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▪ OPerating EXpenditure (we assume a typical year of operation) :


Cost of resources 


+ Maintenance [CHF/year]

+ Men Power [CHF/year]

+ Taxes [CHF/year] :


fixed : e.g. based on installed power


proportional : 


with  tax per unit of r


e.g. 

nres

∑
r=1

nu

∑
u

(∫
year

t0

cr,t ⋅ mr,u,t ⋅ ·Qu,t ⋅ dt) [CHF/year]

nres

∑
r=1

nu

∑
u

(∫
year

t0

tr,t ⋅ mr,u,t ⋅ ·Qu,t ⋅ dt) [CHF/year]

tr,t [CHF/unitr]
tr,t = τCO2

[CHF/kgCO2
] ⋅ mCO2,r[kgCO2

/unitr]

OPEX in [CHF/year] 2



▪ OPerating EXpenditure (if we assume a typical year of operation) :

Options 1 : typical year representing 220000 hours of lifetime by 8760 hours


	 Cost of resources = 





 : 8760 [hours/year]


Option 2 : representing 220000 hours by  periods 

	 Cost of resources = 


 : number of hours per year where  is expected


 : nb of periods used to represent operations during a typical year of the lifetime 
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Δt = 3600 [s/year] = 1[hour/year]
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Calculating OPEX in [CHF/year] 3



Clustering methods 4



Clustering methods 5

The goal is to represent the 20 coming years with a limited number of time step in the sum.



Temperature distribution curve : mean days 6

time during which  is observedT̃k

T̃k



Clustering one mean day per month: 7

















































RANKING DAYS
A DAY MONTH

Typical days definition



Using optimisation method (greedy algorithm) 8










































































































CLUSTE RING

Choose : a set of features 


Calculate the value of  : 

the feature 

the cluster representative 


Method :

K-mean


 is a mean value

K-medioid


 is member of the set  
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Criteria



Performance of the clustering as a function clusters 9
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Fig. 4. The empirical typical periods and the mean typical year heating demand.
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Fig. 5. Pareto frontiers of typical periods’ normalized performance indicators using the mean typical year data: case study 1.

3.1.4. Validation and verification
The illustrative example is studied in order to identify the ability

of the typical periods methodology for identifying an optimal oper-
ating strategy of the energy system. The typical periods selected
using 1990–2009 data is applied on a period from 2010 to 2012 (a
validation period) and compared to an accurate reference case. The
total fuel consumption and the size of the peak boiler are considered
as indicators to compare the results.

The reference case is calculated by applying a single period
optimization model on each time step (3 × 8760 time steps).
The goal is to optimize the operating schedule of the con-
version technologies for supplying the heat demand of the
2010–2012 period, using a fixed size of conversion technolo-
gies. The available conversion technologies are an incinerator
with 160 MWth, a 100 MWth biomass boiler and a 130 MWth coal
boiler.

Table 3
The quality indicators of the typical periods using the original 20 years data.

No. periods Nk=5 N∗
k
=7 Nk=9 Nk=11 Nk=13 The mean typical year

No.  time steps 24 34 44 54 64 365 ×24

!cdc 0.096 0.063 0.062 0.058 0.050 0.157
!profile 0.115 0.108 0.100 0.098 0.096 0.102
ELDC  0.109 0.092 0.087 0.085 0.082 0.141
"LDC 0 0 0 0 0 0.282
"prod,0.07 4191 2128 2044 1666 1200 4582



Choosing typical days with days in segments 10
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Fig. 8. The sorted values of the original heat demand profile in 2010 versus the sorted heat demand profiles of 7 typical periods with 7 × 24 time steps and 7 typical periods
with  34 (6 × 5 +4) total time steps resulting from the mean typical year data. This figure illustrates the deviation between the original heat loads and the typical periods.

Following the proposed algorithm in Section 2.2, for Nk ≥ 6 the
values of performance indicators become constant and the relative
differences between Nk and Nk + 1 are close to zero (see supple-
mentary Fig. S2). This indicates that by increasing the number of
clusters from Nk to Nk + 1 the improvement of the typical periods
quality is not significant. As a result, the minimum accepted num-
ber of clusters is equal to 6 (N′

k = 6). Based on the values of the
three statistical measures for Nk ranging from 1 to 15 (supple-
mentary Fig. S3) and according to Eq. (14), Nk = 7 has the lowest
value for the average intra-clusters distance, the highest value for
the average inter-clusters distance and the lowest value for ESE
measure.

While electricity can be imported from the main grid, the cen-
tral plant must supply all heating requirements, especially in the
extreme period with the maximum heat demand. Therefore, the
extreme period with the highest heat demand is added. To resume,
7 periods plus one extreme period are chosen as an optimal number
of typical periods (N∗

k = 8).
We  go further by breaking up the time steps of each represen-

tative period into 5 smaller segments (Section 2.3). Fig. 10 presents
the original data in 2012 and respective 8 typical periods with total
40 (8 × 5) time steps.

In order to make a precise conclusion on the quality of the typical
periods, the reference case of 2012 were compared with the typical

Fig. 9. Test case 2 – an urban area with 30,000 inhabitants.

Parity plot : observation vs model



▪ NB Variables : from 200 (20 years) to 7 (1 year) to 1 (typical day)

▪ Time of resolution : 120 (20 years) to 4 (1 year) to 1 (typical days)

▪ Total cost error : vs 20 years : 2% (1 year) to 0.2% (typical days)

Gains in problem size 11

S. Fazlollahi et al. / Computers and Chemical Engineering 65 (2014) 54–66 63

Table  4
The comparison between the quality of the 13 empirical periods and N∗

k
=7 typical

periods using the original 20 years data.

