

Investment Estimation in energy systems

Prof François Marechal

EPFL Sizing units

- Sizing function may be complex and heuristics
 - Describe the transfer phenomena
 - Residence time => sizes

$$Size_{u}(x, \pi_{u}^{*})$$

$$where \qquad x \in \{x_{u}^{+}, x_{u}^{-}, \pi_{u}\} \quad \text{: problem state variable}$$

$$x_{u}^{+} \quad \text{Streams entering the unit } u$$

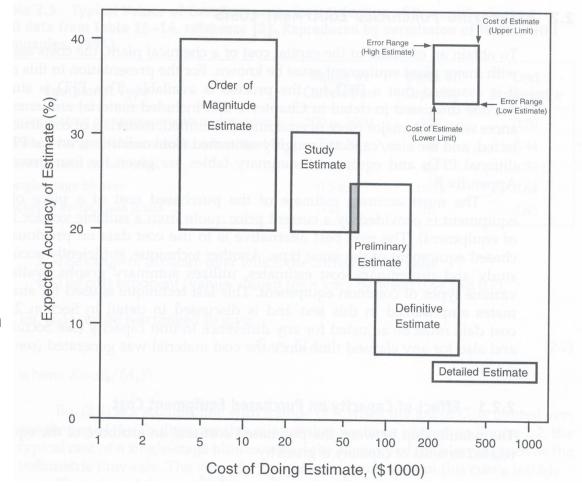
$$x_{u}^{-} \quad \text{Streams leaving the unit } u$$

$$\pi_{u} \quad \text{Parameters of the unit } u$$

$$\pi_{u}^{*} \quad \text{sizing model parameters the unit } u$$

Ulrich, K.T., and S.D. Eppinger, others. *Product design and development*. Vol. 384. McGraw-Hill New York, 1995.

see also: http://www.mech.utah.edu/senior_design/07/uploads/Main/Lect12-ConceptSelection.pdf.



EPFL Estimating the investment from the size

Cost of doing a investment estimation

Offer call

Detailed design

4

EPFL Estimating purchased cost based on reference data

Purchased cost of unit u

$$C_{p,u} = C_{p_{ref},u} \cdot \left(\frac{S_u}{S_{u,ref}}\right)^{\gamma_u} \cdot \frac{Id_{year_{project}}}{Id_{year_{ref}}}$$

- ${\color{blue} \bullet} \; C_{p_{ref},u}$: purchased cost of a unit u for a reference size
- S_u Equipment sizing attribute of unit u
- $_{\bullet}$ $S_{u_{ref}}$ Equipment sizing attribute of the reference unit ${\bf u}$
- γ_u capacity exponent for unit u typical values are between 0.6 and 0.8
- ${\bf I}d_{\mathit{year}_{\mathit{ref}}} \cos t$ index for the reference year where $C_{p_{\mathit{ref}},u}$ is given
- $lacksquare Id_{year_{project}}$ cost index for the project year
- Ranges => Min and Max bounds (comparable equipment)
- Cost index :
 - Marshall & Swift Equipment Cost Index
 - CEPCI: Chemical Engineering Plant Cost Index
 - Chemical Engineering Journal

