III. 1er harmonique (p.I) 4. Calcul pour une saturation					
1. Objectifs					
2. Type de systèmes					
3. BO et excitation sinusoïdale					
4. Série de Fourier et gain équivalent					
1. Objectifs					
Bien des systèmes mécaniques, électriques, etc. ont une caractéristique non linéaire forte					
et de nature statique par rapport à la dynamique qui est bien modélisée par une fonction					
de transfert. La cascade en boucle fermée d'un tel système peut présenter des cycles lim-					
ites, uniques ou non, voulus ou non. Il s'agit dans cette leçon de déterminer les heuris-					
tiques permettant de prévoir et calculer les paramètres du/des cycle(s) limite(s).					
inques permettant de prevon et carcarer les parametres du/des eyele(s) ininte(s).					
L'analyse n'est nas limitée au système du 2ème ordre					
L'analyse n'est pas limitée au système du 2ème ordre.					
L'analyse n'est pas limitée au système du 2ème ordre. OBJECTIF:					
OBJECTIF:					
OBJECTIF:					
OBJECTIF:					

 \wedge Notation mixte, u(t) et G(s)

2.1 Non-linéarité statique La caractéristique est une fonction
2.2 Fonction de transfert
<u>∧</u> Notation
entrée $Y(s)$
sortie $Z(s)$
3. Boucle ouverte et excitation sinusoïdale
On chercher à caractériser la N.L. suite à une
excitation sinusoïdale à l'entrée.
n.
Remarque:
1. Comme la non-linéarité (N.L.) est statique $y(t)$ est de même période que l'excitation
sinusoïdale
2. $y(t)$ peut contenir beaucoup d'harmoniques

Frottement:

1. sec

Exemples: Frottement

visqueux

La masse entre en oscillation

Mécanismes

Exemples:

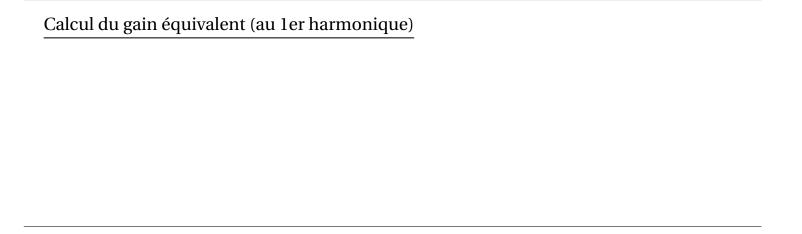
- 1. valve hydraulique
- 2. engrenages
- 3. jeu

4. Série de Fourier et équivalent du 1er harmonique y(t) se décompose en harmoniques par la série de Fourier

$$y(t) = \sum_{l=0}^{\infty} a_l \cos(l \omega t) + b_l \sin(l \omega t) + \frac{a_0}{2}$$

Les coefficients de la série de Fourier peuvent s'exprimer sous la forme (représentation angulaire)

$$a_0 = \frac{1}{\pi} \int_{\pi}^{-\pi} y(\tau) d(\omega \tau) \qquad a_l = \frac{1}{\pi} \int_{-\pi}^{\pi} y(\tau) \cos(l\omega \tau d(\omega \tau))$$
$$b_l = \frac{1}{\pi} \int_{-\pi}^{\pi} y(\tau) \sin(l\omega \tau) d(\omega \tau)$$



Idée:

- 1. Remplacer les non-linéarités par un gain équivalent $N(A, \omega)$.
- 2. $N(A, \omega)$ est obtenu à partir de a_0 , a_1 , b_1 .
- 3. Pour les non-linéarités symétriques, la composante continue

Avantage: $N(A, \omega)$ est un nombre complexe tout comme la fonction de transfert G(s). On pourra utiliser une représentation dans le diagramme de Nyquist.

Définition de $N(A, \omega)$] (obtention de $N(A, \omega)$)

$$y(t) \approx a_0 + a_1 \cos(\omega t) + b_1 \sin(\omega t) = a_0 + M \sin(\omega t + \alpha)$$

$$M = \sqrt{a_1^2 + b_1^2}$$
 $\alpha = \arctan\left(\frac{a_1}{b_1}\right)$

5. Calcul pour une saturation

$$\Phi(a) = \begin{cases} ka & u > a \\ ku & -a \le u \le a \\ -ka & u < -a \end{cases}$$

- 1. La saturation est symétrique: pas de composante continue $a_0 = 0$.
- 2. On peut tenir compte de zéro déphasage: $a_1 = 0$
- 3. Pour b_1 , il y a une symétrie: 0 à $\frac{\pi}{2}$ pour ωt .

par symétrie, lors du calcul de b_1 , la région hachurée n'entre pas dans le calcul.

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} y(\tau) \sin(\omega \tau) d(\omega \tau) = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} y(\tau) \sin(\omega \tau) d(\omega \tau)$$

On décompose $\int_0^{\frac{\pi}{2}}$ en deux $\int_0^{\gamma} + \int_{\gamma}^{\frac{\pi}{2}}$.

Sur l'intervalle $t \in [0; \gamma]$, la sortie vaut $y(t) = k A \sin(\omega t)$.

Sur l'intervalle $t \in [\gamma; \frac{\pi}{2}[$ la sortie vaut y(t) = k a.

$$b_{1} = \frac{4}{\pi} \int_{0}^{\arcsin(\frac{a}{A})} k A \sin(\omega t) d(\omega t) + \frac{4}{\pi} \int_{\arcsin(\frac{a}{A})}^{\frac{\pi}{2}} k a \sin(\omega t) d(\omega t)$$

=

Gain équivalent

Graphique de N(A)

Représentation dans le plan de Nyquist