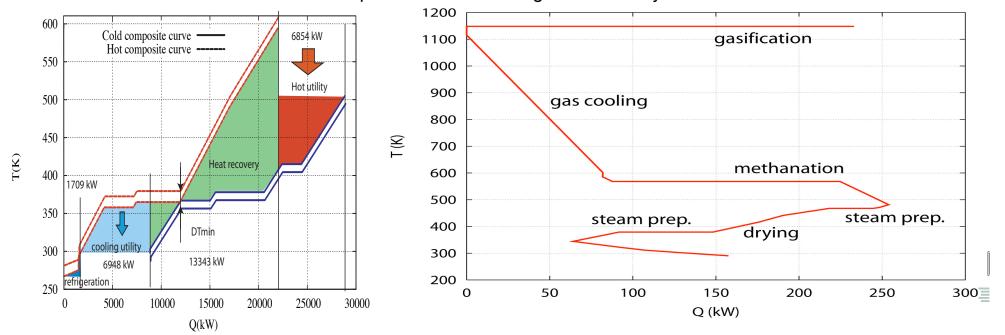
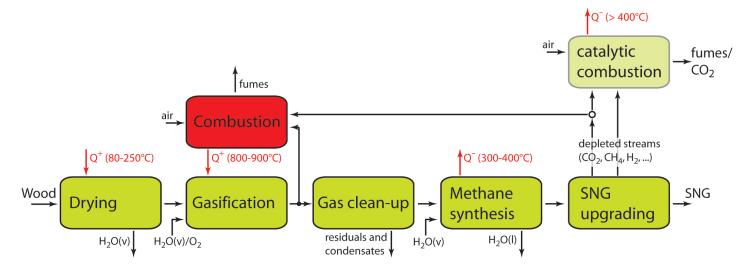
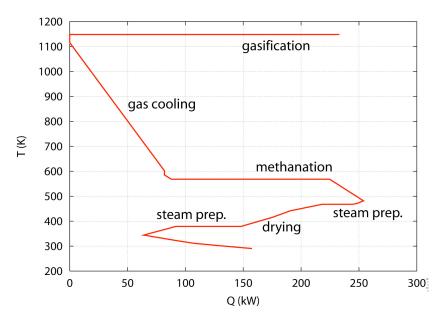