=> Size


=> is a function of equipment type

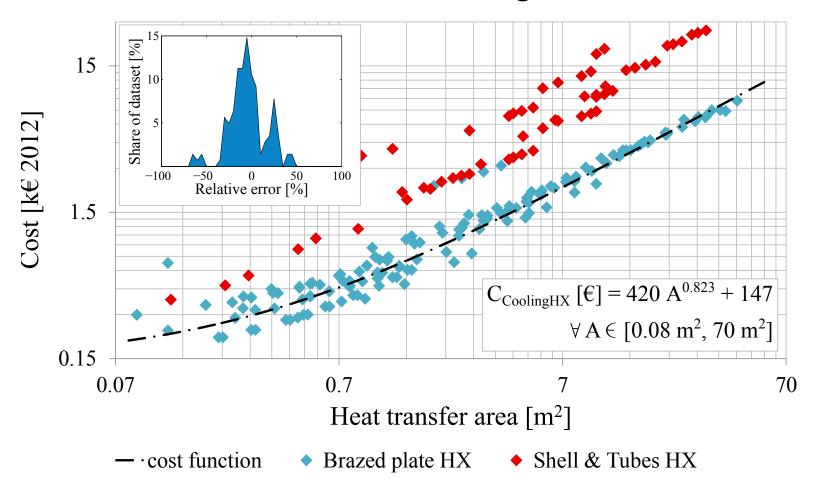
=> year adaptation

EPFL Equipment index

Adapting the cost estimate from one year to another

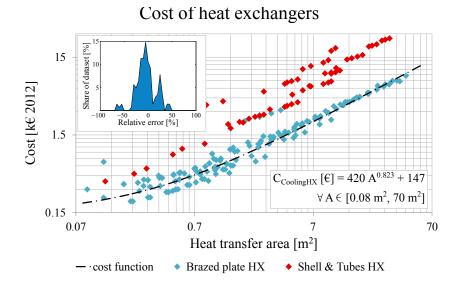
$$C_{p,u} = C_{p_{ref},u} \cdot \left(\frac{S_u}{S_{u,ref}}\right)^{\gamma_u} \cdot \frac{I_{year_{project}}}{I_{year_{ref}}} \quad \text{year of the evaluation}$$
 year of the reference where the cost is known for a reference size

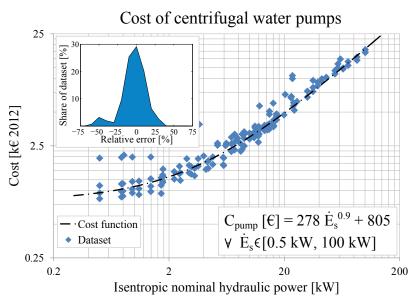
EPFL Example of data [US\$, 1998]

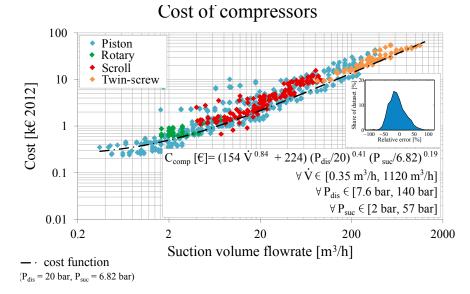

		Relative base cost $C_{p,ref}$ (values from 1998)
Blowers and fans	0.68	9.5
Boilers, packaged unit	0.7	60
Boiler (industrial), 15psig	0.5	92
Boiler (industrial), 150psig	0.5	101.2
Boiler (industrial), 300psig	0.5	115
Boiler (industrial), 600psig	0.5	138
Column with trays	0.73	33.5
Column with packing	0.65	35.2
Compressor, air, 125psig	0.28	36.5
Compressor, process gas, 1000psig	0.82	85
Cooling tower facilities	0.6	9.9
Crushers, cone	0.85	12
Crushers, gyratory	1.2	3
Crushers, jaw	1.2	4.7
Crushers, pulverisers	0.35	23.4
Crystallisers, growth	0.65	385
Crystallisers, forced circulation	0.55	276.5
Crystallisers, batch	0.7	32.5
Dryers, drum	0.45	30
Dryers, pan	0.38	12.5
Dryers, rotary vacuum	0.45	43.4
Evaporators, forced circulation	0.7	270
Evaporators, vertical tube	0.53	37.2
Evaporators, horizontal tube	0.53	30.4
Evaporators, jacketted vessel	0.6	32
Filters, plate and frame	0.58	4.3
Filters, pressure leaf (wet)	0.58	5.3
Filters, pressure leaf (dry)	0.53	15.1
Filters, rotary drum	0.63	17.5
Filters, rotary disc	0.78	31
Furnace, process	0.85	135
Heat exchangers, cooler	0.66	6.8
Heat exchangers, kettle reboiler	0.65	8.8
Heat exchangers, shell and tube	0.65	6.5
Heat exchangers, U-tube	0.65	5.5
Heater, direct fired	0.85	103,5

Importance of

- Size range
- Type of materials
- Application area
 - Domestic
 - Industry
 - Production
 - Custom made


EPFL Observing the market : note the log scale !!!


