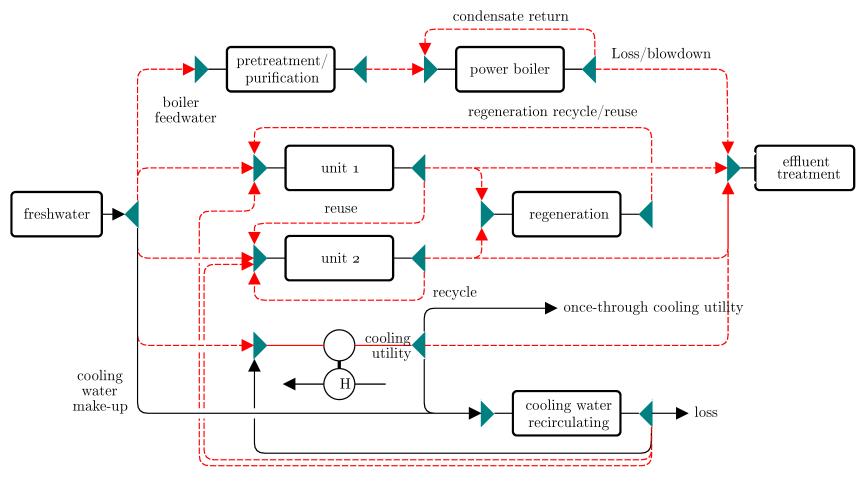
Systemic usage of water in industrial processes

HEAT-INTEGRATED WATER ALLOCATION NETWORK


How can heat and water exchanges be systematically managed within industrial processes? How can industrial specificities be addressed in the solution strategy? What are the main criteria in optimizing such systems? What approach can be used to generate a set of energy and water saving opportunities?

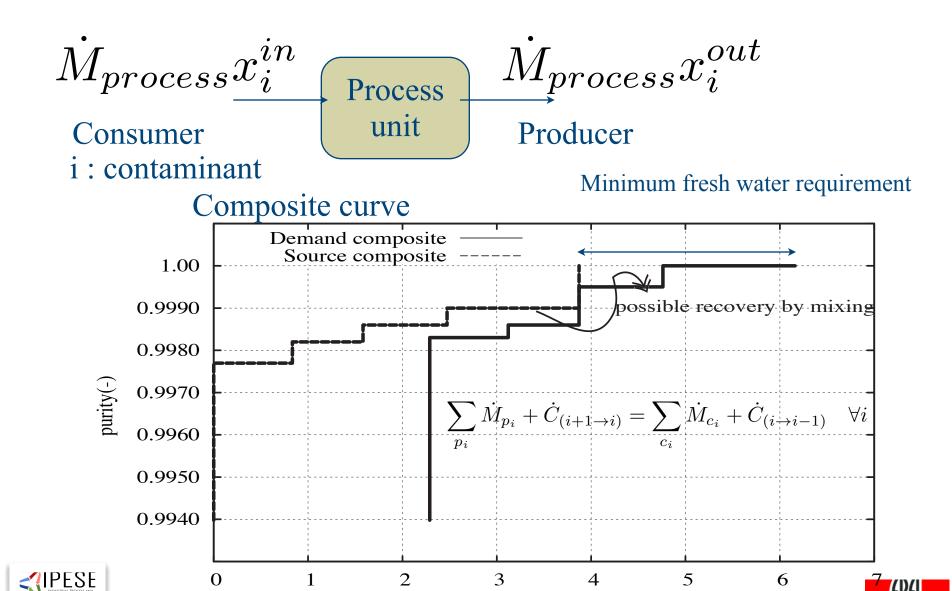
- background and context
- a comprehensive literature survey:
- an iterative sequential solution strategy
- generating a set of promising solutions → integer-cut constraint (ICC)

Kermani, M., Kantor, I.D., Maréchal, F., 2018. Synthesis of heat-integrated eater allocation networks: a meta-analysis of solution strategies and network features. Energies, 11, 1158

Kermani, M., Périn-Levasseur, Z., Benali, M., Savulescu, L., Maréchal, F., 2017. A novel MILP approach for simultaneous optimization of water and energy: application to a Canadian softwood kraft pulping mill. Computers & Chemical Engineering. Sustainability & Energy Systems 102, 238–257.

