

Solving Process units models

François Marechal
Shivom Sharma

Thermodynamic state

EPFL Process unit model

Unit models represents by a set of equations the thermodynamic phenomena involved in the conversion of the flows in the process unit operation

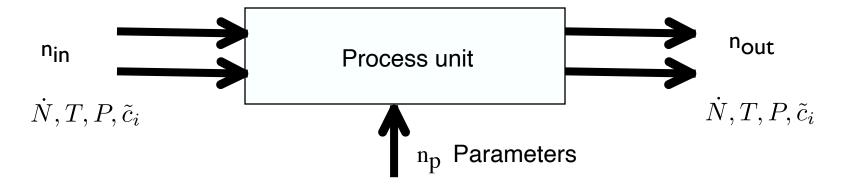
State variables inlet N, T, P, \tilde{c}_i Simulation Equation $f_m(\dot{N}_n, T_n, P_n, \tilde{c}_n, \pi_p) = 0$ Simulation equations

• Mass balances

Performances Parameters π_p

•Performances equations

•Chemical reactions


- •Reaction kinetics
- •Heat and mass transfer
- •Equilibrium

•Energy balances

Compression

Degrees of freedom (DOF) of a unit model

Equations: ne

mass balances/network

Energy **Impulsion**

models

specification

Variables: n_v

 n_{c}

 n_i

 n_{m}

 n_{s}

Unit parameters

Internal variables

State of the streams
$$n_X = (n_{out} + n_{in})^* (n_c + 2)$$

 n_{p}

nt

$$DOF = n_{V}-n_{e}$$

DOF = number of set points to make the unit calculable Equations $(n_e+n_s) = Variables (n_v)$

EPFL Incidence Matrix of a Unit model

n_v variables = $n_x + n_p$

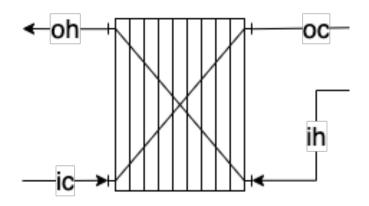
Mass balance Energy balance Model Const Equations

Specifications

TIX State	variables	<u>np</u>	parai	met	ers
XXXXXXXXXXX	XXXXX XXXXX	XXXXX XXXXXXX XXX	XX X	X	n _e model equations
X X X X X X X			X X X		DOF n _s =n _v -n _e specification equations x-x ^s = 0

To solve the problem:

I) square matrix


n state variables

2) independent equations

In the incidence matrix, the element (i,j) is equal to 1 if variable i is in equation j It indicates the presence (incidence) of a variable (i) in the equation (j)

EPFL Unit model: heat exchanger

Nb. Equation	$1.\dot{m}_{ci}$	$2.T_{ci}$	$3.P_{ci}$	$4.\dot{m}_{co}$	$5.T_{co}$	$6.P_{co}$	$7.\dot{m}_{hi}$	$8.T_{hi}$	$9.P_{hi}$	$10.\dot{m}_{ho}$ $11.T_{ho}$	$12.P_{ho}$	13.A	$14.\dot{Q}$	15.U
$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$	x	X			X								X	
$2(EB) \dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$							X	X		X			X	
$3(MB)\dot{m}_{hi}=\dot{m}_{ho}$							X			X				
$4(\mathrm{MB})\dot{m}_{ci} = \dot{m}_{co}$	X				X									
$5(P) P_{hi} = P_{ho}$								X		X				
$6(P) P_{ci} = P_{co}$			X			X								
$7(M) \dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$		X			X			X		X		X	X	X

EPFL Unit model: Incidence matrix

F(X): Equations
Ne=Ns + Nb + Nm

XXXXXXXXXXXXX 00000000011111 12345678901234

	Eq1	X
	Eq2	X
Ns Specifications	Eq3	X
X-Xs=0	Eq4	X
	Eq5	X
	Eq6	X
Nb Balances	Eq8	X X
B(Xin)-B(Xout)=0	Eq9	XX X
	Eq7	X X
	Eq10	XX X
Nm Models	Eq11	X XX
M(X,P)=0	Eq13	X XX
Nc Constitutive equations	Eq14	X X XX
C(X)=0	Eq12	X X X

