- 1. Méthode de Krasovskii
- 2. Gradients variables
- 3. Théorème d'instabilité
- 4. Théorème de Chetaev

1. Méthode de Krasovskii

On part de $\dot{x} = f(x)$ et on obtient la matrice Jacobienne

$$A(x) = \frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \cdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \quad \text{en gardant tous les éléments de la}$$

$$\text{matrice comme des fonctions non}$$

$$\text{linéaires}$$

<u>Théorème</u>: Si $A(x)^T + A(x) < 0$, $\forall x \in \Omega \subseteq \mathbb{R}^n$, $\Rightarrow V = f^T f$ est fct. de Lyap.

Démonstration:

$$\dot{V} = \dot{f}^T f + f^T \dot{f} = \left(\frac{\partial f}{x} \dot{x}\right)^T f + f^T \left(\frac{\partial f}{\partial x} \dot{x}\right)$$
$$= f^T \left(\frac{\partial f}{\partial x}\right)^T + f^T \left(\frac{\partial f}{\partial x}\right) f = f^T (A^T + A) f$$

ainsi si $A^T + A < 0$, $\forall x \in \Omega \subseteq \mathbb{R}^n$, on a localement une fonction de Lyapunov

<u>Corollaire:</u> (extension) Si $A(x)^T P + PA(x) < 0$, $\forall x \in \Omega \subseteq \mathcal{R}^n$ alors $V = f^T P f$ est loc. une fct. de Lyap.

Démonstration:

$$\dot{V} = \dot{f}^T P f + f^T P \dot{f} = \left(\frac{\partial f}{\partial x} \dot{x}\right)^T P f + f^T P \left(\frac{\partial f}{\partial x} \dot{x}\right) = f^T \left(A(x)^T P + P A(x)\right) f < 0$$

ce qui entraı̂ne que si $A(x)^T P + PA(x) < 0$, $\forall x$, alors $V = f^T P f$ est une fct. de Lyap.

2. Gradients variables

L'idée est d'assurer d'abord la condition $\dot{V} \leq 0$, et ensuite de vérifier que V > 0.

Si on examine \dot{V} , cette quantité est le produit scalaire entre le gradient de V et le champ de vecteurs f. Il existe ainsi n fonctions $\frac{\partial V}{\partial x_i}$ avec lesquelles on peut garantir $\dot{V} \leq 0$.

$$\dot{V} = L_f V = \frac{\partial V}{\partial x} f = \begin{pmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \cdots & \frac{\partial V}{\partial x_n} \end{pmatrix} \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

On peut également écrire $\dot{V} = dV f$ où dV est une 1-forme exacte $dV = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} dx_i$

1-formes: Classification des formes différentielles

 $\underline{\text{D\'efinition:}}\ \omega = \sum_{i=1}^n \omega_i \, dx_i \text{ est int\'egrable s'il existe une fonction } \phi : \mathbb{R}^n \to \mathbb{R} \text{ telle qu'il existe}$ une fonction $W : \mathbb{R}^n \to \mathbb{R}$ pour laquelle

$$\phi \omega = dW$$

<u>Définition</u>: $\omega = \sum_{i=1}^{n} \omega_i dx_i$ est exacte, s'il existe une fonction $W : \mathbb{R}^n \to \mathbb{R}$ telle que dW = 0 Théorème:

- (a) ω est exact $\Leftrightarrow d\omega = 0$
- (b) ω est intégrable $\Leftrightarrow d\omega \wedge \omega = 0$
- (c) ω n'est pas intégrable $\Leftrightarrow d\omega \wedge \omega \neq 0$

L'opérateur d est le gradient classique lorsque d agit sur une fonction. En notation classique: En calcul extérieur:

$$\frac{\partial V}{\partial x} = \begin{pmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} & \dots & \frac{\partial V}{\partial x_n} \end{pmatrix} \qquad dV = \frac{\partial V}{\partial x_1} dx_1 + \frac{\partial V}{\partial x_2} dx_2 + \dots + \frac{\partial V}{\partial x_n} dx_n$$

