
The use of exergy

First principle: energy balance

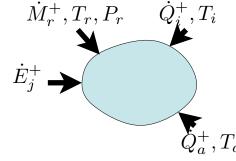
Nothing is lost - nothing is created, everything is transformed

$$\sum_{i} \dot{E}_{j}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{r} \dot{M}_{r}^{+} h_{r}(T_{r}, P_{r}, X_{r}) = 0$$

Second principle: entropy balance

The entropy of an isolated system tends to increase

$$dS = \sum_{i} \frac{\dot{Q}_{i}^{+}}{T_{i}} + \sum_{r} \dot{M}_{r}^{+} s_{r}(T_{r}, P_{r}, X_{r}) \ge 0$$



Notion of exergy: Generalisation

1st principle: energy balance

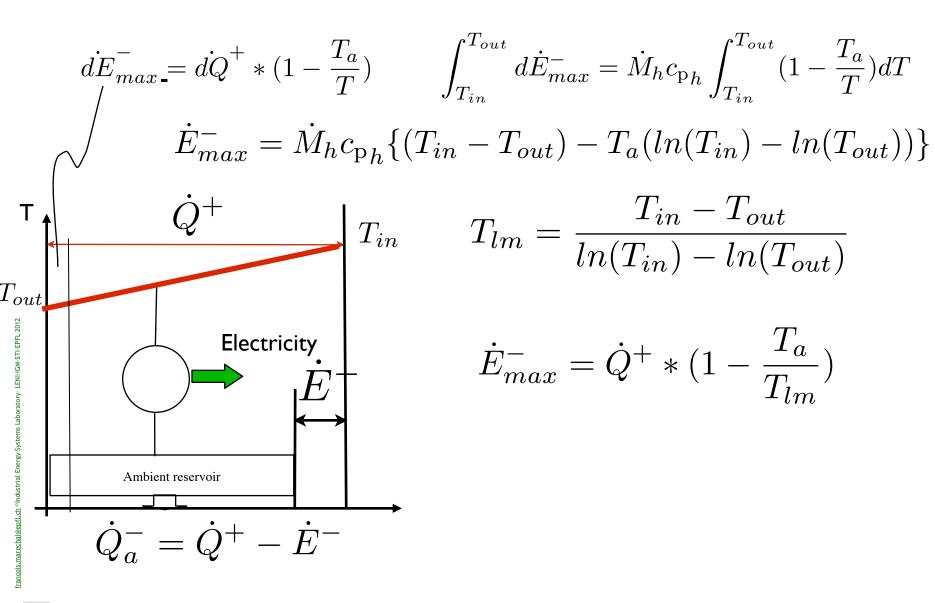
$$\sum_{i} \dot{E}_{j}^{+} + \sum_{i} \dot{Q}_{i}^{+} + \sum_{i} \dot{M}_{r}^{+} h_{r}(T_{r}, P_{r}, X_{r}) + \dot{Q}_{a}^{+} = 0 \quad (1) \quad \dot{E}_{j}^{+} \longrightarrow (1)$$

2nd principle: entropy balance

$$dS = \sum_{i} \frac{\dot{Q}_{i}^{+}}{T_{i}} + \sum_{r} \dot{M}_{r}^{+} s_{r}(T_{r}, P_{r}, X_{r}) + \frac{\dot{Q}_{a}^{+}}{T_{a}} \ge 0$$

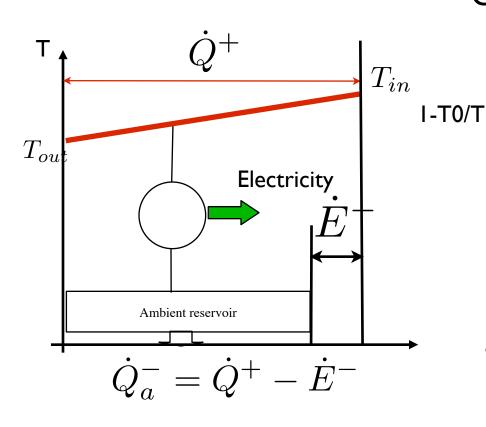
$$\Rightarrow T_{a}dS = \sum_{i} \frac{T_{a}\dot{Q}_{i}^{+}}{T_{i}} + \sum_{r} \dot{M}_{r}^{+} T_{a} s_{r}(T_{r}, P_{r}, X_{r}) + \dot{Q}_{a}^{+} \ge 0 \quad (2)$$

