

Process units models and DOF

François Marechal
Shivom Sharma

Thermodynamic state

EPFL Process unit model

Unit models represents by a set of equations the thermodynamic phenomena involved in the conversion of the flows in the process unit operation

State variables inlet N, T, P, \tilde{c}_i Simulation Equation $f_m(\dot{N}_n, T_n, P_n, \tilde{c}_n, \pi_p) = 0$ Simulation equations

• Mass balances

Performances Parameters π_p

•Performances equations

•Chemical reactions

- •Reaction kinetics
- •Heat and mass transfer
- •Equilibrium

•Energy balances

Compression

EPFL Generic form of balance equations

Accumulation = in - out + Generation - Consumption

Net accumulation in the control volume

+ Import in the control volume

Export from the control volume

H Generation in the control volume

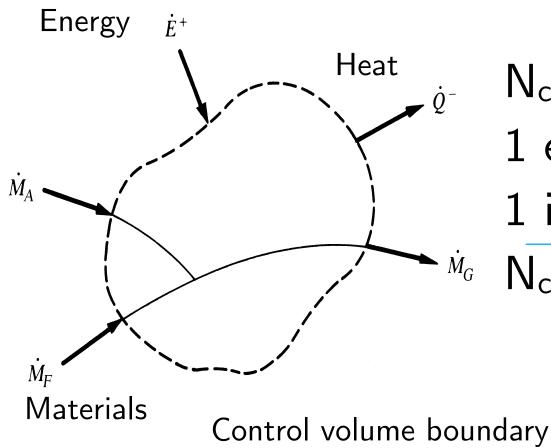
Consumption in the control volume

EPFL Steady state model

no Accumulation = 0 = in - out + Generation - Consumption

+ Import in the control volume

Export from the control volume


H Generation in the control volume

Consumption in the control volume

EPFL Unit model basis

For a given control volume with 1 network with N_c substances without chemical reactions

Mass network

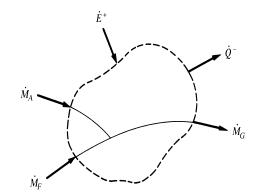
N_c mass balances per network*

1 energy balance

1 impulsion balance (P)

 N_c+2 balance equations

У


*when chemical reactions occur the material balance is the atomic balance

Network: interconnected flows with mass exchange

EPFL Unit model basis

For a given control volume with 1 network with N_c substances

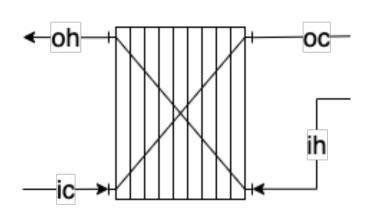
Material balance

$$\sum_{f} \dot{m}_{c,f}^{+} = \frac{dM_c}{dt} = 0 \qquad \forall c$$
Accumulation

Energy balance

$$\sum_{f} \dot{m}_{f}^{+} \cdot h(T_{f}, P_{f}, x_{f}) + \sum_{Q} \dot{Q}^{+} + \sum_{E} \dot{E}^{+} = \frac{dQ}{dt} = 0$$

Accumulation


Subscript + means positive when entering

 $h(T_f, P_f, x_f)$ enthalpy of flow f with temperature T_f , Pressure P_f and composition x_f

Non linear equations!

EPFL Unit model: heat exchanger

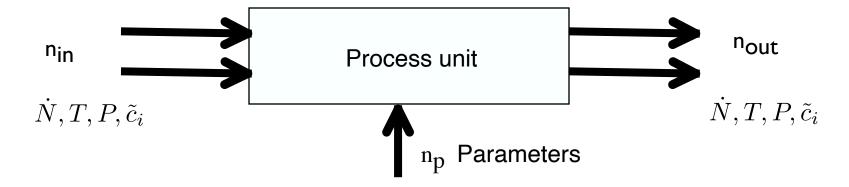
Nb. Equation

$$1(EB) \dot{Q} = \dot{m}_{ci} c p_c (T_{co} - T_{ci})$$

$$2(EB) \dot{Q} = \dot{m}_{hi} c p_h (T_{hi} - T_{ho})$$

$$3(MB) \dot{m}_{hi} = \dot{m}_{ho}$$

$$4(MB) \, \dot{m}_{ci} = \dot{m}_{co}$$


$$5(P) \quad P_{hi} = P_{ho}$$

$$6(P) P_{ci} = P_{co}$$

7(M)
$$\dot{Q} = UA \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{ln(\frac{(T_{hi} - T_{co})}{(T_{ho} - T_{ci})})}$$

Degrees of freedom (DOF) of a unit model

Equations: ne

mass balances/network

Energy **Impulsion**

models

specification

Variables: n_v

 n_{c}

ni

 n_{m}

 n_{s}

State of the streams $n_x = (n_{Out} + n_{in})*(n_c+2)$ Unit parameters n_{p} Internal variables

nt

$$DOF = n_{V}-n_{e}$$

DOF = number of set points to make the unit calculable Equations $(n_e+n_s) = Variables (n_v)$

EPFL Fixing the degree of freedom : $n_{\rm S} = n_{\rm V} - n_e$

- ullet Parameters : π_p are needed by the calculation mode of the unit
 - values from the literature -> references
- Specifications : $n_{\scriptscriptstyle S} = n_{\scriptscriptstyle V} n_e$
 - Input flows X_u^+ : $\{\dot{N}_i, T, P\}$
 - Decision variables

A decision variable is a variable for which you do not have a good reason to specify it to a given value

- Operating conditions
- Value is an assumption to a typical value (literature)
- Will be defined by min and max bounds
- Values to be tested by sensitivity analysis or to be obtained by optimisation

EPFL Different use of a process unit model: example heat exchanger

- Sizing to obtain the cost
 - Calculating the size of the unit

$$A=rac{Q}{U\Delta T_{lm}}$$
 U estimated

- Simulation
 - Outlet as a function of inlet $~Q=UA\Delta T_{lm}~$ U calculated by correlations
- Identification
 - Identify the heat transfer coefficient from measurement

$$U = rac{Q}{A\Delta T_{lm}}$$
 T measured

EPFL Unit models for process design: decision variables

- Type : defined by the model type
 - Temperature, pressure conditions
 - Purity for a separation
 - Reactor conversion
 - Reactor temperature and pression
 - Recycling rate
 - Purge fraction
- Expected values (prefer relative values)
 - Literature
 - Typical range

EPFL Conclusions

- 1. Draw the flowsheet
- 2. Identify the states to calculate the state of the system
 - list of flows with
 - a name
 - List of compounds
 - Equation of state
- 3. Calculate the degrees of freedom for the system
 - number of specifications
 - identify the variables to specify
 - define the values for the specification

