


Key performance indicators

Prof François Marechal

EPFL Thermo-economic performance

- Cost of operation : give values to flows
- Cost of the investment
 - Estimate the size of each equipment
 - Estimate its cost

$$f(x) = 0$$
 Process simulation $x_d - x_d^* = 0$ **THERMO=> flows**

ECONOMIC=flow*price

EPFL Sizing units

- Sizing function may be complex and heuristics
 - Describe the transfer phenomena
 - Residence time => sizes

$$Size_{u}(x, \pi_{u}^{*})$$

$$where \qquad x \in \{x_{u}^{+}, x_{u}^{-}, \pi_{u}\} \quad \text{: problem state variable}$$

$$x_{u}^{+} \quad \text{Streams entering the unit } u$$

$$x_{u}^{-} \quad \text{Streams leaving the unit } u$$

$$\pi_{u} \quad \text{Parameters of the unit } u$$

$$\pi_{u}^{*} \quad \text{sizing model parameters the unit } u$$

Ulrich, K.T., and S.D. Eppinger, others. *Product design and development*. Vol. 384. McGraw-Hill New York, 1995.

see also: http://www.mech.utah.edu/senior_design/07/uploads/Main/Lect12-ConceptSelection.pdf.

EPFL KPI: Key Performance Indicators of a system

General formula of the KPI in KPI unit/lifetime

$$KPI = \int_{t=0}^{LifeTime} \left(\sum_{r=1}^{n_r} \dot{m}_r^+(t) v_r^{+,KPI}(t) + \dot{E}^+(t) v_e^{+,KPI}(t) - \dot{E}^-(t) v_e^{-,KPI}(t) + \sum_{u=1}^{n_u} f_u(t) v_{m,u}^{KPI} \right) dt + \sum_{u=1}^{n_u} v_u^{KPI}(I_u(S_u))$$

KPI [KPI unit/lifetime] for n_p conditions of operation over the lifetime of the system

$$KPI = \sum_{p=1}^{n_p} \left(\sum_{r=1}^{n_r} \dot{m}_{r,p}^+ v_{r,p}^{+,KPI} + \dot{E}_p^+ v_{e,p}^{+,KPI} - \dot{E}_p^- v_{e,p}^{-,KPI} + \sum_{u=1}^{n_u} f_{u,p} v_{m,u}^{KPI} \right) d_p + \sum_{u=1}^{n_u} v_u^{KPI} (I_u(S_u))$$

 $\dot{m}_{r,p}^+, \dot{E}_p^+, \dot{E}_p^-$ [kg/s, kW] : flows calculated in the system configuration during conditions p d_p [s/lifetime] : probability of appearance of conditions p during the life time of the system $v_{r,p}^{+,KPI}$ [KPI/kg]: value given to flows or investment to characterize the system configuration during conditions p $v_{e,p}^{+,KPI}$ [KPI/kJ]: value given to Electricity to characterize the system configuration during conditions p $v_{m,u}^{KPI}$ [KPI/use of u]: value of the maintenance cost of unit during the conditions p

 v_u^{KPI} [KPI/\$ invested] : value given to the investment of unit u in the system (typically in $\frac{\$^{2020}}{year} \frac{1}{\$_{invested}}$)

 $I_u(S_u)$ [\$ invested/Size of u] : investment in the equipment of the system

EPFL Example of key performance indicators

$$TotalCost[CHF/year] = OPEX + CAPEX + Tax$$

$$OPEX = \sum_{n_p}^{n_p} (\sum_{r=1}^{n_r} \dot{m}_{r,p}^+ c_{r,p}^+ + \dot{E}_p^+ c_{e,p}^+ - \dot{E}_p^- c_{e,p}^- + \sum_{u=1}^{n_u} f_{u,p} c m_u) d_p$$

$$CAPEX = \sum_{u=1}^{n_u} \frac{1}{\tau(n_{y,u}, i)} (I1_u y_u + I2_u f_u^{max})$$

$$Tax = CO_2^+ \gamma^{CO_2^+}$$

$$CO_2^+ = \sum_{p=1}^{n_p} (\sum_{r=1}^{n_r} \dot{m}_{r,p}^+ \epsilon_r^{CO_2} + \dot{E}_p^+ \epsilon_{e,p}^{CO_2^+} - \dot{E}_p^- \epsilon_{e,p}^{CO_2^-}) d_p$$

$$Impact = \zeta^{CO_2^+} (CO_2^+ + \sum_{u=1}^{n_u} \frac{1}{n_{y,u}} (\xi_{c_u}^{CO_2} + \xi_{d_u}^{CO_2}) f_u^{max})$$

$$RES = \sum_{p=1}^{n_p} (\sum_{r_{res}=1}^{n_{r_{res}}} \dot{m}_{r_{res},p}^+ + \sum_{u=1}^{n_u} f_{u,p} e_{u,p}^{res^+}) d_p$$

$$\dot{E}_p^+ + \dot{E}_p^- + \sum_{v=1}^{n_u} f_{u,p} (e_{u,p}^{res^+} - e_{u,p}^-) = 0 \qquad \forall p = 1..n_p$$