X: Variables
Nv state
Ni intermediate
Np parameters
Nx=Nv+Ni+Np

DOF analysis

Ne=Nx

EPFL Types of modelling equations

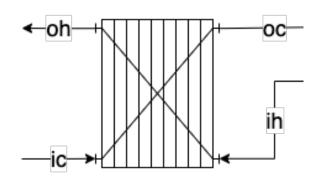
- Form of the equations
 - Implicit form
 - f(x,y)=0
 - Explicit* form
 - y=f(x)
- Types of equations
 - Balance equations
 - Constitutive equations (thermodynamic state): non linear
 - Model equation
 - Specification equations (constants)
 - X=Xs
 - x-x=0

EPFL Solving a model: simultaneous approach

	Eq1	X		
Ns	Eq2	X		
X-Xs=0	Eq3	Х		
Λ Λ3=0	Eq4	2	X	
	Eq5		X	
	Eq6		X	
Nb	Eq8	X	X	
B(Xin)-B(Xout)=	DEq9	XX		X
	Eq7	X	X	
	Eq10	XX		X
Nm	Eq11		X	XX
M(X,P)=0	Eq13		X	XX
Nc	Eq14	X	X	XX
C(X)=0	Eq12		X X	X

Find X such that

$$F(X)=0$$


For a given X, F(X) is evaluated

NxN

set of N non linear equations

EPFL Unit model: heat exchanger simultaneous resolution

Find X such that

$$F(X)=0$$

15x15

set of 15 non linear equations

Nb.	Equation	$1.\dot{m}_{ci}$	$2.T_{ci}$	$3.P_{ci}$	$4.\dot{m}_{co}$	$5.T_{co}$	$6.P_{co}$	$7.\dot{m}_{hi}$	$8.T_{hi}$	$9.P_{hi}$	$10.\dot{m}_{ho}$ $11.T_{ho}$	$12.P_{ho}$ $13.A$	$14.\dot{Q}$	15.U
$\overline{1(EB)}$	$\dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$	X	X			X							X	
2(EB)	$\dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$							X	X		X		X	
	$)\dot{m}_{hi}=\dot{m}_{ho}$							X			X			
	$)\dot{m}_{ci}=\dot{m}_{co}$	X				X								
5(P)	$P_{hi} = P_{ho}$								X		X			
6(P)	$P_{ci} = P_{co}$			X			X							
7(M)	$\dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$		X			X			X		X	X	X	X
	$\dot{m}_{ci}=\dot{m}_{ci}^s$	X												
` /	$T_{ci} = T_{ci}^s$		X											
	$P_{ci} = P_{ci}^s$			X										
	$T_{hi} = T_{hi}^s$								X					
	$P_{hi} = P_{hi}^s$									X				
	$\dot{m}_{hi}=\dot{m}_{hi}^s$							X						
	$A = A^s$											X		
15(S)	$U = U^s$													X

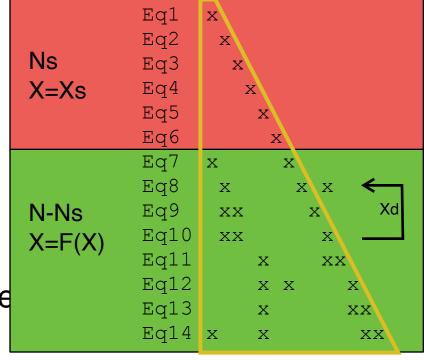
EPFL Sequential resolution : case 1 (happy case)

