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▪ Integer cut constraint on the equipment set { }

• assuming that we know already the solution k

• The problem k + 1 is defined by adding to the previous MILP problem 

the integer cut constraint

yu

Generating ordered list of system configurations 2

Problemk+1 :

Problemk

nyX

i=1

(2yki � 1) ⇤ yi 
nyX

i=1

yki

where yki value of yi in solution of problem k



Multi objective optimization 3
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min
Xd

OBJ1(Xd)

st.

OBJ2(Xd) � OBJ2ref

min
Xd

OBJ2(Xd)

st.

OBJ1(Xd) � OBJ1ref

Pareto Frontier

Infeasible dom
ain

source : wikipedia



▪ Single objective parametric

• Weighting


• Note : if OBJ1 is a cost function 

Muti-objective optimisation 4

Xd(w) : minXd(1� w) ·OBJ1(Xd) + w ·OBJ2(Xd)

8w 2 [0, 1]

Note :
w

1� w
is a tax on OBJ2(Xd)



Parametric programming 5
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Pareto Frontier

P

Note : the Lagrange multiplier of inequality gives 
the slope of the Pareto curve

for P 2 {min
Xd

OBJ1(Xd)..min
Xd

OBJ2(Xd)}

X
d(P ) : min

Xd
OBJ1(Xd)

st.

OBJ2(Xd)  P



▪ Extension to supply chain synthesis and identification of recyclings

Non linear optimisation 6

evolutionary, multi-objective
optimization algorithm

(MINLP master problem)

energy                        integration
(MILP slave sub-problem)
Process integration software

energy- and material-
!ow models superstructure

Detailed models:
Flowsheeting software

economic model

LCA model

LENI-Osmose

state variables

state 
variables state variables

performances

decisions variables
(thermo-dynamic targets)

decisions variables
(thermo-dynamic targets)

Combined multi-period 
performance indicators

LCI database - ecoinvent®

Single-period sequence:
 performed for np periods

Average models:
LCI database

and mass

Supply chain synthesis



▪ Master (M) -Slave (S) decomposition

MINLP : decomposition problem 7

min
XM

Obj(XM , XS(XM ),⇡)

s.t.XS(XM ) min
XS

ObjS(XS , XM ,⇡)

s.t. H(XS , XM ,⇡) = 0

H(XS , XM ,⇡) � 0

XM Master Variables

XS Slave Variables

⇡ Parameters

=> Simple to solve

=> partition variable



Master Level : Black Box strategy 8

min
X�

decision

TotalCost(X�
decision, X(X�

decision))

s.t. G(X�
decision, X(X�

decision)) ⇥ 0 inequality constraints
where

X�
decision = {xdecision, ydecision�{0, 1}}

X(X�
decision) Calculated by solving:

F (Xstate) = 0⇤ equipment model
L(Xstate) = 0⇤ linking equations
T (Xstate) = 0⇤ constitutive equations
S(Xstate) = 0⇤ Specification equations
Xdecision �X�

decision = 0⇤ Specification of the value of decision variables
where

Xstate = {xStateV ariables, xUnitParameters, ydecision�{0, 1}}



▪ Applies only on black box strategy

▪ Exploring the search domain


• systematically

• based on some analogy


▪ Simulated annealing

• based on the analogy with metallurgy


▪ heating/cooling of metal to minimize the energy content

▪ Evolutionary algorithm


• genetic algorithms

▪ based on the analogy of the evolution


• Best fitted individuals have a higher probability to survive and reproduce

• Reproduction based on sharing gene info


▪ Particle swarm

• initial speed + communication between agents


▪ Ants colony

Heuristic methods to systematically generate optimal configurations 9



• Characteristics

– Population (X)

– Objective Function(s) : Performances Y=F(X)

– No direction ( No derivatives - No “iteration”)

– Heavy duty : Computing time !

– Problem definition is free

– Random nature : explore the search space

– Inequality constraints ?


• Principle

– Initialization (random population generation (e.g. 100 sets))

– Reproduction => select parents & reproduce

– New individual


• Cross-over (random)

• Mutation


– Update population (maintain population)

– eliminate the worst individuals

– re-group by types to preserve diversity

Evolutionary algorithms 10



reproduction by  “Crossing over”  11

"Crossing over" point

Father

13.2 82.4 94.523.3 41.6 54.2

Children

Mother

Type to 

13.2 81.6 54.2

Random selection of parents in the population
Random selection of the genes to share

"Crossing over" point



▪ Cross-over can use interpolation techniques

• e.g. quadratic approximation based on a subset of the population

• select randomly and/or take the bests


▪  Preserve the random nature !