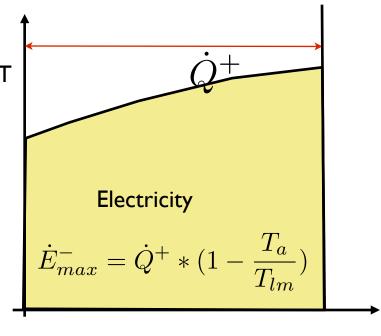
(1) - (2)
$$\sum_{j} \dot{E}_{j}^{+} + \sum_{i} \dot{Q}_{i}^{+} (1 - \frac{T_{a}}{T_{i}}) + \sum_{r} \dot{M}_{r}^{+} (h_{r} - T_{a}s_{r}) \leq 0$$

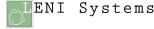

then
$$\sum_{j} \dot{E}_{j}^{-} \leq \sum_{i} \dot{Q}_{i}^{+} (1 - \frac{T_{a}}{T_{i}}) + \sum_{r} \dot{M}_{r}^{+} (h_{r} - T_{a}s_{r})$$
therefore
$$E_{max}^{-} = \sum_{i} \dot{Q}_{i}^{+} (1 - \frac{T_{a}}{T_{i}}) + \sum_{r} \dot{M}_{r}^{+} (h_{r} - T_{a}s_{r}) \qquad \qquad \text{Exergy = max work}$$

$$\dot{L} = \dot{E}_{max}^{-} - \sum_{i} \dot{E}_{j}^{-} \geq 0 \qquad \qquad \text{Exergy loss}$$

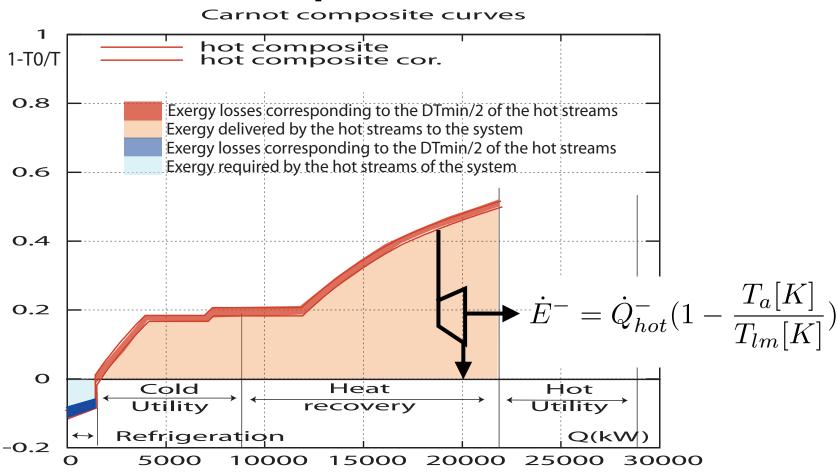
$$=> \text{ wrt max work}$$

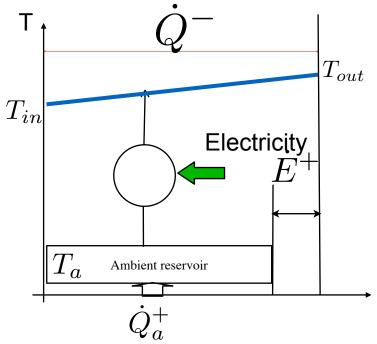

exergy is sometime name availability (of work), exergy loss is the loss of the capacity to produce work, the energy is not lost.