Indicators N∗
k
=7 13 empirical periods Deviationa

No. time steps 34 312 (13 ×24)

!cdc 0.063 0.173 63%
!profile 0.108 0.117 8%
ELDC 0.092 0.153 40%
"LDC 0 0 –
"prod,0.07 2128 4983 57%

a The relative differences between the 13 empirical periods and 7 typical periods.

the yearly fuel consumptions and operating costs are multiplied by
3 to compare them to the 2010 to 2012 reference case (Table 5).

Fig. 9 is a visual representation of the deviation between the
typical periods and the original data in 2010. The closeness of the
plots to the original data plot is an indicator of the accuracy of the
method under study.

Fig. 8.

3.1.5. Discussions
In this case study, the operation optimization of the system was

studied to make precise conclusions on the quality of the typical
periods.

Table 6 refers to the qualities of the 13 empirical periods, 7 typi-
cal periods selected from the typical year as well as 7 typical periods
selected from the 20 years data, for representing the original heat-
ing demand profiles of the 2010 to 2012 period.

Even though the 13 empirical periods contain more time steps
(13 × 24 = 312), the qualities of the results, with respect to the heat
load deviation and variances, are higher with 7 typical periods. The
7 typical periods selected from the original 20 years data presented
the most accurate results (Table 6).

With respect to the size of the peak boiler, it was  underestimated
by both the empirical periods and the 7 periods selected from the
mean typical year. The obtained size was 80% less than that found by
the reference case. This is explained by the extreme period of 2011,
with −10 ◦C ambient temperature and 565 MWth heat load demand
not being represented in the mean typical year. The frequency of
such a high demand is only 4 periods over 3 years (Table 5), which
is not significant. In the optimization with the 7 typical periods
selected using the original 20 years data, the peak boiler capacity is
14% higher compared to the reference case. This is because the heat
load of the extreme periods during the first 20 years is 590 MWth,
which is not the case from 2010 to 2012.

With respect to the total fuel consumption and operating costs,
the relative differences between the reference case and 7 typical

Table 6
Performance indicators of the original 3 years data and the typical periods.

13 empirical periods 7 typical periods using

Typical year data 20 years data

!cdc 0.103 0.083 0.056
!profile 0.094 0.090 0.086
ELDC 0.113 0.104 0.092
"prod,0.07 766 415 285

periods selected from 20 years’ heat loads present the least error,
especially for biomass and natural gas consumption (Table 5).

We can sum up that 7 typical periods selected using the 20 years
data give an accurate picture of the system’s operations.

The optimization and reference case resolution times are sum-
marized in Table 5. The results pointed out that the resolution
time increases significantly with respect to the time steps of the
demand profiles. The optimization may  reach more accurate results
by extending the number of time steps. With increased accuracy
comes increased computational costs, with associated memory
problems and prohibitive resolution time. This is especially true
for solving multi-objective optimizations with a MINLP model. A
compromise should always be made between the resolution time
and the number of time steps.

3.2. Test case 2

The second test case is proposed to illustrate the application of
the typical periods to the heating demand, electricity demand, elec-
tricity price (eex.com) and solar irradiation data of a district with
30,000 inhabitants. The aim is to optimize the operating strategy
of the fixed system configuration, in such a way as to supply the
energy requirement of the urban area with optimal operating costs.
The data of the last 4 years from 2009 to 2012 are available. The first
3 years are used to select the typical periods and the last year, 2012,
is used to validate the selected typical periods. The period is defined
as a day with 24 time steps.

The case comprises 5 conversion technologies (Fig. 9); a 4 MWel
gas turbine, a 6 MWel gas engine, a 30 MWth biomass boiler, a
35 MWth gas boiler and 50,000 m2 of solar thermal, using economic
data from Gerber (2013). A 41 MWth peak natural gas boiler is
sized for the systems highest demand, present on the extreme day
(120 MW heating demand). The possibility also exists to import
electricity from the main grid. The solar thermal plant requires
accurate meteorological data to determine the capacity of this tech-
nology for each given period, reason for which the solar irradiation
and ambient temperatures profiles are also included into the study.

Table 5
The comparison between the reference case and the optimization results from 2010 to 2012 with regards to the size of the peak boiler, the fuel consumption and the operating
costs.

Ref. case 13 Empirical periods 7 typical periods using

The typical year The 20 years

Municipal waste [GWh] 7415 7570 (−2.1%)a 7593 (−2.4%) 7489 (−1.0%)
Biomass [GWh] 663 638 (+3.8%) 654 (+1.4%) 659 (+0.6%)
Coal  [GWh] 1992 2032 (−2.0%) 2006 (−0.7%) 1989 (+0.15%)
Natural gas [GWh] 112 8.9 (+92%) 6.72 (+94%) 85 (+24.0%)
Peak  gas boiler [MWth] 175 34 (+80%) 34 (+80%) 200 (−14%)
Under estimated periodsb 0 4 4 0
Operating costs [MD ] 119.7 117.5 (1.8%) 117 (2.3%) 119.4 (0.2%)
Resolution time [s] 2700 85 23 23
No.  constraint 183×104 65320 7427 7427
No.  variables 152×104 54423 6225 6225
No.  integer variables 11×104 3756 432 432

a The relative differences between the reference case and the typical periods optimization.
b Number of time steps from 2010 to 2012 when the maximum original heat demands are higher than the maximum typical values.



▪ We aim to represent the conditions under which the system will be 
operated in the future by a limited set of  typical operating conditions p 
that have a certain probability  to occur.


▪ The integral of the operating expenditures can then be replaced by a 
weighted sum 

	

np
dp[s/lifetime]

OPEX =
np

∑
p=1

OPEXp ⋅ dp

Typical operating conditions 12


