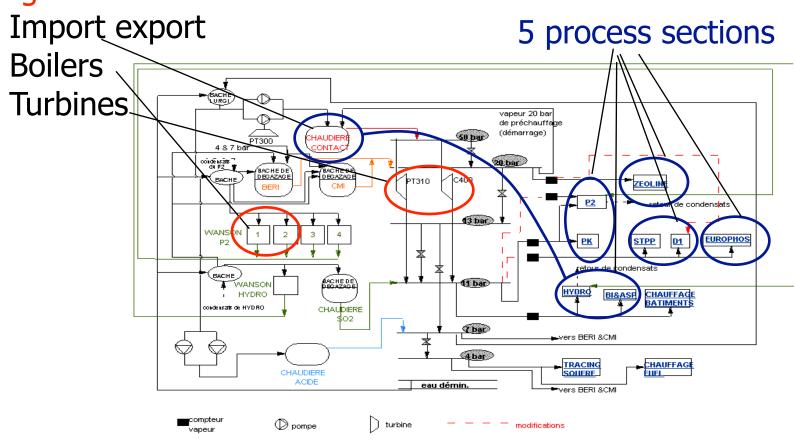
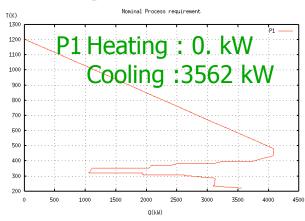
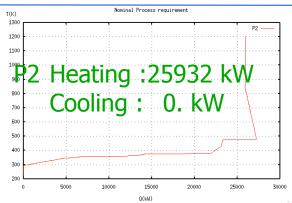
Multi-period problems


Multi-period optimisation problems

- Type of problems
 - Periodic
 - same environment, same requirement but independent
 - defined by :
 - conditions(p), requirement(p) for duration(p)
 - » ex. typical days, day/night, summer/winter
 - optimal operating conditions for each period
 - storage is not considered
 - Operation horizon
 - defined by :
 - conditions(t), requirement(t) @ time(t)
 - » ex. daily profiles, batch processes recipe
 - Scheduling: when to produce what, where
 - Optimal management inc. storage

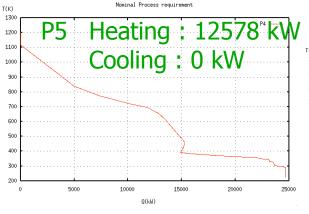
Problem definition

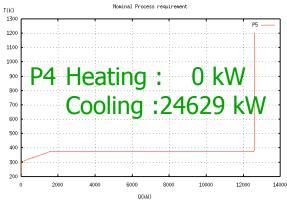

Industrial site

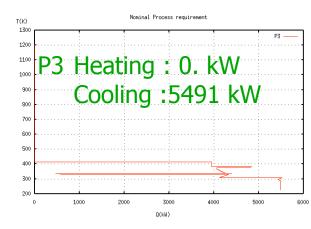

Existing steam network

Process Requirements

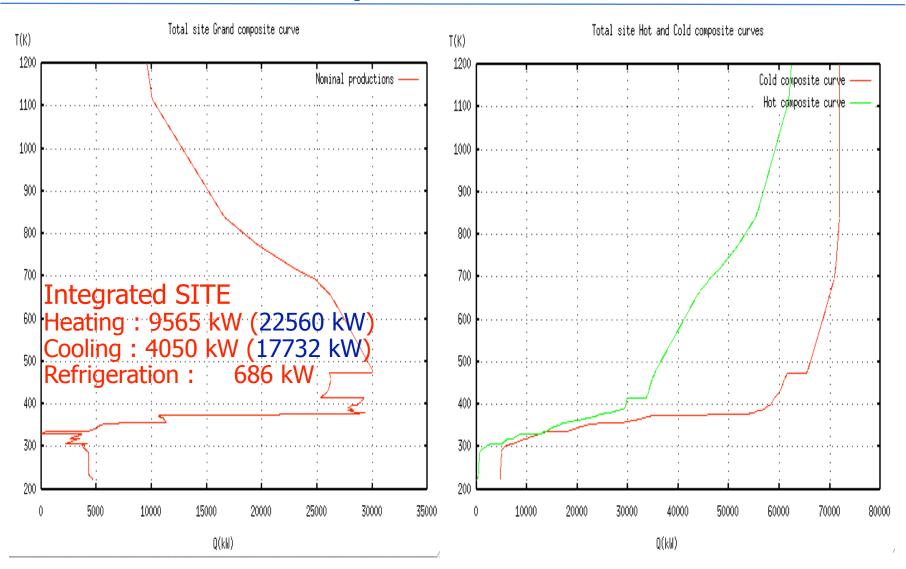
5 processes :