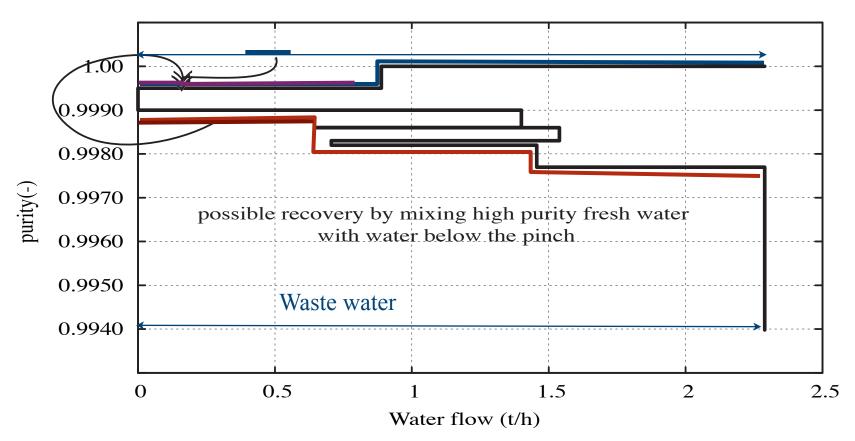
Water flows in an industrial process

water flows subject to thermal duties


Process integration techniques for rational use of water

- Analogy
 - Temperature = concentration
 - Heat flow = flowrate
 - Hot stream : producers
 - Cold streams : consumers

Source and demands



Water flow (t/h)

Water surplus composite

Grand composite

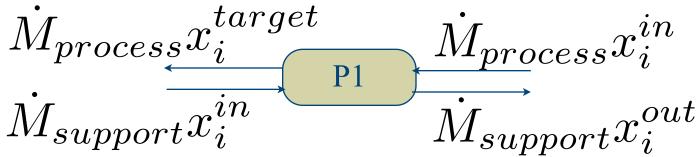
Minimum fresh water requirement

Integrated water management

- Waste water streams from the process
 - i contaminants : xi
 - Water flow

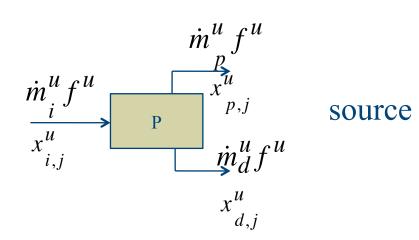
$$\dot{M}_{support}$$
 $x_i^{in} \to x_i^{target} \Rightarrow \dot{M}_i = \dot{M}_{support}(x_i^{in} - x_i^{target})$