L'opérateur ∧ indique un produit anti-commutatif

$$d\omega_1 \wedge d\omega_2 = -d\omega_2 \wedge d\omega_1$$

Si ω est une somme $\sum_i \alpha_1 dx_1 \wedge \cdots \wedge dx_m = \omega$ avec α_i des fonctions $\mathbb{R}^n \to \mathbb{R}$, alors

$$d\omega = \sum_{i} d\alpha_{i} \wedge dx_{1} \wedge \cdots \wedge dx_{m}$$

Exemple:

$$d(3x_1x_2^2 dx_1 \wedge dx_2) = d(3x_1x_2^2) \wedge dx_1 \wedge dx_2$$

$$= (3x_2^2 dx_1 + 6dx_1x_2 dx_2) \wedge dx_1 \wedge dx_2$$

$$= 3x_2^2 dx_1 \wedge dx_1 \wedge dx_2 + 6x_1x_2 dx_2 \wedge dx_1 \wedge dx_2 = 0$$

Condition d'exactitude: $d\omega = 0$ \Leftrightarrow $\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}, i \neq j$

Revenons à la méthode des gradients variables

- (1) On choisit $\omega_i(x)$ de telle sorte que $\sum_{i=1}^n \omega_i(x) f_i(x) \le 0$, $\forall x \ne 0$.
- (2) On forme le vecteur ligne $(\omega_i(x) \ \omega_i(x) \ \cdots \ \omega_n(x))$, autrement dit, on constitue la 1-forme $\omega = \sum_{i=1}^n \omega_i(x) dx_i$
- (3) Itérer entre (1) et (2) afin de garantir la condition d'exactitude $\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}$, $i \neq j$

On procède à l'intégration pour obtenir V

$$V = \int \sum_{i} \omega_{i} dx_{i}$$

Comme $\sum_i \omega_i dx_i$ est exacte, la valeur $\int \sum_i \omega_i dx_i$ ne dépend pas du chemin d'intégration. (cf. diff'erentielles exactes en thermodynamique).

On peut choisir un chemin en escaliers

$$V(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}) = \int_{C} \sum_{i} \omega_{i} dx_{i} =$$

$$\int_{\xi=0}^{\bar{x}_{1}} \omega_{1}(\xi, 0, \dots, 0) d\xi$$

$$+ \int_{\xi=0}^{\bar{x}_{2}} \omega_{2}(\bar{x}_{1}, \xi, 0, \dots, 0) d\xi$$

$$+ \dots + \int_{\xi=0}^{\bar{x}_{n}} \omega_{n}(\bar{x}_{1}, \bar{x}_{2}, \dots, \bar{x}_{n-1}, \xi) d\xi$$

Exemple:

$$\dot{x}_1 = -2x_1^3 - x_1^2 x_2$$

$$\dot{x}_2 = -x_1 x_2^2 - x_2^3$$

$$V = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 & a_{12}x_1 + a_{21}x_2 \end{pmatrix} \qquad a_{ij} \in \mathbb{R}, i = 1, 2j = 1, 2$$

Comme $\frac{\partial \Delta V_1}{\partial x_2} = a_{12} = \frac{\partial \Delta V_2}{\partial x_1} = a_{12}$ les conditions d'exactitudes sont remplies

Déterminons a_{ij} pour que $\Delta V f < 0$, $\forall x \neq 0$

Comme avec $a_{11} = 2$, $a_{12} = a_{22} = 1$, on a

$$\Delta V f = -4x_1^4 - 4x_1^3 x_2 - 2x_1^4 x_2 - 2x_1^2 x_2^2 - 2x_1 x_2^3 - x_2^4$$
$$= -(2x_1 + x_2)^2 x_1^2 - (x_1 + x_2)^2 x_2^2 < 0$$

la condition $\dot{V} < 0$ est remplie

Intégrons en escaliers

$$\begin{split} \Delta V &= \left(2x_1 + 2x_2 \quad x_1 + x_2\right) \\ \omega &= \left(2x_1 + x_2\right) dx_1 + (x_1 + x_2) dx_2 = \omega_1 dx_1 + \omega_2 dx_2 \\ V(\bar{x}_1, \bar{x}_2) &= \int_{\xi=0}^{\bar{x}_1} 2\xi d\xi + \int_{\xi=0}^{\bar{x}_2} (\bar{x}_1 + \xi) d\xi \\ &= \bar{x}_1^2 + \bar{x}_1 \bar{x}_2 + \frac{\bar{x}_1^2}{2} = \frac{1}{2} \bar{x}_1^2 - \frac{1}{2} (\bar{x}_1 + \bar{x}_2)^2 > 0 \Rightarrow V(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + \frac{x_2^2}{2} \end{split}$$