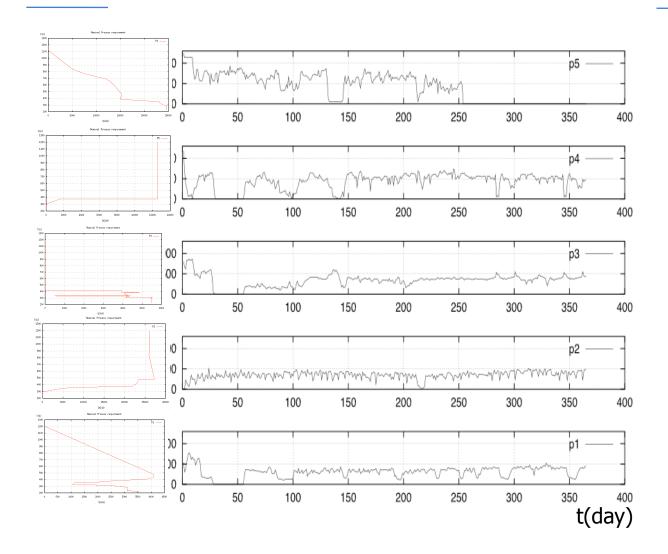

SITE reference


Heating: 22560 kW


(38510 kW)

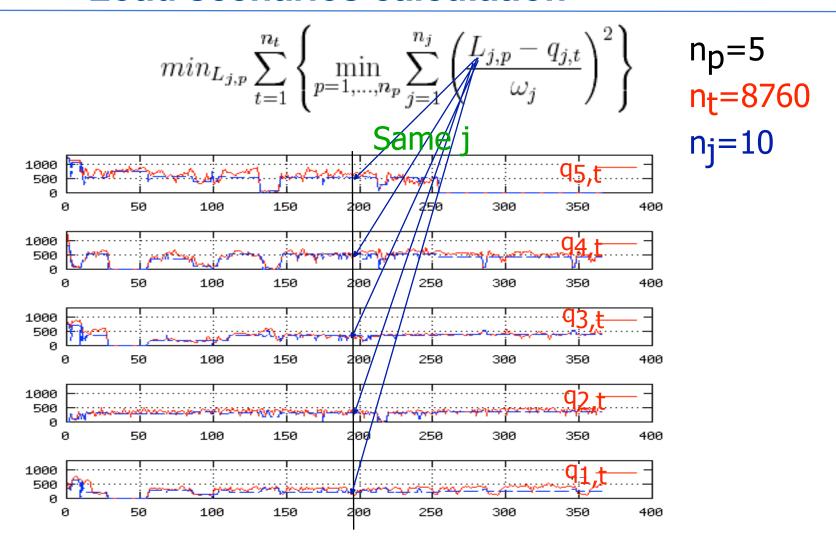
Cooling :17732 kW


(33682 kW)



Total site composite

Production levels variations



Market conditions
Productions shifts
Batch
Efficiency variations
Maintenance
Cleaning procedures

Multi-period principle

- Process annual operation defined by a set of operating periods
 - Limited number of sets : n_p
 - For each set we have to define the operating conditions of utility system
- Definition of operating period p
 - L_{j,p}: production levels or conditions for process j
 - t_p: operating time (h/years): probability of appearance over the lifetime of the installation
- Assume no heat storage
 - Sequence of operations not constraining

Load scenarios calculation

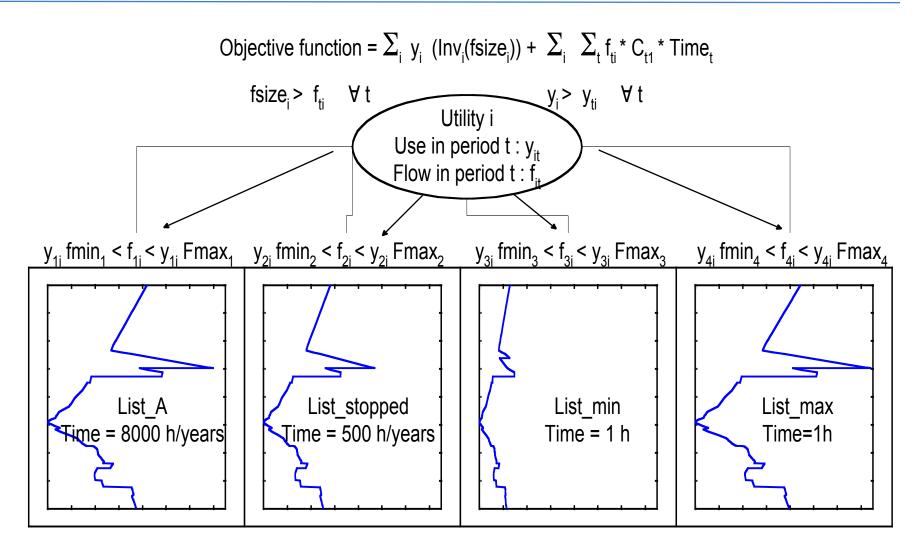
Load scenario model

Problem characteristics

- Discontinuous
- Non-linear
- Multi-modal

$$\min_{L_{j,p}} \sum_{t=1}^{n_t} \left\{ \min_{p=1,\dots,n_p} \sum_{j=1}^{n_j} \left(\frac{L_{j,p} - q_{j,t}}{\omega_j} \right)^2 \right\}$$