Hot stream



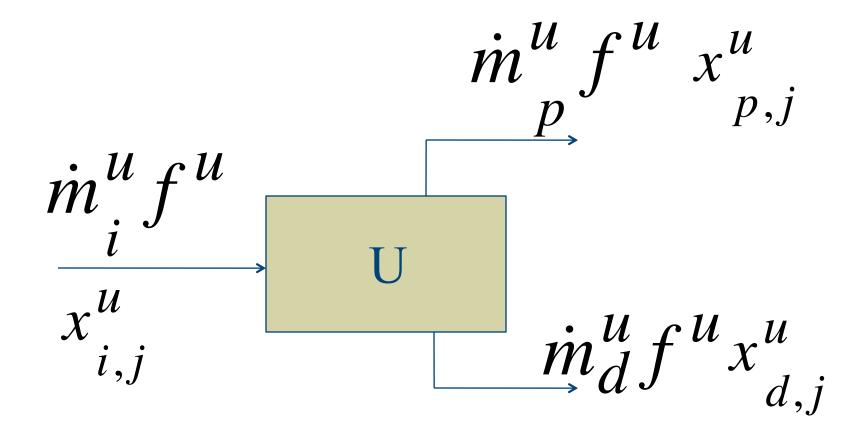
Water treatment units

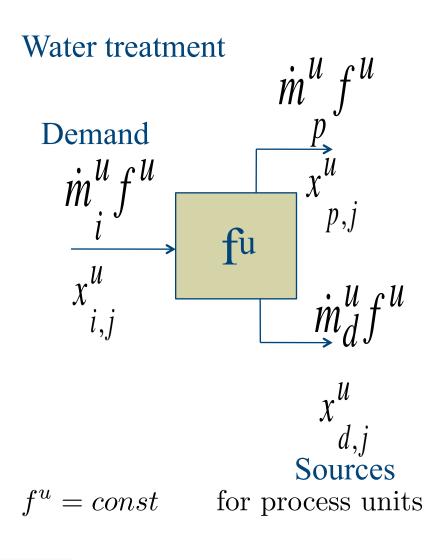
Destruction of pollutant

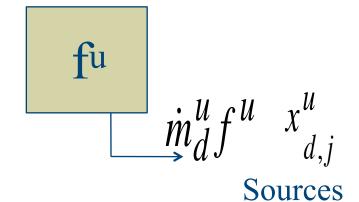

$$\dot{M}x_i^{in}$$
 \longrightarrow P1 $\dot{M}x_i^{out}$

Extraction

Concentration


demand


Generic formulation


consumers/producers

Demand

$$\dot{m}_{i}^{u} f^{u} x_{i,j}^{u,\text{max}}$$
 \mathbf{f}_{u}

*Waste water with unknown flow but cost

*Fresh water source with unknown flow but cost

Problem formulation

s : supplier

d: demand

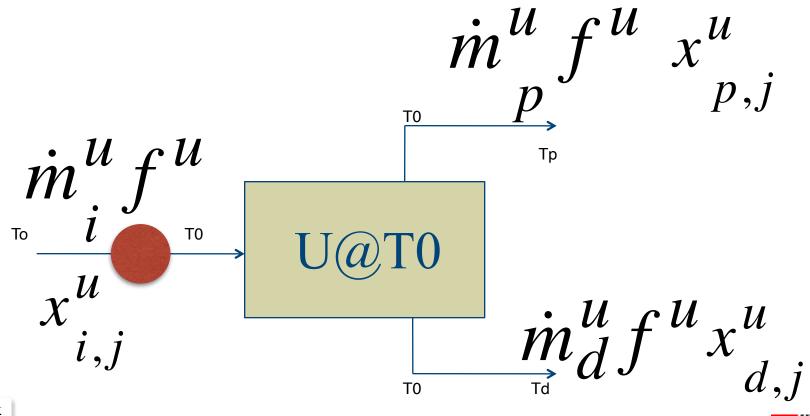
$$\min_{c_{s,d}, y_u} \sum_{u=1}^{n_u} (C_u^2 * f_u + C_u^1 * y_u)$$

Cost => use of the units Inc. fresh water

$$\sum_{s=1}^{n_s} c_{s,d} - \dot{m}_d * f_u(d) = 0 \quad \forall d = 1,...,n_{demande}$$

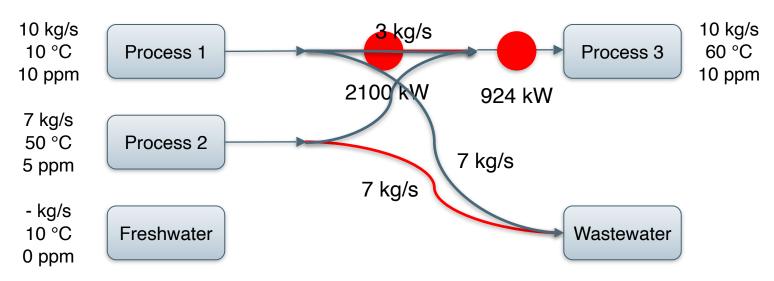
$$\dot{m}_{s} * f_{u}(s) - \sum_{d=1}^{n_{d}} c_{s,d} \ge 0 \quad \forall s = 1,...,n_{sources}$$