The exergy value of a heat exchange



Carnot composite curve


$$T_{lm} = \frac{T_{in} - T_{out}}{ln(T_{in}) - ln(T_{out})}$$


Carnot composite curves of a process

Hot composite curves

The exergy value of a cold stream

Cold stream: the process requires exergy (if above the ambiance)

$$\dot{E}_{min}^{+} = \dot{Q}^{-} * (1 - \frac{T_a}{T_{lm}})$$

$$T_{lm} = \frac{T_{in} - T_{out}}{ln(T_{in}) - ln(T_{out})}$$

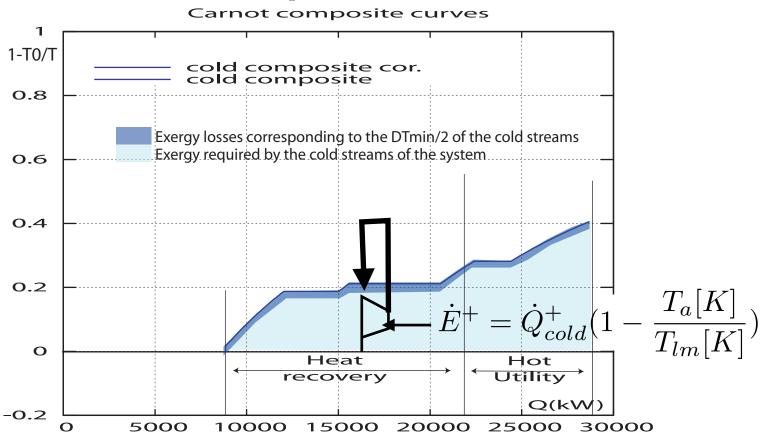
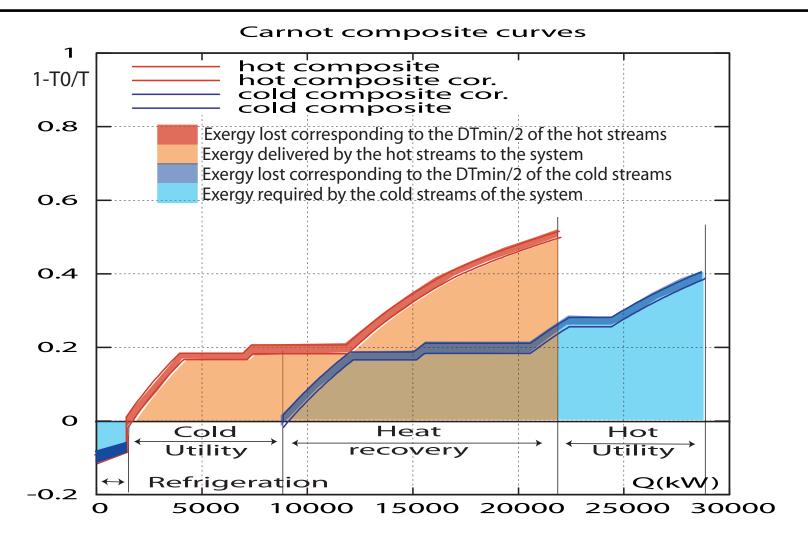
$$\dot{E}^{+} = \frac{\dot{E}_{min}^{+}}{\eta_{Carnot}}$$