- Solved by a Evolutionary Algorithm
 - Easy implementation
 - Robustness
 - Multi-objectives
 - Validity for each process
 - Trade-off
 - Number of representing levels
 - Individual errors
 - Overall error
 - ? Computation time


Alternative

Multi-period levels

Minimum energy requirements and levels of operations in the different periods

2,11111	man on	-18J 10quii	omene cm	reverse or oper	eccionis in ci	ie dineren
			MER hot	MER cold	$\operatorname{MER}\ \mathrm{frg}$	time
			(kW)	(kW)	(kW)	h/year
endothermic	\Rightarrow	L1	22581.	0.	155.	432
		L2	0.	18119.7	1027.8	48
		L3	19814.	987.	347.	192
		L4	10146.	1411.	380.	264
		L5	27771.	0.	0.	720
		L6	13311.	4897.	751.	144
exothermic		L7	0.	10526.	677.	240
		L8	12252.	173.	311.	1224
		L9	7061.7	831.	310.	2904
		L10	8539.	577.	278.	2592
		Average	10270.	385.6	261	8760.

Multi-period model principle

Multi-period problem

Generic formulation

$$\min_{y_t, x_t, y, s} \sum_{t=1}^{n_t} t_t * c(x_t, s) + I(y, s)$$

Submitted to:

$$\begin{array}{ll} h_t(x_t,s) = 0 & \forall t = 1,...,n_t \\ g_t(x_t,s) \geq 0 & \forall t = 1,...,n_t \\ y_t \leq y & x_t \leq x & \forall t = 1,...,n_t \\ y_t, y \in \{0,1\} & \forall t = 1,...,n_t \end{array}$$

Only s (size => investment) and y (investment decisions) are shared between periods

Multi-period MILP problem formulation

$$\min_{R_r^p, y_w^p, f_w^p y_w^{max}, f_w^{max}} \sum_{p=1}^{n_p} (\sum_{w=1}^{n_w} (C2_w^p f_w^p) + Cel^p Wel^p - Cel_v^p Wel^p) * t_p$$

 $\forall p$ For each period

$$+\sum_{w=1}^{n_w} (C1_w y_w^{max}) + \frac{1}{\tau} \sum_{w=1}^{n_w} \frac{\text{Linearised investment}}{(ICF_w y_w^{max} + ICP_w f_w^{max})}$$

Heat Cascade

$$\sum_{w=1}^{n_w} f_w^p q_{w,r} + \sum_{i=1}^n Q_{i,r} * L_{i,p} + R_{r+1}^p - R_r^p = 0$$

$$R_1^p = 0, R_{n_{r+1}}^p = 0, R_r^p \ge 0$$

Electricity Consumption

$$\sum_{w=1}^{n_w} f_w^p w_w + Wel^p - L_{c,p} * Wc \ge 0$$

Gas turbines Combustion Steam network ...

Production

$$\sum_{w=1}^{n_w} f_w^p w_w + Wel^p - L_{c,p} * Wc \ge 0 \qquad \sum_{w=1}^{n_w} f_w^p w_w + Wel^p - Wel_s^p - L_{c,p} * Wc = 0$$

 $Wel^p \ge 0, Wel^p_{\circ} > 0$

Part load operation

$$fmin_w y_w^p \le f_w^p \le fmax_w y_w^p$$

 $y_w^p \in 0, 1$

Size

$$f_w^{max} - f_w^p \ge 0$$

Decision

$$y_w^{max} - y_w^p \ge 0$$

Application

- 5 Processes (60 streams)
- 10 operation levels
- 4 Gas turbines
- Refrigeration system
- Steam network
- Heat pump
- MILP problem characteristics
 - 1900 constraints
 - 1600 variables
 - 50 decision variables

Part load optimal operation target

Details of the solution computed with $GT1_{int}$

Total	48311		90303	210622	82.2		
L10	14295	9647,6	25006	54240	80.8	0.0	
L9	16015	10158	29499	57981	81.1	0.0	
L8	6750	10379	12704	30735	85.0	0.0	
L7	1323	11178	2683	4043	66.3	0.27	4
L6	794	10775	1552	3900	82.4	0.0	
L5	3970	12404	8931	30971	90.0	0.02	
L4	1456	8407	2219	5618	79.3	0.0	
L3	1059	10879	2089	6457	85.2	0.0	\
L2	265	13660	656	808	81.1	0.34	
L1	2382	11493	4965	15867	88.7	0.013	
	(MWh)	kW	(MWh)	(MWh)	(%)	$\rm kmol/s$	
	GT	CHP power	CHP total	Fuel	CHP Efficiency	Condensing	
Details 0	n the solut	non computed	1 WITH GI 1_{int}	<u> </u>			_