Mixer


$$\sum_{s=1}^{n_s} \frac{c_{s,d}}{X_s} * x_{s,j} \le \frac{\dot{m}_d}{X_d} * f_u(d) * x_{d,j}^{\text{max}} \quad \forall j = 1, n_{impuret\acute{e}} \quad \forall d = 1, n_d$$

Combined heat and mass integration

- 1rst approach
 - realise the mass integration at ambient temperature

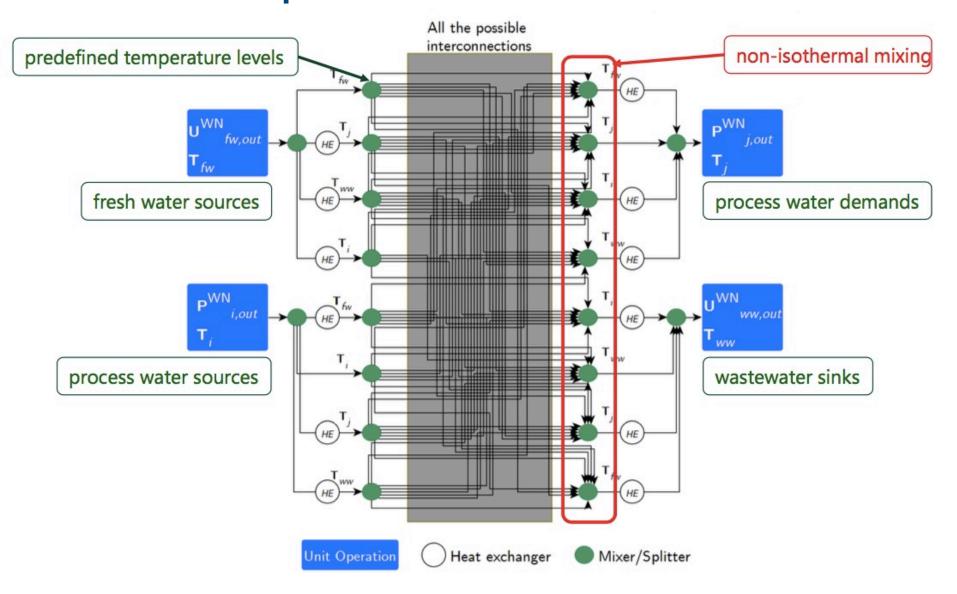


Why combined mass and energy integration?

Sequential approach: 1 - Design of water network

2 - Design of heat exchange network

Drawback: Not considering energy implication and heat integration aspects in water network design.

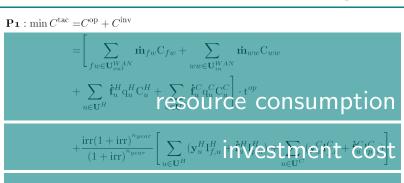


	Sequential	Simultaneous
Fresh water consumption (kg/s)	0	0
Wastewater production (kg/s)	7	7
Hot utility (kW)	2100	924

Detailed super-structure

Objective function: minimize the total cost of the network

Subjected to:


- Existence of a system (e.g. utility of fresh water, sub-units, hot utility);
- Heat cascade model (Maréchal and Kalitventzeff, 1996);
- Mass balance;
- Temperature and contamination constraints;