• e.g. random relaxation

Cross over 12



after mutation

5

23.3 81.6 94.5

23.31.6 94.55

Random Mutation 

Mutation 13

before mutation

Mutation allows to ensure that the system will not be trapped in a local optimum and that the whole space will be observed



Elimination 14

Elitism : preserve the best candidates

Decision variable
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Elitism is defining the population in which the good candidates are 
selected : this allows multi-objective optimisation and the search for 
local and global optimum.



▪ Black box approach

• Equality constraints are solved explicitly

• Inequality constraints transformed into decision variables bounds


▪ Fast F(X) calculation

• Search space exploration => huge number of evaluation


▪ Robust F(X) calculation

• search space response


▪ No efficient mathematical programming methods

• Non differentiable problems

• MINLP


▪ Limited number of degrees of freedom

Evolutionary algorithms : conditions 15



▪ Global optimisation

• Exploration of the search space 


▪ Black Box

• Accepts different type of objective function

▪ incl. observations


▪ Non differentiable problems

• The objective function can have jumps or steps


▪ Easy to parallelise

▪ Freedom in the choice of decision variables

• x1*x2*x3 is not a problem


▪ Multi-objective problem

• Efficient use of the computing time

• Dominancy criteria

Evolutionary algorithm : advantages 16



▪ Speed of resolution of F(X)

• Requires a large number of F(X) evaluation

• Use of surrogate models 


▪ Number of decision variables

• Convergence properties is a combinatorial function of the number of 

variables

▪ Limited Feasible domain 


• Probability of finding feasible F(X) is low

• Choice of the decision variables


▪ Constraints handling

• Equality or inequality

Evolutionary algorithm : drawbacks 17



▪ Handling inequality constraints

Evolutionary algorithm 18

min
X

OBJ(X)

st.

F (X) = 0
G(X) � 0

min
Xd

OBJ(Xd, Y (Xd)) + P (Xd)

st.

Y (Xd) = F (Xd)

P (Xd) =
�

(max(G(Xd, Y (Xd)), 0))2

Xd
max � Xd � Xd

max



▪ Choosing the appropriate decision variables

Evolutionary algorithm 19

min
x1,x2

f(x1, x2)

st.

x1 � x2

xmin
1 � x1 � xmax

1

xmin
2 � x2 � xmax

2

Becomes

Works well for Evolutionary algorithm
do not use for mathematical programming

min
x⇤
1 ,x2

f(x1 = xmin
1 + (min(x2, x

max
1 )� (min(x2, x

max
1 )� xmin

1 )) · x⇤
1, x2)

st.

0  x⇤
1  1

xmin
2  x2  xmax

2
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Coûts

Région inaccessible

Configuration

Operating conditions

Size of equipment

Costs

Clustering techniques (big data)
• identify decision variable sub-spaces
• generate multiple Pareto curves

Dominancy
• Remains in the population if at least 

better than others for 1 objective
• Preserve sub-optimal population

OBJ1

O
BJ

2

The goal is indeed to take decisions : being informed about the collection of good solutions allows to have a better knowledge 
of what is building a solution and for which reason the filan solution will be selected



▪ Hybrid methods

• Use Evolutionary algorithm to find initial point for mathematical 

programming

• Global optimization (find min of min )

• Limited number of NLP

• Do it in 2 directions

▪ min obj1

▪ min obj2

Evolutionary solving strategies 21
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Figure 13. Convergence of MOO. POF for 500, 2000 and 3500 iterations
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Figure 14. NDS for the Mo-NLP and EA methods. NLP method give a better
approximation of the POF

the variable space. Each of the points in the NDS defines a di�erent optimal
configuration, the change in the configuration can be analyzed by drawing the
variables values as a function of one of the objective. The Figure 15 shows
the trends of the 7 variables (which have been normalized between their re-
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E
m

is
si

on
s

Multi-objective optimisation : Evolutionary algorithm 22
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Clustering techniques
identify decision variable sub-spaces

Dominancy
in the population if at least better for 1 
objective
Preserve sub-optimal population

min
Xd

OBJ1(Xd)

st.

OBJ2(Xd) � OBJ2ref

min
Xd

OBJ2(Xd)

st.