3. Théorèmes d'instabilité (au sens de Lyapunov)

L'instabilité est la négation de la proposition associée à la stabilité.

x = 0 instable au sens de Lyapunov

 \Leftrightarrow

$$\exists R, \forall r, \exists x_0(r), \exists T(x_0) < +\infty, \|\chi(x_0)\| > R$$

En d'autres terms, il suffit d'une seule condition initiale par petite boule \mathscr{B}_r assurant la sortie de la trajectoire $\chi(x_0,\cdot)$ du tube de confinement de rayon R. Les théorèmes d'instabilité tirent parti de cette "rareté" des conditions initiales.

Théorème:

$$\exists \Omega \subseteq \mathbb{R}^n, 0 \in \Omega, \exists V, V(x) > 0, \forall x \in \Omega$$

 $V(0) = 0$

 $\exists \lambda > 0, \lambda \in \mathbb{R}, \frac{d}{dt}V - \lambda V \ge 0, \forall x \in \Omega$ alors 0 est instable au sens de Lyapunov

<u>Démonstration</u>: Comme V > 0, $\lambda > 0$, dt > 0

$$\dot{V} \ge 0 \Rightarrow \frac{dV}{V} \ge \lambda dt$$

$$\ln(V) + C \ge \lambda t$$

$$V(x) \ge V_0 e^{\lambda t} \tag{1}$$

Comme Ω est ouvert, on peut prendre n'importe quel R tel que $\mathcal{B}_R \subseteq \Omega$.

$$\max_{x \in \mathcal{B}_R} V(x) = \max_{x \in \mathcal{S}_R} V(x) = \hat{V}$$

On choisit n'importe quel r < R, et n'importe quel $x_0 \in \mathscr{S}_r$. On a $V(x_0) \neq 0$ et comme $V(x) \geq V(x_0) e^{\lambda t}$, il existe \bar{t} , $V(\chi(x_0, \bar{t}) > \hat{V}$

Ainsi puisque \mathcal{B}_R est la plus grande boule contenue dans l'ensemble

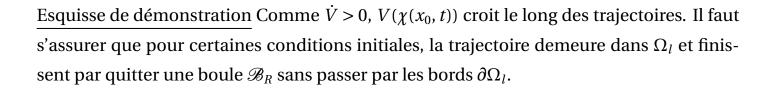
$$\{x|V(x) \le \hat{V}\}, \qquad \|\chi(x_0, \bar{t})\| > R$$
 C.Q.F.D.

Le prochain théorème tire parti de la "rareté" des conditions initiales

Théorème de Chetaev

 $\partial\Omega_l$ est le bord adjacent et contenant O de $\Omega_l.$

$$\begin{aligned} V(x) &> 0, & \forall x \in \Omega_l \\ \frac{d}{dt} V(x) &> 0, \forall x \in \Omega_l \\ & 0 \in \partial \Omega_l \\ V(x) &= 0, \forall x \in \partial \Omega_l \end{aligned}$$



Les trajectoires qui commencent dans Ω_l ne peuvent pas passer, croiser $\partial\Omega_l$ car $\dot{V}>0$ et V=0 sur $\partial\Omega_l$. Elles ne peuvent pas éternellement rester dans $\mathscr{B}_R\cap\Omega_l$, car $\dot{V}>0$. Elles sortent donc de $\mathscr{B}_R\cap\Omega_l$ par le bord de $\mathscr{B}_R\cap\Omega_l$ qui n'est pas $\partial\Omega_l\cap\mathscr{B}_R$.

Ainsi, en choisissant une boule \mathscr{B}_R entièrement contenue dans Ω , le bord de $\mathscr{B}_R \cap \Omega_l$ qui n'est pas $\mathscr{B}_R \cap \partial \Omega_l$ est tel que tout les x sur le bord sontels que ||x|| = R. Ainsi, $\forall x_0 \in \mathscr{B}_R \cap \Omega_l$, $\exists \bar{t}$, $||\chi(x_0, \bar{t})|| > R$.