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Suplying energy to the process
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Figure 4: The Grand composite curves for computing the plus-minus heat load

change may be used to relocate a requirement around the pinch point. Decreasing the pressure
of a fluid to be evaporated or increasing the pressure of a stream to be condensed will relocate
respectively a cold stream from above to below the pinch temperature or a hot stream from
below to above the pinch temperature. The changes (especially the pressures) obviously must
remain compatible with the process unit operations in the flowsheet.

Not only the temperature level, but also the heat cascade has to be considered in this analy-
sis.The grand composite curve of the process (Figure 4) gives useful insight in order to evaluate
the interest of modifying the operating conditions. Each modification will be useful if it does
not create a new pinch point, otherwise part of the expected energy savings will not be realised.
Considering that the pinch point divides the system into two independent sub-systems, the ap-
plication of the ”plus-minus” principle will have the e�ect of adding heat to and subtracting
heat from the corresponding sub-system. The grand composite curve is the plot of the heat
cascaded as a function of the corrected temperatures defined by ((Rr, T ⇥r ),�r = 1, ..., nr + 1).
Since the heat cascade has still to be satisfied, the maximum heat (Q̇(+)) that can be subtracted
from one temperature interval (r(�)) and send back to another (r(+)) will be obtained by solving
Eq. 1. This equation is also valid for the transfer of the cold streams from above to below the
pinch point. The mechanism that is explained here is illustrated graphically in the Figure 4.

Q̇(+)
r(+) = min((min

r
(Rr),�r = nr + 1, ..., r(+)), (min

r
(Rr),�r = r(�), ..., 1)) (1)

In the onion diagram, the operating pressure in the separation units will be of major impor-
tance. Distillation column typically introduces two streams with nearly constant temperature
: the reboiler defines a cold stream with a higher temperature, while the condenser defines a
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T*[K]

The heat requirement of the process appears as a cold stream to be heated by a hot utility stream 
whose Q-T* profile should be above the process Grand Composite
Self sufficient zones are eliminated



Utility stream definition

T

H

Type of utility (e.g. : Hot stream)

Outlet conditions (T,P) 

 (environment, operation)

3 characteristics :

-  H-T diagram (from GCC analysis)

- Cost as a function of flowrate

- Flowrate : to be determined to satisfy the 

requirements at Minimum Costs.

inlet conditions (T, P) 

 (fuel type, combustion , operation)



Utility integration principle

GCC = cold stream

GCC = hot stream
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Utility flow definition

0 20 40 60

T*(K)

Q(kW)

-20

QMER

Utility cost : C(CHF/s) = cost(CHF/kg) * flow(kg/s) 

T*ad

T*stack

Increasing flow

Infeasible

DTmin = minimum flow



Different fuels

For the same MER !!!

0 20 40 60

T*(K)

Q(kW)

-20

Q2

Q1

Energy available or excess

Different utility heat 
loads

Utility 1 : C1 = cost 1 * flow 1 

Utility 2 : C2 = cost 2 * flow 2

T*ad2
T*ad1



Cogeneration system : Energy Balance

Q̇
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The use of steam at 123°C to supply heat to the process generates therefore around 

170kW of exergetic losses. This corresponds to 160kW of mechanical work which could be 

generated through the use of reversible Rankine cycles operating between T*
steam and T*

process. 

Therefore, it is necessary to reduce as much as possible the temperature difference between 

the process and the utilities in order to lessen the exergy losses resulting from the heat transfer 

between the utility streams and the corresponding process streams. 

Solutions allowing the improvement of the present configuration of the utilities are 

studied in the following paragraphs. 

3.1.4 Integration of a Cogeneration Engine 

The integration of a cogeneration engine is a sustainable solution known to reduce the 

operating costs, as the combined heat and power system produces both mechanical power and 

heat by taking advantage of fuel combustion. 

A reciprocating engine fed with natural gas is considered in this study (see Figure 38). 

It appears to be the most relevant technology, as it is possible to recover heat from both 

exhaust gases and cooling water, which can be used in low temperature processes like 

breweries. 

 

Figure 38: Cogeneration Installation (Internal Combustion Engine)  
Source: Model GE-Jenbacher type 3, www.gejenbacher.com 

 

 

Q̇�
losses = (1� �e � �th)ṀfuelLHV



Cogeneration : gas turbines
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Cogeneration engines
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Combined heat and power

Example : Rankine cycle

Condensation

Heat source

Heat sink

Pump

Vaporisation

Turbine

E

WHeat sink

Condens

Vapo

Heat sourceT

H

Carnot : Ėmax = Q̇ ⇤ (1� Tcond

Tvap
)
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Combined heat and power
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Combined heat and power
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How to integrate mechanical power production ?
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Heat pump and refrigeration
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Heat pumping from below to above the pinch
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Q̇(+) = Ẇ+ + Q̇(�)

Ẇ+

Figure 6: Representation of a compression heat pump

the system. This means also that a heat pump may be profitable in one process configuration and
not when the same process is considered as integrated in the production site. More specifically,
when a heat pump is placed above the pinch point temperature, it is indeed equivalent to an
electric heater since both Q̇(+) and Q̇(�) concern the same sub-system, the di�erence Ẇ+ being
the only energy input in the sub-system. Moreover, when Q̇(+) is delivered below the pinch
point temperature, the electric power of the heat pump is added to the exothermic sub-system,
therefore it will just increase the cooling requirement of the system.

Q̇(+)
r(+),r(�) = min((min

r
(Rr),⇥r = nr+1, ..., r(+)), ((1+

(T (+) � T (�))
T (�)�Carnot

)(min
r

Rr,⇥r = r(�), ..., 1)))

(3)

with
�Carnot the e⇥ciency of the heat pump with respect to the reversible heat pump
T (+) the temperature of the hot stream of the heat pump that supplies heat to the

process at the temperature Tr(+) of the heat cascade
T (�) the temperature of the cold stream of the heat pump that takes heat from

the process at the temperature Tr(�) in the heat cascade
In reality, the hot and cold streams in the condenser and the evaporator do not have a

constant enthalpy-temperature profile. The equation 3 will therefore be adapted to account for
such heat transfer profiles. In such situation, more detailed models applying linear programming
methods (e.g. Eq. 6) will be used.

3.2 Other types of heat pumps

Heat pumping e�ect can also be obtained by mechanical vapour recompression applying
again the ”plus-minus” principle. A hot stream initially to be condensed below the pinch temper-
ature will be relocated partly in the heat sink by using a compressor that will raise the condensing
temperature above the pinch point.

11



Refrigeration
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Refrigeration cycle integration
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