TTT	1 ~ ~	harmaniana	/m TT\	\sim \pm	a+ab+1+4
$\perp \perp \perp \perp$ •	TGT	harmonique	$(P \cdot T T)$	e_{L}	Stabilite

A.1 Système en rétroaction B.1 Point d'équilibre

A.2 Condition pour un cycle limite

B.2 Système linéaire

A.3 Croisement et stabilité

B.3 Définition intuitive et B.4 formelle

B.5 Stabilité asymptotique

B.6 Instabilité

A.1 Système en rétroaction

vrai système

approximation

A.2 Condition pour le cycle limite

A.2.1 Condition exacte

Produit de convolution: $z(t) = \int_0^t y(\tau) g(t - \tau) d\tau$

Non-linéarité: $y(t) = \phi(u(t))$

Bouclage: u(t) = -z(t)

Ceci conduit à une équation intégrale pour la détermination de z(t) lors d'un cycle limite:

$$z(t) = \int_0^t \phi(-z(\tau)) g(t-\tau) d\tau$$

 $\forall t, t \in [0, T] \text{ avec } z(T) = z(0)$

A.2.2 Condition au premier harmonique

Transformée de Laplace: Z(s) = G(s) Y(s)

Gain équivalent: $Y(s) = N(A, \omega) U(s)$

Bouclage: U(s) = -Z(s)

Equations valables lorsqu'on s'intéresse uniquement au régime harmonique.

Ceci conduit à une relation linéaire dans le domaine de Laplace, où A et ω sont de variables

$$Z(s) = G(s) N(A, \omega) (-Z(s))$$

en factorisant Z(s)

$$Z(s) (1 + G(s) N(A, \omega)) = 0$$
 (1)

Lors de la présence (existence) d'un cylce limite, $Z(s) \neq 0$ et pour que la condition (1) soit satisfaite, il est nécessaire que

$$1 + G(s) N(A, \omega) = 0$$

C'est la condition du 1er harmonique pour l'existence d'un cycle limite.

Lorsque le régime harmonique est d'intérêt, on pose $s=j\,\omega$, qui se met sous la forme

$$1+G(j\omega)\,N(A,\omega)=0$$

et également sous la forme

$$G(j\omega) = -\frac{1}{N(A,\omega)}$$

A.3 Croisement et stabilité

Il s'agit de l'intersection de deux courbes. Une paramétrée par A pour un ω fixe, à savoir

Diagramme de Nyquist associé

$$-\frac{1}{N(A,\omega)}$$

et une autre courbe $G(j\omega)$ paramétrée par ω .

L'intersection donne deux renseignements: A_o et ω_o . Lorsque le gain N ne dépend pas de ω , A paramétrise $-\frac{1}{N(A)}$ ω paramétrise $G(j\omega)$

A l'intersection des deux courbes $A = A_o$ et $\omega = \omega_o$.

 A_o et ω_o sont les paramètres (prévus) pour le cycle limite

STABLE INSTABLE

Dans le cas STABLE, imaginons que l'on perturbe l'amplitude en l'augmentant Comme u=-z, on perturbe de telle sorte que $A=A_o+\epsilon$

C-	-a+àa	limánima	et limite	4.	atabilitá
.71	/steme	uneaire	ei iimiie	ae	siabille
·	0001110	micumo	0 0 11111100	ac	otabilito

k est un gain fixe $\in \mathbb{R}$

Critère de Nyquist simplifié

Pour autant que -1 ne soit pas encerclé par $kG(j\omega)$, le bouclage est stable. On peut effectuer une homothétie de $\frac{1}{k}$ sans affecter la conclusion.

Lorsque $\frac{-1}{k}$ et $G(j\omega)$ se croisent, on est à la limite entre stabilité et instabilité \longrightarrow cycle limite.

 $-\frac{1}{N(A)}$ peut être interprété comme $-\frac{1}{k}$ avec le gain k qui s'adapte en fonction de l'amplitude A du premier harmonique.

Si A augmente, on se déplace sur $-\frac{1}{N(A)}$ dans le sens de la flêche.