Process design and process integration

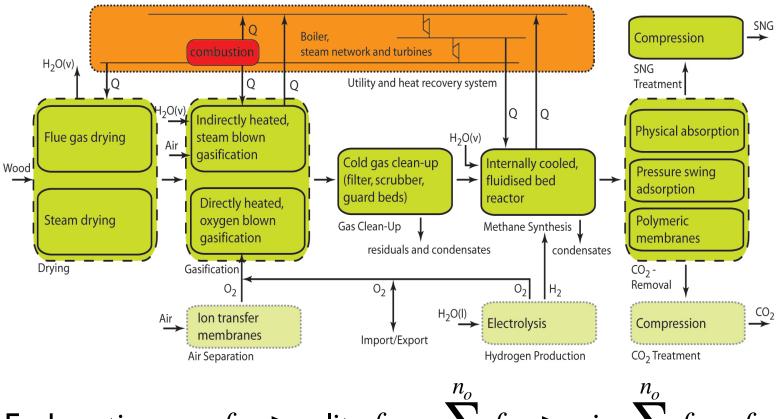

Prof F. Marechal

Process analysis


Example: Common wood to SNG route


Process Composite Curve including heat recovery

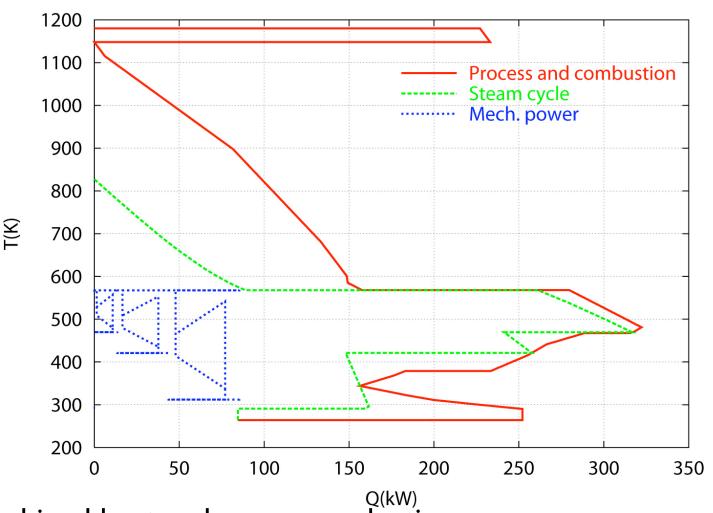
Closing the energy balance



- MER of crude production
- hot utility: combustion
- fuel choice?
 - waste streams
 - intermediate products

Process superstructure

Integrating heat recovery technologies in the superstructure



Each option :
$$y_o$$
, f_o => split : $f_{in} = \sum_{o}^{n_o} f_o$ => mix $\sum_{o}^{n_o} f_o = f_{out}$

Flowsheet generation (2)

Energy-integration model

MILP resolution: ... to an integrated solution

Sizing units

$$Size_{u}(x, \pi^{*})$$
 $where \quad x \in \{x_{u}^{+}, x_{u}^{-}, \pi_{u}\} \quad : \text{ problem state variable}$
 $x_{u}^{+} \quad \text{Streams entering the unit } u$
 $x_{u}^{-} \quad \text{Streams leaving the unit } u$
 $\pi_{u} \quad \text{Parameters of the unit } u$
 $\pi_{u}^{*} \quad \text{sizing model parameters the unit } u$

Sizing function may be complex and heuristics

- sequence of calculation
- see for example Ulrich et al.

Ulrich, K.T., and S.D. Eppinger, others. *Product design and development*. Vol. 384. McGraw-Hill New York, 1995.

see also: http://www.mech.utah.edu/senior_design/07/uploads/Main/Lect12-ConceptSelection.pdf.

Estimating investment cost based on reference data

$$C_p = C_{p,ref} \cdot \left(\frac{A}{A_{ref}}\right)^{\gamma} \cdot \frac{I_t}{I_{t,ref}}$$