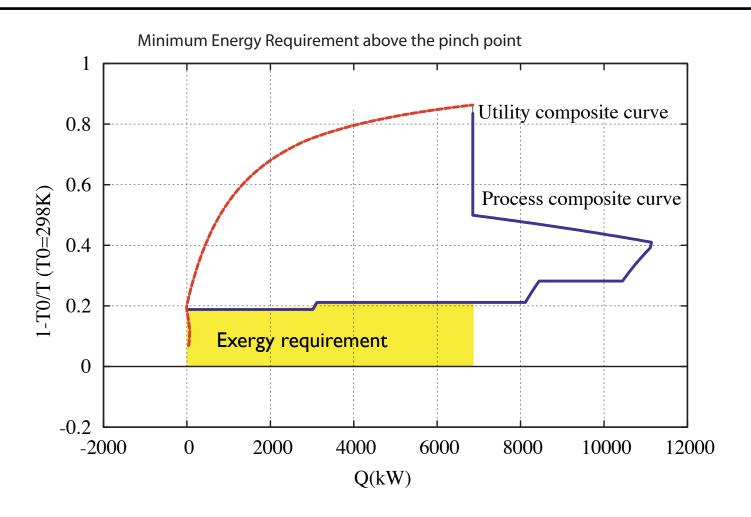
$$\eta_{Carnot} \simeq 0.55$$

$$\dot{Q}^- = \dot{Q}_a^+ + \dot{E}^+$$

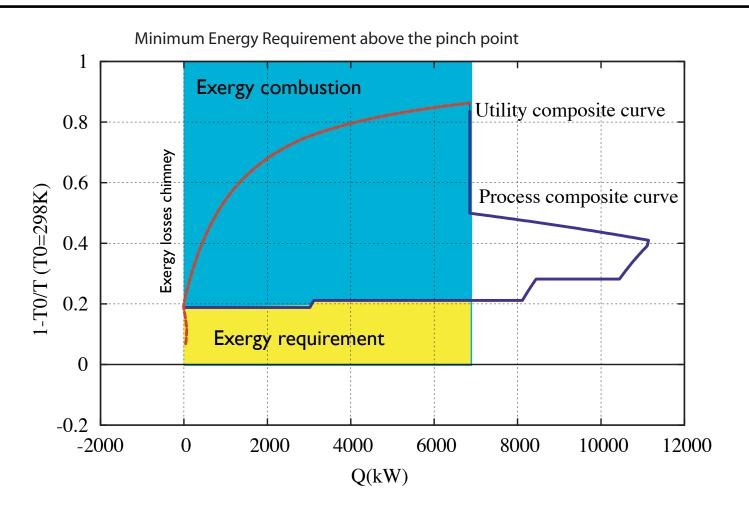
Carnot composite curves of the process

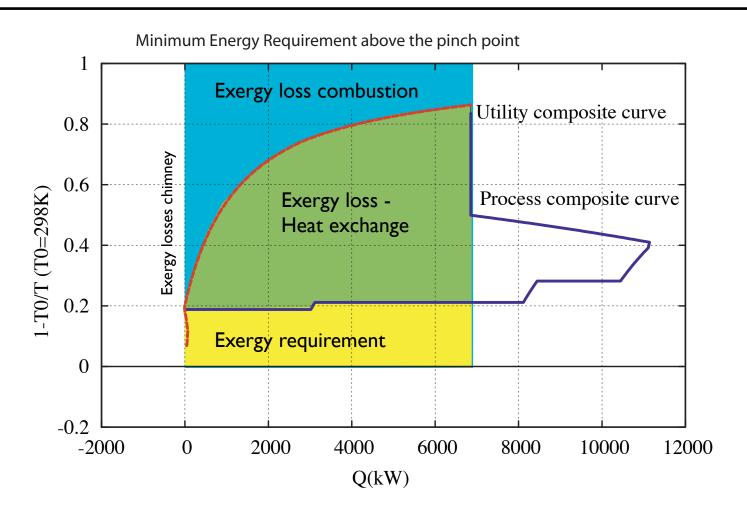
Cold composite curves

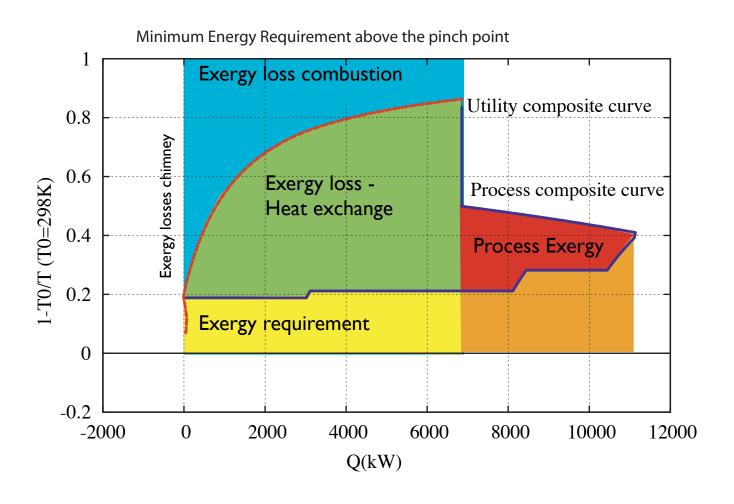



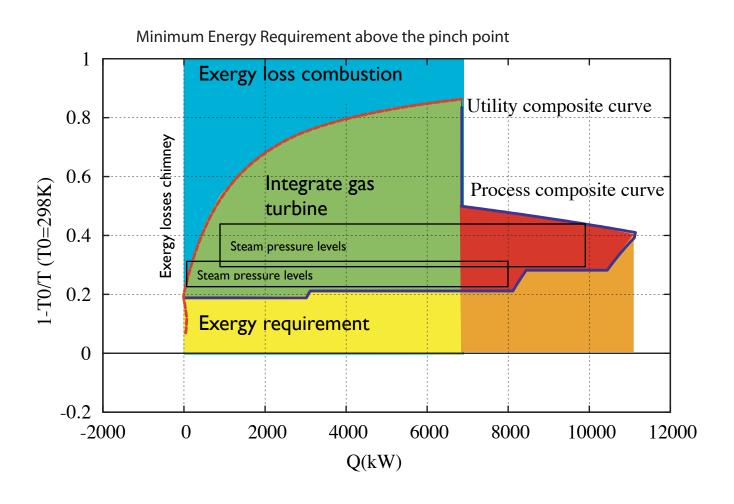

Table 3
Exergy of the hot and cold process composite curves

	Energy	Exergy	Exergy	Name
		Total	$\Delta T_{min} corrected$	
Hot streams [kW]	20291.0	5521.4	5352.4	$\dot{E}q_{hot_a}$
below T_0 [kW]	1709.0	- 131.5	- 151.2	$\dot{E}q_{hot_r}$
$Cold\ streams[kW]$	20197.0	- 4599.3	- 4650.1	$\dot{E}q_{cold_a}$
below T_0 [kW]	0.0	0.0	0.0	$\dot{E}q_{cold_r}$
ΔT_{min} losses [kW]	-		381.2	


Carnot composite curves


Exergy requirement above the pinch


Exergy by combustion