Cost of heat exchangers



EPFL Validity for the different types of technologies

EPFL Estimating purchased cost based on correlations

 Purchased costs of an equipment : statistical analysis (log/log) of the equipment market

$$C_{p,u} = \frac{Id_{year_{project}}}{Id_{year_{ref}}} \cdot 10^{(k_{1,u} + k_{2,u}log(S_u) + k_{3,u}(log(S_u))^2)}$$

• k_i empirical constants derived from the cost database

Note that : if
$$k_{3,u} = 0$$
 $C_{p,u} = \frac{I_{year_{project}}}{I_{year_{ref}}} \cdot 10^{k_{1,u}} \cdot (S_u)^{k_{2,u}}$

Reference year = year of the data publication: e.g. Turton, R., Whiting, W., and Shaeiwitz, J. (1998). Analysis, Synthesis and Design of chemical processes,, (ISBN:130647926),

EPFL Installed cost

Installed cost proportional to purchased cost Accounts for

- Pipings, contingencies, control, etc...
- Materials
- Pressure

$$C_{BM,u}$$
 $[CHF_{installed}] = F_{BM,u} \cdot C_{p,u}$

 $F_{BM,u}$: Order of magnitude Fluids : 4.74

Solids: 3.1

Solids-fluids: 3.63

$$i_{u_{\dot{Q}_{u,max}}}$$
 $[CHF/kW] = \frac{C_{BM,u}}{\dot{Q}_{u,max}}$

EPFL Effect of pressure and materials

Update the statistics by further statistics

$$F_{BM} = B_1 + B_2 \cdot F_m \cdot F_p$$

- B_i constants computed on the base of existing equipment cost databases
- F_m material factor, describes the effect of material change on the baremodule cost. If there is no material change $F_m = 1$
- F_p pressure factor, describes the effect of operating pressure change on the bare-module cost.

$$F_p = 10^{c_1 + c_2 \cdot \log \tilde{P} + c_3 \cdot (\log \tilde{P})^2}$$

 c_i empirical constant derived from the existing plant cost database

 \tilde{P} pressure difference from atmospheric pressure e.g. pressure expressed in bar gauge (barg)

Data in: Turton, R., Whiting, W., and Shaeiwitz, J. (1998). Analysis, Synthesis and Design of chemical processes, (ISBN:130647926),

EPFL Heat exchangers correlations

Ranges Table A.1 Correlation Coefficients for Heat Exchangers Exchanger P_{max} K_2 Type K_1 K_3 B, (m²)(m²)(barq) Double Pipe 3.0238 0.0603 6.4945^{1} -6.67861.7442 0.74 1.21 0.2 10 300 Multiple Pipe 2.1138 0.9658 6.4945^{1} -6.67861.7442 0.74 1.21 10 75 300 Fixed Tube Sheet or 3.2138 0.2688 0.07961 -0.06499^2 0.05025 0.01474 1.80 1.50 900 140 U-Tube Floating Head 3.4338 0.1445 -0.06499^2 0.10790 0.05025 0.01474 1.50 1.80 10 900 140 Bayonet 3.5238 0.1916 0.09474 -0.06499^2 0.05025 0.01474 1.80 1.50 10 900 140 Kettle Reboiler 3.5638 0.1906 0.11070 -0.06499^2 0.05025 0.01474 1.80 1.50 10 100 140 Scraped Wall 3.7438 0.9270 0 6.4945^{1} 1.7442 -6.67860.74 1.21 20 300 Teflon Tube 3.5738 0.4548 0 0 0 0 1.80 1.50 75 15 3.6418 Air Cooler 0.4053 0 -0.061540.0473 1.53 1.27 20,000 250 Spiral Tube 3.4088 0.6000 0.09944 -0.4045^3 0.1859 0.74 1.21 45 400 Spiral Plate 3.6788 0.4412 0 0 1.27 1.53 200 19 Flat Plate 3.8528 0.4242 0 0 0 1.53 1.27 15 1,500 19 ¹ Pressure factors given are for 100 < P < 300 barg, for 40 < P < 100 use $C_1 = 0.6209$, $C_2 = -0.9274$, $C_3 = 0.3369$, for P < 40² Pressure factors given are for when shell or both shell and tube are > 10 barg, when tubes only >10 barg use $C_1 = -0.04139$, $C_2 = 0.04139$, $C_3 = 0$ ³ Pressure factors given are for when shell or both shell and tube are > 10 barg, when tubes only >10 barg use $C_1 = -0.21150$, $C_2 = 0.09717$, $C_3 = 0$

