roe solver, we assume that there is no jump in ϕ for the 1- and 3- shock waves while for the
2-wave, there is no jump in h and hu (and so qr = ql = q̂ = ûh̄), and so the correct f-waves are:

Z1,i−1/2 = β1,i−1/2w1 =
Φl − Φr + (û+ ĉ)(qr − ql)

2ĉ

 1
û− ĉ
0

 , (6.22)

Z2,i−1/2 = β2,i−1/2w2 = (ϕr − ϕl)q̂

 0
0
1

 (6.23)

and

Z3,i−1/2 = β3,i−1/2w3 =
Φr − Φl − (û− ĉ)(qr − ql)

2ĉ

 1
û+ ĉ
0

 . (6.24)

6.4.2 Implementation in Pyclaw

1 def shallow_hllc_fwave_1d(q_l, q_r, aux_l, aux_r, problem_data):
2 r"""Shallow water Riemann solver using fwaves
3 """
4
5 g = problem_data['grav']
6 dry_tolerance = problem_data['dry_tolerance']
7
8 num_rp = q_l.shape[1]
9 num_eqn = 3

10 num_waves = 3
11
12 # Initializing arrays
13 fwave = np.empty( (num_eqn, num_waves, num_rp) )
14 s = np.empty( (num_waves, num_rp) )
15 amdq = np.zeros( (num_eqn, num_rp) )
16 apdq = np.zeros( (num_eqn, num_rp) )
17 r1 = np.zeros( (num_waves, num_rp) )
18 r2 = np.zeros( (num_waves, num_rp) )
19 r3 = np.zeros( (num_waves, num_rp) )
20
21 # Extract state
22 h_l = q_l[0, :]
23 h_r = q_r[0, :]
24 hu_l = q_l[1, :]
25 hu_r = q_r[1, :]
26 u_l = np.where(h_l > dry_tolerance, hu_l / h_l, 0.0)
27 u_r = np.where(h_r > dry_tolerance, hu_r / h_r, 0.0)
28
29 # Flux and Roe depth
30 phi_l = h_l * u_l**2 + 0.5 * g * h_l**2
31 phi_r = h_r * u_r**2 + 0.5 * g * h_r**2
32 h_bar = 0.5 * (h_l + h_r)
33
34 # Speeds
35 u_hat = (np.sqrt(h_l)*u_l + np.sqrt(h_r)*u_r)/ (np.sqrt(h_l) + np.sqrt(

h_r))
36 c_hat = np.sqrt(g * h_bar)
37
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38 s[0, :] = np.amin(np.vstack((u_l - np.sqrt(g * h_l), u_hat - c_hat)),
axis=0)

39 s[1, :] = u_hat
40 s[2, :] = np.amax(np.vstack((u_r + np.sqrt(g * h_r), u_hat + c_hat)),

axis=0)
41
42 beta1 = (phi_l - phi_r + (u_hat+c_hat)*(hu_r-hu_l))/2./c_hat
43 beta2 = (q_r[2, :]- q_l[2, :])*u_hat
44 beta3 = (phi_r - phi_l - (u_hat-c_hat)*(hu_r-hu_l))/2./c_hat
45
46 r1[0, :] = 1.
47 r1[1, :] = u_hat - c_hat
48 r1[2, :] = 0.
49
50 r2[0, :] = 0.
51 r2[1, :] = 0.
52 r2[2, :] = 1.
53
54 r3[0, :] = 1.
55 r3[1, :] = u_hat + c_hat
56 r3[2, :] = 0.
57
58 fwave[0, 0, :] = beta1 * r1[0, :]
59 fwave[1, 0, :] = beta1 * r1[1, :]
60 fwave[2, 0, :] = beta1 * r1[2, :]
61
62 fwave[0, 1, :] = beta2 * r2[0, :]
63 fwave[1, 1, :] = beta2 * r2[1, :]
64 fwave[2, 1, :] = beta2 * r2[2, :]
65
66 fwave[0, 2, :] = beta3 * r3[0, :]
67 fwave[1, 2, :] = beta3 * r3[1, :]
68 fwave[2, 2, :] = beta3 * r3[2, :]
69
70 for m in range(num_eqn):
71 for mw in range(num_waves):
72 amdq[m, :] += (s[mw, :] < 0.0) * fwave[m, mw, :]
73 apdq[m, :] += (s[mw, :] > 0.0) * fwave[m, mw, :]
74
75 return fwave, s, amdq, apdq