 $C_{p,ref}$ purchase cost of the reference case

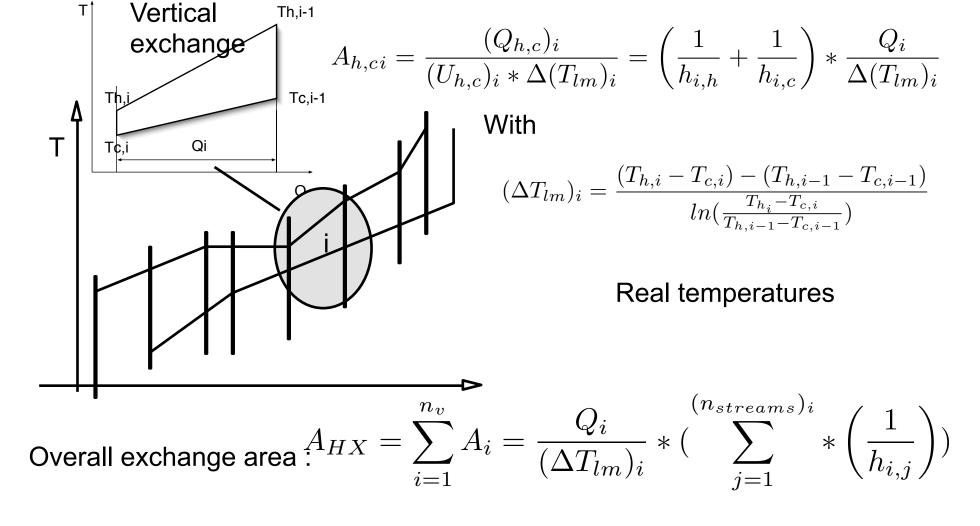
A equipment attribute

 A_{ref} equipment reference attribute

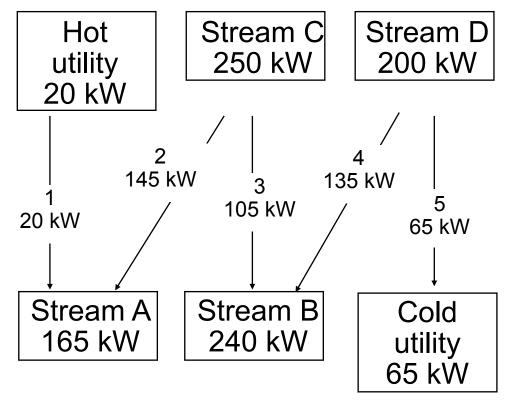
 γ capacity exponent

 $I_{t,ref}$ cost index for the reference year

 I_t cost index for the actual year


-Index:

- Marshall & Swift Equipment Cost Index
- CEPCI: Chemical Engineering Plant Cost Index


Estimating heat exchanger network Area

Fluid dependent DTmin/2 for the heat cascade calculation

Minimum number of units

from the graph theory

3 Sources: hot streams

TOTAL = 470 KW

3 Sinks : Cold streams

TOTAL = 470 KW

Number Number Number of of = of + of - independent Exchangers streams Utilities system

5 = 4 + 2 - 1

Number of Independent sub-systems above the pinch point

Number of Independent sub-systems below the pinch point

$$U_{\min,MER} = (N_{above} - 1 - S_{above}) + (N_{below} - 1 - S_{below})$$

Number of streams above the pinch point

Number of streams below the pinch point

$$U_{\min,MER} = (N_{total} + N_{utility} - 1) + (N_{pinch} - 1) - (S_{above} + S_{below})$$

Number of Independent subsystems below and above the pinch point

Total number of streams, including the utilities

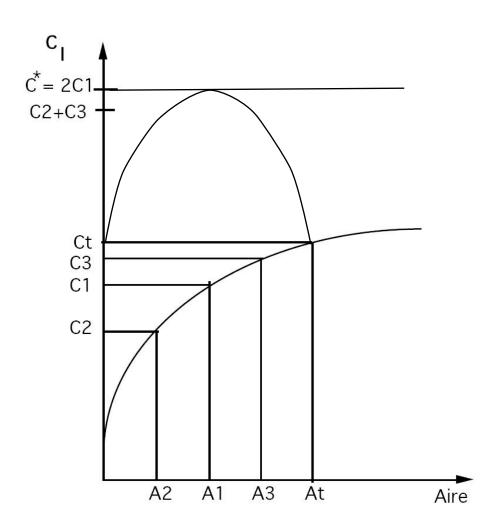
Number of streams crossing the pinch point

Estimating the heat exchanger network cost

Overall exchange area :
$$A_{HX} = \sum_{i=1}^{n_v} A_i = \frac{Q_i}{(\Delta T_{lm})_i} * (\sum_{j=1}^{(n_{streams})_i} * \left(\frac{1}{h_{i,j}}\right))$$

Number of heat exchangers : $U_{min,mer} = N_{streams} - 1 + \sum_{p=1}^{n_{pinch}} (n_{streams,p} - 1)$

Heat exchange area for one heat exchanger


$$A_h = \frac{A_{HX}}{U_{min,mer}}$$

Estimated investment for the heat exchanger network

$$I_{HX} = U_{min,mer} \left(\frac{I_{today}}{I_{ref}} \left(a_{h_{ref}} + b_{h_{ref}} \left(A_h \right)^{c_{h_{ref}}} \right) \right)$$

Bolliger, Raffaele, Francesca Pallazzi, and Francois Marechal. "Heat exchanger network (hen) costs and performances estimation for multi-period operation." In *Computer aided chemical engineering, Proceedings of ESCAPE 18, 18th European Symposium on Computer Aided Process Engineering*. ESCAPE18 conference proceedings, 2008.

