Commande non linéaire

Série VI

STI - Master

Dr. Ph. Müllhaupt

Exercice VI.1

Soit le système masse ressort avec amortissement des séries IV et V. Une force qui agit sur la masse est l'entrée du système.

- 1. En considérant la fonction d'énergie comme fonction de stockage, déterminer une sortie qui rende le système passif (au sens de la théorie des systèmes présentée au cours).
- 2. Soit un deuxième système masse ressort de même structure que le précédent. Donner un montage en rétroaction qui assure la passivité de l'ensemble des deux systèmes masse-ressort.
- 3. Calculer la fonction de transfert résultante avant rétroaction et après rétroaction. Examiner la position des pôles et zéros et dessiner le diagramme de Nyquist et Bode pour le cas numérique $k=m=1,\,b=0.1$ (utiliser l'ordinateur pour le tracé).

Exercice VI.2

Soit le système (masse ressort avec k = 1, m = 1, b = 3) en représentation d'état

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & -x_1 - 3x_2 + u. \end{array}$$

Déterminer la solution P de l'équation de Lyapunov

$$A^T P + P A = -I$$
.

Construire une sortie y (de dimension un) tel que le système résultant soit passif et calculer la fonction de transfert résultante. Vérifier la position des pôles et des zéros ainsi que le degré relatif résultant.

Exercice VI.3

Soit le système sous la forme générale

$$\dot{x} = Ax + Bu$$

avec une entrée bien spécifique et satisfaisant, en absence d'entrée, à une équation de Lyapunov

$$A^T P + P A = -Q$$

Déterminer la condition sur la sortie y = Cx pour que le système soit passif.

Vérifier que les résultats des deux exercices précédents se conforment à cette théorie.