OBJ1(Xd) � OBJ1ref
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Interactive optimisation 23

Objective

KPI 1

KPI 2

with  selected by a random sampling method ϵen,FAR, ϵen,RES

(Burhenne, 2011)

Random Quasi-random Systematic

(Burhenne, 2011)(Gilbert, 1987)

Latin hypercube

Sobol

Multi-parametric optimisation



Sobol sampling 24

Systematic VS Sobol



Sobol sampling equations 25



Interactive optimisation 26



Cluster analysis

Clustering aims to group objects with similar 
characteristics into distinct partitions, or clusters.  

27

(Kaufman and Rousseuw, 2009)

CO2

Costs

Clusters
Medoids

K-medoids



Multi-criteria analysis – TOPSIS 28

CO2

Costs

Virtual solution 
with best  values 
for each criterion

Virtual solution 
with worse  
values for each 
criterion

best 
CO2

best 
cost

worst 
CO2

worst 
cost

(Hwang et Yoon, 1981)

Closer to ideal
=

Better score



Parallel coordinates to compare solutions

Explore
(TOPSIS)

29

(Hwang and Yoon, 
1981)(García-Cascales et al, 
2012)
(Chakraborty and Yeh, 
2009)



Synthesize

30

(Gardiner et al, 1997)
(Wolf et al, 2009)
(Piemonti et al, 2017)
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LENI Systems

Some results
Cmparing technologies and processes

Thermo-economic Pareto front
(cost vs e�ciency):

LENI Systems

Quelques résultats
Comparaison des technologies

Optimisation de toutes les combinaisions technologiques
(coût et é�cacité):

� gaz. préssurisé à chau�age direct est la meilleure option� The best solution is the pressurised directly heated gasifier

69 / 87

▪ Each point of the Pareto is a process design

8. Analysing the results 31

Martin Gassner , Ph D Thesis, EPFL, 2010



▪ Selecting the process in the Pareto set

Decision-making 32

Pareto optimal front 

for given economic 

scenario

 Obj1

Obj2
Select which optimal 

process configuration

under which conditions ?

Solutions ranking 

based on probability 


→Decision-making support

Distribution 

functions

Economic

parameters

Ranking

# of times

in top 5

Obj1

3
2

1

Randomly generate a set of 
uncertain parameters

Calculate the value of the objective function
for all the Pareto optimal configurations

For each evaluation :
give 1 point if in the top 10repeat 3000 times



▪ Uncertainty of the economical conditions

• Economic assumptions probability distribution functions


▪ Normal, uniform, beta distribution

Decision-making 33

[IEA, EU, ZEP,…]



data for the biomass case 34

Table 6: Definition of the economic scenarios and parameters of the distribution functions
for the economic assumptions.

Distribution functions parameters
Distribution Param. A Param. B Param. C

Biomass price [$/MWhBM ] Normal µ=28.6 �=3.5 -
Ė price [$/MWhe] Normal µ=145 �=15 -
Ė price (green) [$/MWhe] Normal µ=165 �=20 -
Distributed heat price [$/MWh] Beta a=5.3 b=1.37 c=92
SNG price (automotive fuel) [$/MWhSNG] Normal µ=110 �=20 -
Biodiesel price [$/MWhFAME] Normal µ=105 �=20 -
Yearly operation [-] Normal µ=0.9 �=0.1 -
Interest rate [%] Normal µ=0.06 �=0.01 -
Investment cost [%] Uniform a=-0.3 b=0.3 -

3.2.1. Identification of best SNG process designs

For each decision criterion, the probability to be the best process design

with regard to this criterion and the probability to be part of the 5 best per-

forming process designs (top 5) is assessed over the whole range of economic

scenarios.

The results illustrated in Figure 8 clearly reveal the influence of the deci-

sion criterion on the best process design. In Figure 8 all the Parteo frontiers

resulting from the multi-objective optimisation maximising the SNG equiv-

alent e�ciency and minimising the specific investment cost are illustrated.

The circles represent the probability of this process design to be part of the

best performing ones. The diameter of the circle is scaled in accordance with

the probability. The results show that several Pareto frontiers do never en-

close the best performing process designs. Di↵erent solutions emerge with

the decision criteria production costs and resource profitability. The best

performing process designs and the corresponding probability to be the best

25



What is the best process design ? 35

Pareto optimal configurations => new process model for the energy system design

(1)
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