6.5 Example: dam break

We consider a dam break problem with the following initial conditions: hl = 3 m et ul = 0 for x ≤ 0,
and hl = 1 m et ul = 0 for x > 0. We compare the two solvers: Roe (with no entropy fix) and the
f-wave formulation of the HLLC solver. Figures 6.2 shows the comparison.
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Figure 6.2 Comparison of the three methods: Roe solver, HLLC, and the f-wave variant of the HLLC
algorithm. Computations done with g = 1 m/s2.



CHAPTER7
Shallow water equations with a source

term

7.1 Theory

7.1.1 flow resistance

In an one-dimensional fixed Cartesian frame, the Saint-Venant equations take the tensorial form

∂

∂t
Q+∇f(Q) = S, (7.1)

where Q = (h, hu) is the unknown, and S = (0, S) is the source term. The computation strategy
involves first solving the homogenous problem (LeVeque, 2002) :

∂

∂t
Q+∇f(Q) = 0, (7.2)

then correcting the solution by taking the effect of the source term on the momentum q = hu:

ϱ
d
dtq = S(Q), (7.3)

where S(Q) takes the following form if we consider a flow experiencing flow resistance:

S(U) = − ϱg

K2h1/3
|u|u, (7.4)

= − ϱg

K2h7/3
|q|q, (7.5)

where K is the Manning-Strickler coefficient.

Let us assume that we have computed the solution q∗ to the homogenous equation (7.2), and we
are now seeking the solution at time k + 1. Using a semi-implicit discretization of (7.3) leads to

qk+1 = q∗ − dt g

K2h7/3
|q∗|qk+1, (7.6)

q∗ = qk+1

(
1 +

gdt
K2h7/3

|q∗|
)
, (7.7)

qk+1 =
q∗

1 + dt g

K2h7/3
|q∗|

. (7.8)
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Clawpack, 5, 15, 18–20, 23, 24, 28, 47
condition

Courant-Friedrichs-Lewy, 14
entropy, 18
Lax, 8
Rankine-Hugoniot, 44

contact discontinuity, 61
convexity, 6
Courant, 14
curve

characteristic, 9
integral, 10

dam break, 44, 58, 71
degenerate, 61
discontinuity

contact, 61, 66

eigenvalue, 1
eigenvector

left, 1
right, 1, 4

entropy, 18
fix, 19, 34, 52

equation
advection, 6
Burger, 33
homogenous, 73
nonlinear, 6
Rankine-Hugoniot, 6
Saint-Venant, 10, 43, 61
shallow water, 10, 43, 61
tracer, 61

f-wave, 22
factor

integrating, 9

flow resistance, 73
fluctuation, 15, 16, 20
flux, 6

interface, 16

Godunov, see aso solver14
method, 14, 15

high-resolution, 23
homogenous, 1
hyperbolic, 1

Lax
entropy, 18

limiter, 14

Manning-Strickler, 73
mesh, 13
method

f-wave, 22
high-resolution, 23

phase
plane, 5

problem
Cauchy, 3

Pyclaw, 25, 29, 39, 51, 54, 55
pyclaw, 65, 68

Riemann
invariant, 1, 8–10
problem, 4, 7
variable, 1, 8, 9

Roe, 20
matrix, 46, 47, 53, 55, 69

Saint-Venant, see equation
shallow water, see equation
Solver

Roe, 62
solver

approximate, 17
f-wave, 22, 55, 69
HLL, 17, 21, 22
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HLLC, 66
HLLE, 52
linearised, 20
Roe, 20, 21, 34, 45, 71
two-wave, 21, 52

source
term, 1, 73

stability, 14
system

nonlinear, 8

transonic, see wave

wave
acoustic, 27
rarefaction, 7, 10, 17, 18, 20, 33, 44
shock, 17, 18, 20, 33, 44
simple, 3, 10
transonic, 14, 17–20, 34, 52
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