Cost estimation: over estimation

by assuming an equal repartition of the area over all the heat exchangers, we will overestimate the heat exchangers total cost.

Fluid dependent Δ Tmin value

If A and Q are constant

If U increases : ∆T decreases

If U decreases : △T increases

- $=> \Delta$ Tmin is related to the streams involved
 - -> to the film heat transfer coefficient

$$\dot{Q}_{ex} = U_{ex} A_{ex} \Delta T_{lm}$$
 Temperature difference
$$\frac{1}{U_{ex}} = \frac{1}{\alpha_{cold}} + \frac{e}{\lambda} + \frac{1}{\alpha_{hot}}$$

The ∆Tmin is related to the type of fluids

Heat exchange: $\Delta T \ge \Delta Tmin/2,h + \Delta Tmin/2,c$

Remaining parameter => 1 DOF

$$\Delta Tmin/2_j = K_{\Delta Tmin} \cdot (\frac{\dot{Q}_j \cdot h_{ref}}{h_j \cdot \dot{Q}_{ref}})^{\frac{c}{c+1}}$$

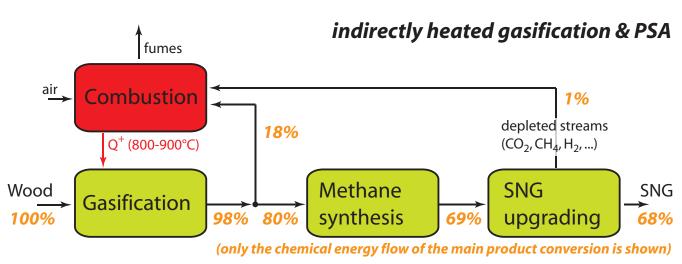
Convective heat transfer coefficient

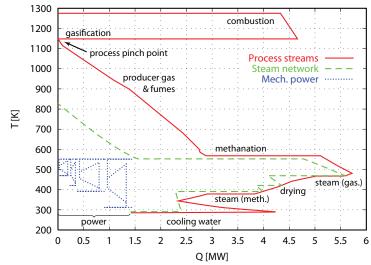
c is the cost exponent in the heat exchanger cost estimation formula

Table 1: Typical values for the $\Delta T_{min}/2$ as a function of the heat transfer film coefficient

Type	Heat transfer coefficient	$\Delta T_{min}/2$
	$W/m^2/C$	
Gas stream	60	15
Liquid stream	560	5
Condensing stream	1600	3
Vaporizing stream	3600	2

Total cost

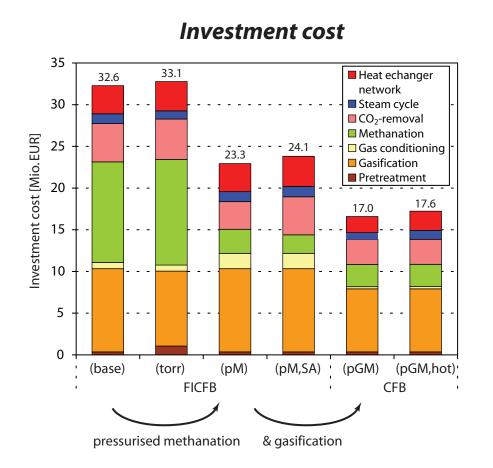

TotalCost	[\$/year] =	$\sum_{p=1}^{n_p} OPEX(p) + F + \frac{i(1+i)^{n_y}}{(1+i)^{n_y} - 1} \cdot CAPEX$
OPEX(p)	[\$/period]	operating cost during period p
n_p		number of operating periods during the year
i	[-]	interest rate for the capital investment
n_y	[year]	expected life time for the capital investment
CAPEX	[\$]	Capital investment
F	[\$/year]	yearly fixed cost