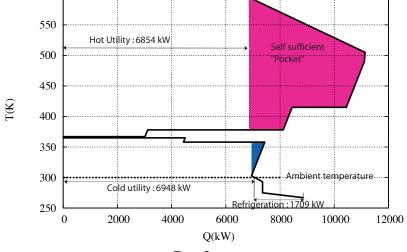

Exergy composite Heat exchange losses

Exergy composite -self-sufficient pockets

Exergy composite - steam cycle and gas turbine

Application: the engineer creativity

Maximum energy recovery


	Energy	Exergy
Heating (kW)	+6854	+567
Cooling (kW)	-6948	- 1269
Refrigeration (kW)	+1709	+ 157

Hot utility

Boiler house: NG (44495 kJ/kg)

Air Preheating

Gas turbine : NG (el. eff = 32%)

Steam cycle

Header	P	T	Comment
	(bar)	(K)	
HP2	92	793	superheated
HP1	39	707	superheated
HPU	32	510	condensation
MPU	7.66	442	condensation
LPU	4.28	419	condensation
LPU2	2.59	402	condensation
LPU3	1.29	380	condensation
DEA	1.15	377	deaeration

Heat pumps Fluid R123

	Plow	T_{low}	Phigh	Thigh	COP	kWe
	(bar)	(°K)	(bar)	(K)	-	
Cycle 3	5	354	7.5	371	15	130
Cycle 2	6	361	10	384	12	323
Cycle 0	6	361	7.5	371	28	34