Types of equipment

CEPCI: 382, Turton, R., Whiting, W., and Shaeiwitz, J. (1998).

Analysis, Synthesis and Design of chemical processes, ,

(ISBN:130647926),

EPFL Material Factors

Table A.2 Material Factors for Heat Exchangers Material Factor, F_M Shell—CS SS Cu CS CS Ni CS Ti Exchanger Type Tube—CS Cu Cu SS SS Ni Ni Ti Ti Double Pipe 1.00 1.25 3.00 2.80 3.80 7.20 12.00 Multiple Pipe 1.00 1.25 1.60 3.00 2.80 3.80 7.20 12.00 Fixed Tube Sheet or U-Tube 1.00 3.00 2.80 3.80 7.20 12.00 Floating Head 1.00 1.25 3.80 7.20 12.00 3.00 2.80 Bayonet 1.00 1.25 1.60 1.70 3.00 2.80 3.80 7.20 12.00 Kettle Reboiler 1.00 1.25 1.60 1.70 3.00 2.80 3.80 7.20 12.00 Scraped Wall 1.00 1.25 3.00 2.80 3.80 7.20 1.70 12.00 Spiral Tube 1.00 1.25 1.60 2.80 3.80 7.20 2.30 3.00 12.00 Teflon Tube Exchanger Flat and Spiral Plate Air Cooler Material in Contact with Shell Material F_{M} **Process Fluid** FM Tube Material F_{M} 1.00 CS CS 1.00 CS 1.00 Cu 1.20 1.20 Cu 1.50 Al SS 1.30 SS 2.30 SS 3.00 Ni 1.40 Ni 2.80 Ti 3.30 Ti 7.20

CEPCI: 382, Turton, R., Whiting, W., and Shaeiwitz, J. (1998).

Analysis, Synthesis and Design of chemical processes, , (ISBN:130647926),

EPFL Summary calculating $i_{u_{\dot{Q}_{u,max}}}$

[CHF/kW]

Estimation of an investment when equipment type and size [kW or m2] is known

$$i_{u_{\dot{Q}_{u,ref}}} \quad [CHF/kW] = \frac{\sum_{e_{u}=1}^{n_{e,u}} C_{BM,e_{u}}}{\dot{Q}_{u,ref}}$$

- e_u : equipment e of the $N_{e,u}$ equipment needed to construct the unit u
- 20% precision
- Similar equipment or correlations
 - Check validity range

Note the year of the data and use index update $\frac{Id_{year_{project}}}{Id_{year_{ref}}}$

- Scaling factor (default =0.8)
- Installed cost = (3 to 4) * Purchased cost
- Factors for Materials + Pressure

EPFL Summary

- Cost estimation
 - Comparing sizes => scaling factor
 - Statistical values from data base (log/log) => precision ???
 - Index for the year of the reference data update
 - Heuristics
 - Installation Factor
 - Materials/Pressure Factor