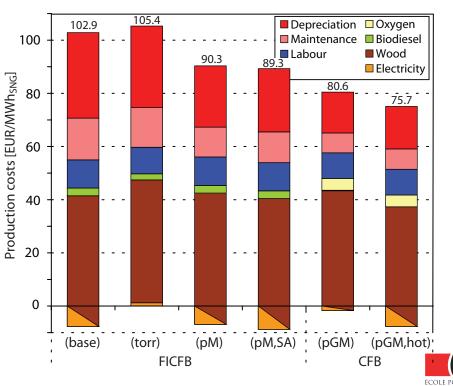


Flowsheet simulation & Enumeration

Some (non-optimised) scenarios for conventional SNG production:

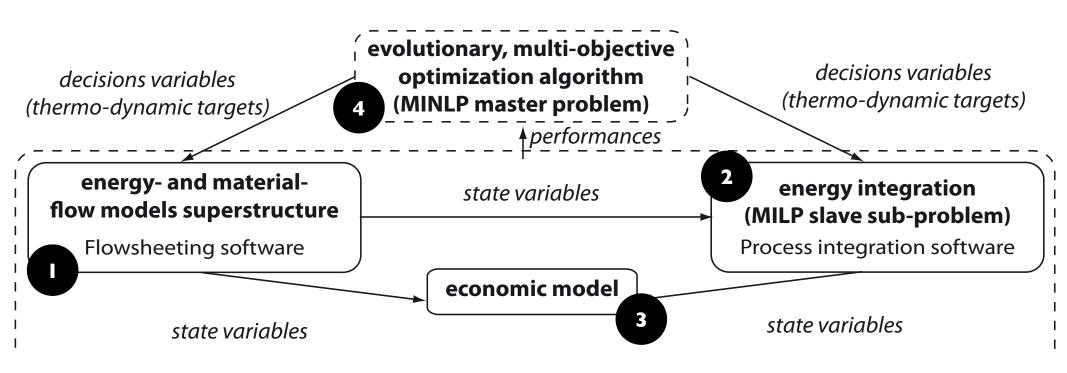
input: 20 MW_{th,wood}


		FICFB			CFB		
		(base)	(torr)	(pM)	(pM, SA)	(pGM)	(pGM, hot)
Consumption	Wood	100%	100%	100%	100%	100%	100%
	Biodiesel	1.8%	1.6%	1.8%	1.8%	0.1%	_
	Electricity	_	0.5%	-	-	0.9%	-
Production	SNG	67.7%	72.1%	67.5%	67.8%	74.0%	74.0%
	Electricity	2.9%	-	2.6%	3.3%	-	1.6%
Overall efficience	су	69.4%	70.7&	68.8%	69.8%	73.2%	75.6%



Process performance conventional SNG

Some (non-optimised) scenarios for conventional SNG production:


Total production costs

Using optimisation to extract solutions

Gerber, Léda, Martin Gassner, and François Maréchal. "Systematic Integration of LCA in Process Systems Design: Application to Combined Fuel and Electricity Production from Lignocellulosic Biomass."

Computers & Chemical Engineering 35, no. 7 (December 9, 2010): 1265–1280. http://linkinghub.elsevier.com/retrieve/pii/S0098135410003595.

EPFL MINLP: decomposition problem

Master (M) -Slave (S) decomposition

 X_M

 X_S

 π

\min_{X_M}	$Obj(X_M, X_S(X_M), \pi)$
$s.t.X_S(X_M)$	$\min_{X_S} Obj_S(X_S, X_M, \pi)$
s.t.	$H(X_S, X_M, \pi) = 0$
	$H(X_S, X_M, \pi) \ge 0$

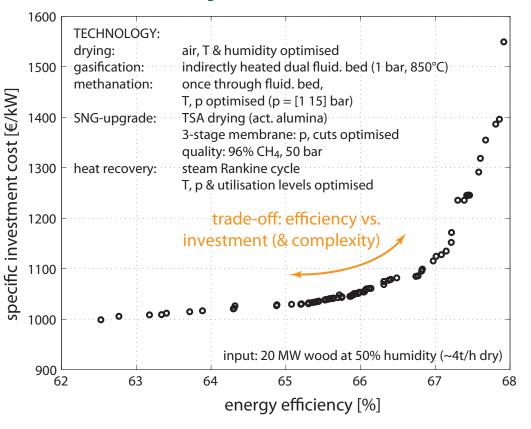
Master Variables
Slave Variables
Parameters