- 1. Process mathematical equations to have an explicit form $X_i = f(X_{k\neq i})$
- 2. Rearrange the matrix to have a diagonal matrix

if
$$diag_i = f(diag_k, k = 1, \dots, i-1)$$

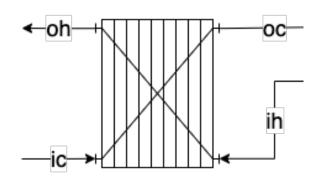
3. Define the order of resolution Solve the sequence

Ns X=Xs	Eq1 Eq2 Eq3 Eq4 Eq5 Eq6	X X QQ X X X X X X X X X X X X X X X X
N-Ns X=F(X)	Eq7 Eq8 Eq9 Eq10 Eq11 Eq12 Eq13 Eq14	


EPFL Sequential resolution : case 2 (non happy case)

- 1. Process mathematical equations to have an explicit form $X_i = f(X)$
- 2. Rearrange the matrix to have a diagonal matrix

if not
$$diag_i = f(diag_k, k = 1, \dots, i-1)$$


- 3. Guess off-diagonal terms Xd
- 4. Define the order of resolution
- 5. Solve the sequence until Xd
 - 6.1 test convergence Xd^k ?= Xd^{k-1}
 - 6.2 if No : update $Xd^{k+1} = Xd^k$
 - -> back to 5
 - 6.3 if Yes continue with the sequence

Xd needed by Eq8 but calculated by Eq10

EPFL Unit model: heat exchanger

Explicit form

$$diag_i = f(diag_k, k = 1, \dots, i - 1)$$

		
Nb. Equation	$1.\dot{m}_{ci} 2.T_{ci} 3.P_{ci} 9.P_{hi} 8.T_{hi} 7.\dot{m}_{hi} 13.A 15.U 10.\dot{m}_{ho} 4.\dot{m}_{co} 6.P_{co} 12.P_{ho} 5.T_{co} 11.T_{ho} 14.V_{ho} 14.V_{ho} $	A.Q
$8(S)$ $\dot{m}_{ci} = \dot{m}_{ci}^s$	X	
$9(S)$ $T_{ci} = T_{ci}^s$	X	
$10(S) P_{ci} = P_{ci}^s$	X	
$11(S) T_{hi} = T_{hi}^s$	x	
$12(S) P_{hi} = P_{hi}^s$	$\sum_{x} \sum_{x} Seq_{uential} resolution$	
$13(S) \dot{m}_{hi} = \dot{m}_{hi}^s$	$x = \frac{1}{\sqrt{t_i}}$	$x_i = f(x_{j < i})$
$14(S) A = A^s$	x resolution	J = J = J = J = J = J = J = J = J = J =
$15(S) U = U^s$	$x = i \psi_{t_{iOD}}$	
$3(MB)\dot{m}_{hi}=\dot{m}_{ho}$	X X	
$4(MB)\dot{m}_{ci} = \dot{m}_{co}$	X X	
$5(P) P_{hi} = P_{ho}$	X X	
$6(P) P_{ci} = P_{co}$	X X	
$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$	X X	X
$2(EB) \dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$	x x	Solve $x_i - f(x_{j \le i}) =$
7(M) $\dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$	x x x x x x	$\int (x_{j \leq i}) -$

EPFL Unit models: conclusions

- A flowsheet is a set of interconnected units
- System State Variables: what we need to know to characterize the system
 - State variables for each flow
 - Unit parameters
- Model (simulation) equations
 - Constitutive equations define the thermodynamic state of the flows
 - Unit models model the thermo-chemical transformations in units
 - Balance equations : mass + energy + impulsion
 - Thermo-chemical and mechanical transformations/transfer
- Specifications
 - Variables that needs to be fixed to fix the degrees of freedom
- Define the resolution strategy
 - simultaneous or sequential

EPFL Pros and cons

	Simultaneous	Sequential
Problem statement	Incidence matrix implicit	DOF analysis required
Robustness	unique solving scheme	specific solving procedure bounds; if-then-else
calculation modes	specifications	solving scheme
Derivatives	Required	numerical noise at flowsheet level if iterative scheme