Lorsque A passe de $A+\epsilon$	le point $-\frac{1}{N(A)}$ se décale. En considérant $-\frac{1}{N(A+\epsilon)}$, $\epsilon>0$, le point $-\frac{1}{k}$ du critère de Nyquist simplifié indique une STABILITE
Lorsque A passe de $A-\epsilon$	le point $-\frac{1}{N(A)}$ se décale. En considérant $-\frac{1}{N(A-\epsilon)}$, $\epsilon>0$, le point $-\frac{1}{k}$ du critère de Nyquist simplifié indique une INSTABILITE
Dans le cas STABLE	un cycle limite d'amplitude A_o et de pulsation ω_o , solutions de $-\frac{1}{N(A_o)}=G(j\omega_o)$ se maintient.
Dans le case INSTABLE	la solution A_o et ω_o de $-\frac{1}{N(A_o)}=G(j\omega_o)$ ne se maintient pas.

B. Stabilité

B.1 Point d'équilibre

 $x \in \mathbb{R}^n$, $\dot{x} = f(x)$ est un système dynamique sans entrée.

<u>Définition</u>: Un point d'équilibre est une solution $\bar{x} \in \mathbb{R}^n$ de

$$f(\bar{x}) = 0$$

B.2 Système linéaire

$$\dot{x} = Ax$$
 $x \in \mathbb{R}^n$ $A \in \mathbb{R}^{n \times n}$

Si A est de plein rang, i.e. $|A| \neq 0$, alors il y a un seul point d'équilibre $\bar{x} = 0$.

Si |A| = 0, les points d'équilibre constituent un sous-espace vectoriel $\{x \mid Ax = 0\}$ de dimension $n - \operatorname{rg}(A)$.

Stabilité de $\dot{x} = Ax$

Si $\lambda_i(A)$, $i=1,\ldots,n$ sont tels que $\Re(\lambda_i)<0\Rightarrow$ stabilité et stabilité asymptotique.

Si $\Re(\lambda_i) = 0$ pour certains i, la multiplicité des valeurs propres nulles joue un rôle.

Si $\lambda_i(A) = 0$ et sa multiplicité est 1 dans le bloc de Jordan associé \Rightarrow stabilité mais pas asymptotique.

Si la multiplicité ≥ 2 dans le bloc de Jordan \Rightarrow instable.

Si $\Re(\lambda_i(A)) \le 0$, et $\Re(\lambda_k(A)) = 0$ et multiplicité de 1 dans le bloc de Jordan associé à $\lambda_k \Rightarrow$ stable mais pas asymptotiquement stable.

В.3	Définition	intuitive	ح

Un point d'équilibre est stable lorsque les trajectoires peuvent être confinées quelles que soient les conditions initiales suffisament proche du point d'équilibre

Equilibres instables

Equilibres stables

B.4 Définition formelle

Soit \bar{x} un point d'équilibre. La stabilité au sens de Lyapunov signifie

$$\forall R, \exists r, \forall x_0, \|x_0\| < r \implies \|\chi(x_0, t)\| < R$$

- *R*: représente le rayon de la tentative de confinement de la trajectoire (joueur *A*).
- *r*: le second joueur *B* essaie de déterminer le rayon des conditions initiales afin de satisfaire les exigences du joueur *A*. Il faut qu'il s'assue que cela fonctionne pour toutes les conditions initiales.

 \wedge Choisir *R* petit est souvent plus difficile que choisir *R* grand.

B.5 Stabilité asymptotique

C'est la combinaison de la stabilité au sens de Lyapunov et de

$$\exists r_0, \, \forall x_0, \, \|x_0\| < r_0 \, \Rightarrow \, \lim_{t \to \infty} \chi(x_0, \, t) = 0$$

B.6 Instabilité

C'est la proposition inverse de celle définissant la stabilité.

$$\exists R, \, \forall r, \, \exists x_0, \, \|x_0\| < r, \, \exists t, \, \chi(x_0, t) > R$$