=> partition variable

=> Simple to solve

EPFL Black Box strategy

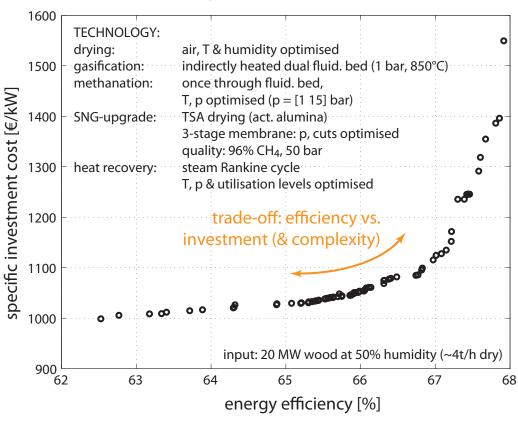
EPFL Heuristic methods to systematically generate optimal configurations

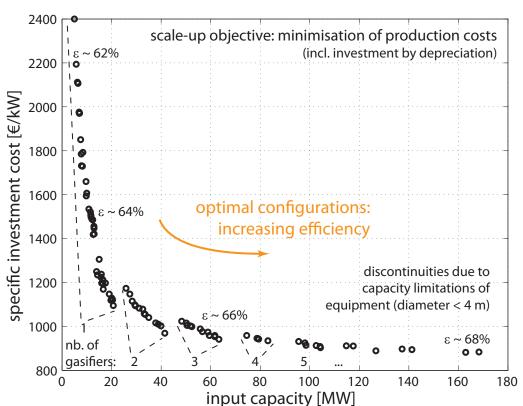

- Applies only on black box strategy
- Exploring the search domain
 - systematically
 - based on some analogy
- Simulated annealing
 - based on the analogy with metallurgy
 - heating/cooling of metal to minimize the energy content
- Evolutionary algorithm
 - genetic algorithms
 - based on the analogy of the evolution
 - Best fitted individuals have a higher probability to survive and reproduce
 - Reproduction based on sharing gene info
- Particle swarm
 - initial speed + communication between agents
- Ants colony

Thermo-economic optimisation

Trade-offs: efficiency and scale vs. investment

Efficiency vs. investment:

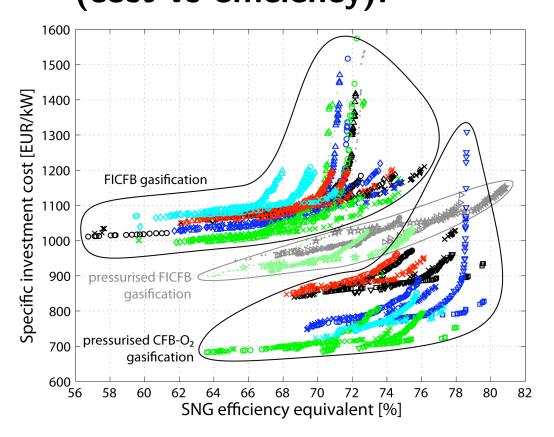


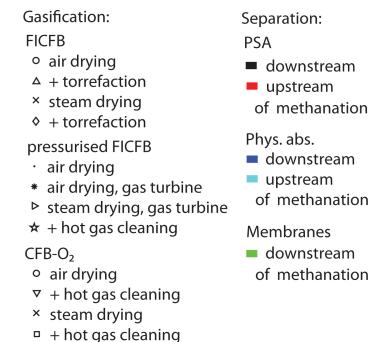


Thermo-economic optimisation

Trade-offs: efficiency and scale vs. investment

Efficiency vs. investment and optimal scale-up:





8. Analysing the results

 Each point of the Pareto is a process design
 Thermo-economic Pareto front (cost vs efficiency):

→ The best solution is the pressurised directly heated gasifier