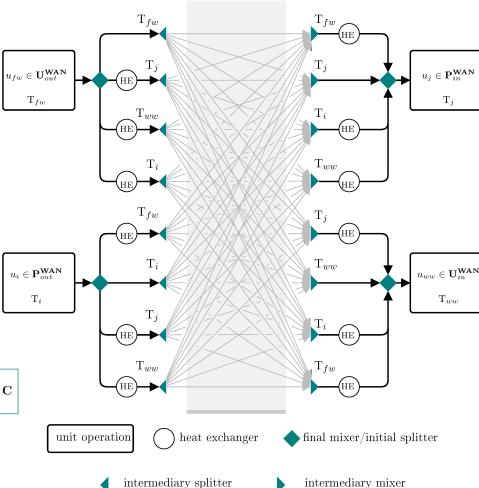
Problem P1- targeting

mathematical formulation and superstructure generation

$$+\frac{\operatorname{irr}(1+\operatorname{irr})^{^{n_{year}}}}{(1+\operatorname{irr})^{^{n_{year}}}} \left[\sum_{i \in \operatorname{WAN}} \left(\sum_{T \in \mathbf{T}_{i}^{WAN}} (\mathbf{y}_{i,T} \cdot \mathbf{I}_{f,i,T}^{WAN} + \dot{\mathbf{m}}_{i,T} \cdot \mathbf{I}_{p,i,T}^{WAN})) \right] \\ + \frac{\operatorname{irr}(1+\operatorname{irr})^{^{n_{year}}}}{(1+\operatorname{irr})^{^{n_{year}}}} \left[\sum_{i \in \operatorname{WAN}} \left(\sum_{T \in \mathbf{T}_{i}^{WAN}} (\mathbf{y}_{i,T} \cdot \mathbf{I}_{f,i,T}^{WAN} + \dot{\mathbf{m}}_{i,T} \cdot \mathbf{I}_{p,i,T}^{WAN})) \right] \right]$$

subject to:

- mass balance
- contamination constraint [75]


$$\frac{\sum\limits_{i \in \mathbf{WAN}_{out}} \sum\limits_{\mathbf{T}' \in \mathbf{T}_i^{WAN}} \sum\limits_{\mathbf{T} \in \mathbf{T}_j^{WAN}} \dot{\mathbf{m}}_{i,j,\mathbf{T}',\mathbf{T}} \mathbf{nonlinear} \ \text{equality}}{\sum\limits_{i \in \mathbf{WAN}_{out}} \sum\limits_{\mathbf{T}' \in \mathbf{T}_i^{WAN}} \sum\limits_{\mathbf{T} \in \mathbf{T}_i^{WAN}} \dot{\mathbf{m}}_{i,j,\mathbf{T}',\mathbf{T}} \cdot c_i^{k,md}} \mathbf{inea}^{pax} \mathbf{inequality}}$$

- energy balance (neat cascade model) |δ4|
- fixed-load vs fixed-flow formulations

$$\begin{split} \dot{\mathbf{m}}_{u} &= \frac{\mathbf{L}_{u}^{k}}{(\mathbf{c}_{u}^{k,out} - \mathbf{c}_{u}^{k,in})} \quad \leftrightarrow \quad \dot{\mathbf{m}}_{u} \cdot \mathbf{c}_{u}^{k,in} + \mathbf{L}_{u}^{k} = \dot{\mathbf{m}}_{u} \cdot \mathbf{c}_{u}^{k,out} \quad \forall k \in \mathbf{C} \\ \\ \mathbf{m}_{u}^{min} &= \frac{\mathbf{L}_{u}^{k}}{\mathbf{c}_{u}^{k,out,max}} \\ \\ \mathbf{m}_{u}^{max} &= \frac{\mathbf{L}_{u}^{k}}{(\mathbf{c}_{u}^{k,out,max} - \mathbf{c}_{u}^{k,in,max})} \end{split}$$

$$\sum_{i \in \mathbf{WAN}_{out}} \sum_{\mathbf{T}' \in \mathbf{T}_i^{WAN}} \dot{\mathbf{m}}_{i,j,\mathbf{T}',\mathbf{T}} \cdot \mathbf{T}' = \dot{\mathbf{m}}_{j,\mathbf{T}} \cdot \mathbf{T} \qquad \forall j \in \mathbf{WAN}_{in}, \quad \forall \mathbf{T} \in \mathbf{T}_j^{WAN}$$