600

Refrigeration

Refri	gerant		R717	Amn	nonia	
Refe	owrate	0.1	kmol	kmol/s		
Mech	power	394	kW			
	$P T_{in}$		Tout	Q	$\Delta T min/2$	
	(bar)	(°K)	(°K)	kW	(°K)	
Hot str.	12	340	304	2274	2	
Cold str.	3	264	264	1880	2	

Consider exergy losses

New objective function

$$\min_{\dot{R}_r, y_w, f_w} \sum_{w=1}^{n_w} \dot{L}_w = \sum_{w=1}^{n_w} \left(f_w * \left(\sum_{f=1}^{n_{fuel, w}} \dot{m}_{f, w} \Delta k_f^0 + \dot{e}_w^+ - \sum_{r=1}^{n_r} \left(\dot{e}q_{w, r}^- \right)_{\Delta T_{min}} - \dot{e}_w^- \right) \right)$$

$$(\dot{e}q_{w,r}^-)_{\Delta T_{min}} = \sum_{s=1}^{ns_w} \dot{q}_{s,r}^- (1 - \frac{T_0}{T_{lmr}^*})$$

- Thermal exergy:

where T^*_{lmr} is the logarithmic mean temperature of interval r $T^*_{lmr} = \frac{T^*_{r+1} - T^*_r}{ln(\frac{T^*_{r+1}}{T^*_r})} \text{ when } T^*_{r+1} \neq T^*_r \text{ and } T^*_{lmr} = T^*_r \text{ otherwize}$

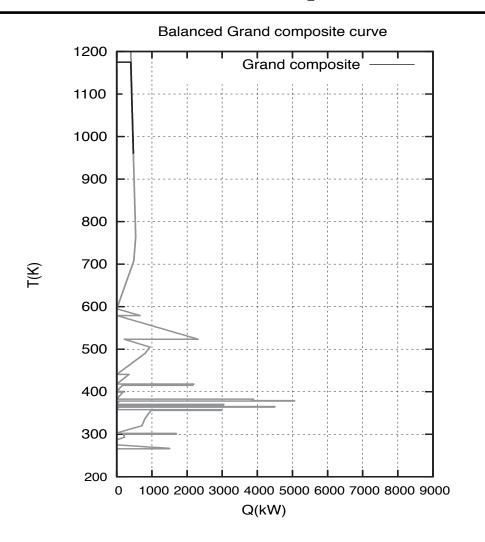
$$\sum_{f=1}^{n_{fuel,w}} \dot{m}_{f,w} \Delta k_f^0$$

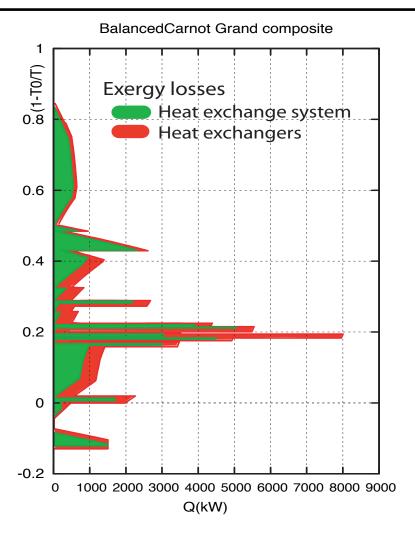
- Chemical Exergy:

$$\dot{e}_w^+$$
 IN

– Work :