EPFL OPEX: Operating Expenditure

$$OPEX[CHF/year] = \sum_{p=1}^{n_p} (\sum_{r=1}^{n_r} \dot{m}_{r,p}^+ c_{r,p}^+ + \dot{E}_p^+ c_{e,p}^+ - \dot{E}_p^- c_{e,p}^- + \sum_{u=1}^{n_u} f_{u,p} c m_u) d_p$$
 with
$$\dot{m}_{r,p}^+[kg/h] \quad \text{flow of resource r in period p}$$

$$c_{r,p}^+[CHF/kg] \quad \text{specific price of resource r in period p}$$

$$\dot{E}_p^+[kW] \quad \text{Electricity import in period p}$$

$$c_{e,p}^+[CHF/kWh] \quad \text{Electricity price at import in period p}$$

$$\dot{E}_p^-[kW] \quad \text{Electricity export in period p}$$

$$c_{e,p}^-[CHF/kWh] \quad \text{Electricity price at export in period p}$$

$$n_u[-] \quad \text{number of units}$$

$$f_{u,p}[-] \quad \text{level of use of unit u in period p}$$

$$cm_u[CHF/h] \quad \text{specific maintenance cost of unit u}$$

$$d_p[h/year] \quad \text{duration of period p}$$

We assume that the specific prices are valid for the whole life time: 25 years !!!!

EPFL CAPEX: Capital Expenditure

Capital Expenditure is the amount of money needed to buy the equipment, it is expressed on an annual basis

$$CAPEX[CHF/year] = \sum_{u=1}^{n_u} \frac{1}{\tau(n_{y,u}, i)} (I1_u y_u + I2_u f_u^{max})$$

$$\frac{1}{\tau(n_{y,u},i)}$$
 $[\frac{1}{year}]$ annualisation factor of unit u

 $n_{y,u}$ $[year]$ expected life time of unit u

 $I1_u$ $[CHF]$ fixed investment of unit u

 y_u $[-]$ existence unit u

 $I2_u$ $[CHF]$ proportional investment cost of unit u

 f_u^{max} $[-]$ size of unit u

EPFL CO2 emissions

• Measures the amount of CO2 emissions associated to the operation of the system during the n_p operating conditions p.

$$CO_2^+[kgCO_2/year] = \sum_{p=1}^{n_p} (\sum_{r=1}^{n_r} \dot{m}_{r,p}^+ \epsilon_r^{CO_2} + \dot{E}_p^+ \epsilon_{e,p}^{CO_2^+} - \dot{E}_p^- \epsilon_{e,p}^{CO_2^-}) d_p$$

$$\begin{array}{ll} \epsilon_r^{CO_2}[kgCO_2/kg_r] & \text{kg CO2 emitted per unit of resource r burnt (local emissions)} & -> \mathsf{SCOPE} \ 1 \\ \epsilon_{e,p}^{CO_2^+}[kgCO_2/kWh_e] & \text{kg CO2 emitted per kWh of electricity consumed} \\ \epsilon_{e,p}^{CO_2^-}[kgCO_2/kWh_e] & \text{kg CO2 avoided per kWh of electricity exported (substituted in the grid)} & -> \mathsf{SCOPE} \ 2 \end{array}$$

$$Tax[CHF/year] = CO_2^+ \gamma^{CO_2^+}$$

$$\gamma^{CO_2^+}[CHF/kgCO_2]$$
 CO2 tax per kg CO2 emitted

SCOPE 1 emissions: directly emitted on site

SCOPE 2 emissions: indirectly emitted (i.e. emitted at the time of the production of the electricity or for the supply of the resource

EPFL Environmental impact

$$Impact[ImpactUnit/year] = \zeta^{CO_2^+}(CO_2^+ + \sum_{u=1}^{n_u} \frac{1}{n_{y,u}} (\xi_{c_u}^{CO_2} + \xi_{d_u}^{CO_2}) f_u^{max})$$

 $\zeta^{CO_2^+}[ImpactUnit/kg_{CO_2}]$ Impact of CO2 emissions per kg of CO2 emitted $\xi_{c_u}^{CO_2}[kg_{CO_2}]$ life cycle CO2 emissions during the construction of unit u $\xi_{d_u}^{CO_2}[kg_{CO_2}]$ life cycle CO2 emissions during the dismantling of unit u

An impact value is given to an emission. It concerns SCOPE1, SCOPE 2 or SCOPE 3 (considering the life cycle) The impact is typically measured by life cycle impact assessment indicators.