all possible interconnections

WAN water allocation network, irr interest rate

Simultaneous optimisation of water and energy

Embedded concepts in SOWE

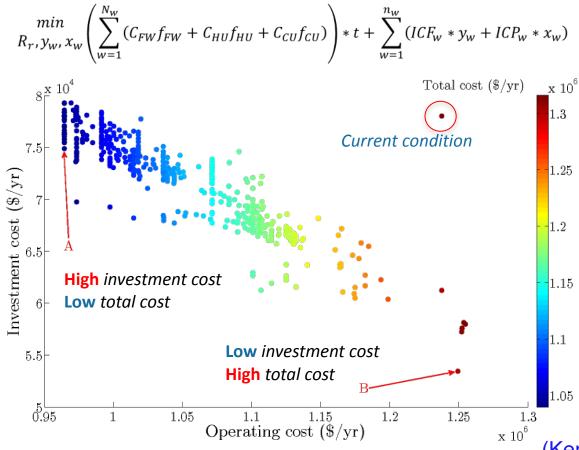
Restricted matches

- Addressing contamination constraints (lack of data)
- Addressing heat and mass exchange restriction

Water tanks

- Influence of tank temperature on water network design
- Seasonal variations in the temperature of water

Process-specific constraints


- Uncertainties (or unavailability) of measurements
 - Heat exchangers replaced by water-using units
- Economic, topological and any practical constraint in the mill:
 - Geographical allocation of process operations
 - Cost of piping

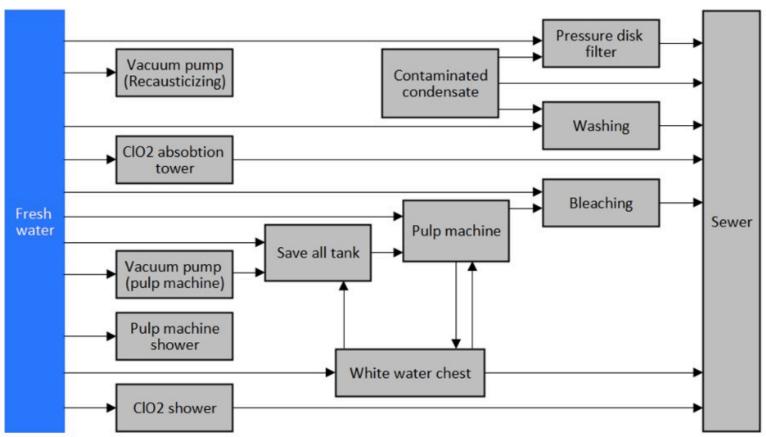
Simultaneous optimisation of water and energy

Mathematical techniques: Integer-Cut Constraint (ICC)

- Finding ordered set of solutions for the same problem.
- Finding the most attractive solution considering other criteria.

(Kermani et al. 2014)

Industrial application


Pulp and paper process

1,000 adt pulp /d

			Current condition of the mill
Steam Consumption	# 60 ⁽¹⁾	MW	136
	# 160 ⁽²⁾	MW	41
Total hot utility		MW	177
Water consumption		kg/s	592

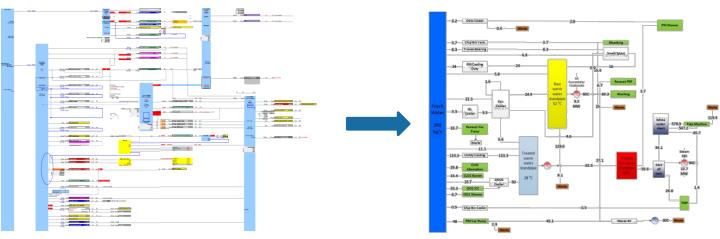
^{(1) 413} kPa (g)

^{(2) 1100} kPa (g)

Simultaneous optimisation of water and energy

Industrial case study - results

Pulp and paper industry producing 1,000 adt/d of pulp:


Number of thermal streams:

Number of tanks:

Number of water-using operations:

From current water network

To optimized water network

			Current condition of the mill	SOWE
Steam Consumption	# 60 ⁽¹⁾	MW	136	131 (-3.6 %)
	# 160 ⁽²⁾	MW	41	8.7
Total hot utility		MW	177	139.7 (-21%)
Water consumption		kg/s	592	390 (- <mark>34%</mark>)

⁽¹⁾ 413 kPa (g)

^{(2) 1100} kPa (g)