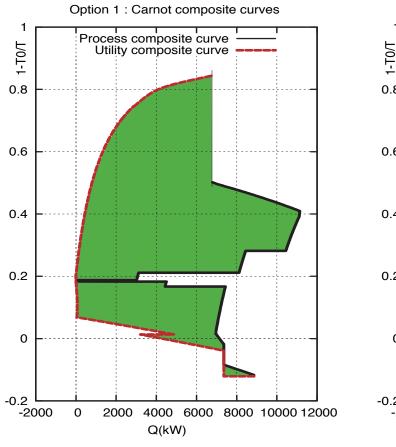
Results

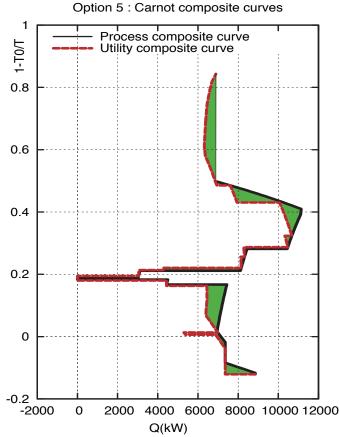

Opt	Fuel	GT	CHP	Cooling	HP	-
	kW_{LHV}	kWe	kWe	kW	kWe	
1	7071	_	-	8979	-	Comb. + frg
2	10086		2957	9006	_	Comb. + stm + frg
3	16961	5427	2262	9160	_	GT + stm + frg
4	-	_	-	2800	485	hpmp + frg
_5	666	-	738	2713	496	hpmp + stm + frg


Share between heat pumps

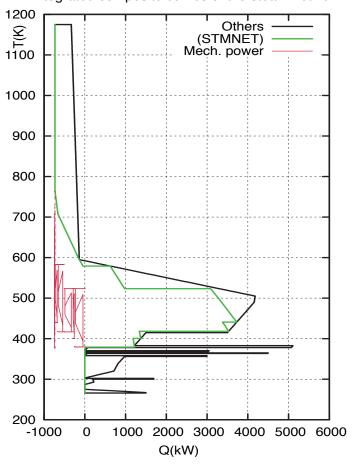
HPI : 34 kWe HP2 : 323 kWe

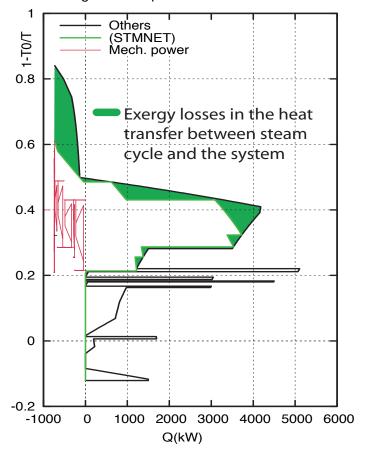
HP3:129 kWe


Balanced composite curves (option 5)



Visualising the results: Carnot efficiency


Tricks for creative engineers: reduce the green area!



Carnot integrated composite curves

Carnot integrated composite curves of the steam network

Comparing results

Energy efficiency

NGCC equivalence of electricity

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^+ - E^-)}{\eta_{el}} (= 55\% (NGCC))$$

EU mix for electricity

$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 38\%(EUmix))$$

Exergy efficiency

$$\eta_{ex} = \frac{\dot{E}q_{cold_a} + \dot{E}q_{hot_r} + \dot{E}_{grid}^-}{\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a}} \quad \text{with} \quad \dot{E}^+ = \sum_{fuel=1}^{n_{fuels}} \dot{M}_{fuel}^+ \Delta k_{fuel}^0 + \dot{E}_{grid}^+$$

$$\dot{L} = (1 - \eta_{ex})(\dot{E}^+ + \dot{E}q_{cold_r} + \dot{E}q_{hot_a})$$

Results

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 55\%(NGCC))$$

$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 38\%(EUmix))$$

$$Total2 = 0$$

Table 9

Energy consumption and exergy efficiency of the different options

Option	Fuel	\dot{E}_{grid}^{+}	Total 1	Total 2	η_{ex}	Losses
	$[kW_{LHV}]$	[kWe]	$[kW_{LHV}]$	$[kW_{LHV}]$	%	[kW]
Comb. + frg	7071.0	371.0	7745.5	8029.7	34.9	8868.0
Comb. + stm + frg	10086.0	-2481.0	5575.1	3675.1	44.5	8830.0
GT + stm + frg	16961.0	-7195.0	3879.2	-1630.7	51.3	11197.2
hpmp + frg	0.0	832.0	1512.7	2149.9	72.4	2408.1
hpmp + stm + frg	666.0	125.0	893.3	989.0	72.6	1831.6