Méthode de Lyapunov et Théorème d'invariance de LaSalle

Analyse et Commande des Systèmes Non Linéaires

Leçon 6

- Stabilité locale et linéarisation
- Stabilité globale
- Théorème d'invariance de LaSalle
 - Ensemble invariant
 - Ensemble définit par $\dot{V}=0$
 - Théorème d'invariance de LaSalle
 - Exemple du pendule

Stabilité locale et linéarisation

Constituants:

- **1** Système $\dot{x} = f(x)$
- 2 Point d'équilibre \bar{x}

Matrice du système linéaire approximant :

$$A = \left. \frac{\partial f}{\partial x} \right|_{x = \bar{x}}.$$

Objectif:

Déterminer la stabilité de $\dot{x} = f(x)$ en examinant A.

Stabilité locale et linéarisation

Théorème

A partir de la matrice A, on calcule les valeurs propres

$$\Lambda = \lambda(A)$$

Si

- $\forall \lambda \in \Lambda$, $\Re(\lambda) < 0 \Rightarrow \bar{x}$ est stable
- $\exists \lambda \in \Lambda$, $\Re(\lambda) > 0 \Rightarrow \bar{x}$ est instable.
- $\forall \lambda \in \Lambda$, $\Re(\lambda) \leq 0$ et $\exists \lambda_1 \in \Lambda$, $\Re(\lambda_1) = 0 \Rightarrow$ on ne peut pas conclure.

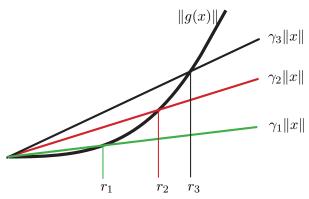
ATTENTION

La conclusion est relative à la dynamique $\dot{x}=f(x)$, bien que l'on calcule les valeurs propres de A.

Démonstration

$$\dot{x} = f(x) = \left. \frac{\partial f}{\partial x} \right|_{x=0} x + g(x) = Ax + g(x)$$

$$\forall \gamma, \exists r \qquad \|x\| < r \Rightarrow \gamma \|x\| > \|g(x)\|$$



Démonstration (suite)

Comme A est stable $\forall Q > 0$, $\exists P > 0$

$$A^T P + PA = -Q$$

et donc en posant $V=x^TPx$, avec $\dot{x}=f(x)=Ax+g(x)$

$$\dot{V} = \dot{x}^{T} P x + x^{T} P \dot{x} = (Ax + g(x))^{T} P x + x^{T} P (Ax + g(x))
= x^{T} (A^{T} P + P A) x + g(x)^{T} P x + x^{T} P g(x)
= -x^{T} Q x + 2x^{T} P g(x)$$

Démonstration (suite)

$$\dot{V} = -x^T Q x + 2x^T P g(x) \le -x^T Q x - 2|x^T P g(x)|$$

De l'inégalité de Cauchy-Schwarz : $|a^Tb| \le ||a|| ||b||$ on déduit

$$\dot{V} \le -x^T Q x + 2||x|| ||P|| ||g(x)||$$

 $\text{Comme } \lim_{x\to 0}\|g(x)\|/\|x\|=0, \, \forall \gamma>0, \, \exists r, \, \forall x\leq r\Rightarrow 2\|g(x)\|<\gamma\|x\|.$

$$\dot{V} < -x^T Q x + \gamma \|P\| \|x\|^2$$

Démonstration (fin)

$$\dot{V} < -x^T Q x + \gamma ||P|| ||x||^2$$

Sachant que $-x^TQx \leq -\lambda_{min}(Q)\|x\|^2$ on a donc

$$\dot{V} < -(\lambda_{min}(Q) - \gamma ||P||)||x||^2$$

Il suffit de choisir γ suffisamment petit afin que $(\lambda_{min}(Q) - \gamma ||P||) > 0$. Ainsi pour le r associé au γ choisi, $\dot{V} < 0$, $\forall x$, ||x|| < r.

Conclusion:

 $\dot{x} = f(x)$ est localement asymptotiquement stable.

Stabilité globale

Question:

Est-ce qu'il suffit de vérifier V > 0 et $\dot{V} \le 0$ pour tout $x \ne 0$?

... malheureusement, ce n'est pas suffisant.

Contre-exemple

$$\dot{x}_1 = -\frac{6x_1}{(1+x_1^2)^2} + 2x_2$$

$$\dot{x}_2 = -\frac{2x_1 + 2x_2}{(1+x_1^2)^2}$$

Candidat de Lyapunov:

$$V = \frac{x_1^2}{1 + x_1^2} + x_2^2.$$

Localement...

.... c'est une fonction de Lyapunov :

$$\dot{V} = \frac{-12x_1^2 - 4(1+x_1^2)^2x_2^2}{(1+x_1^2)^4} < 0$$

Le système est instable pour certaines conditions initiales

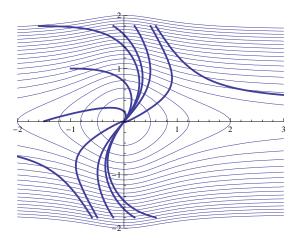


FIGURE : ... à cause de la non-fermeture des courbes de niveau de V.

Fonction radialement non bornée

Il est nécessaire que :

$$V(x) \to \infty$$
 lorsque $||x|| \to \infty$.

Théorème

S'il existe une fonction V telle que

- **1** $V(x) > 0, \forall x \neq 0 \text{ et } V(0) = 0$
- $||x|| \to \infty \Rightarrow V(x) \to \infty$

alors x = 0 est globalement asymptototiquement stable.

Motivation

Etablir la stabilité asymptotique

• Lorsque $\dot{V} \leq 0$ au lieu de $\dot{V} < 0$

Etudier les cycles limites

• En utilisant le fait que le cycle limite est un ensemble invariant

Ensemble invariant

Définition

Un ensemble invariant \mathcal{I} , pour un système dynamique $\dot{x}=f(x)$, est défini comme un ensemble de conditions initiales x_0 , tel que la solution $\mathcal{X}(x_0,t)$ reste dans l'ensemble $\mathcal{I}\ \forall t$, c.-à-d.

$$\mathcal{I} = \{ x | x_0 \in \mathcal{I} \Rightarrow \mathcal{X}(x, t) \in \mathcal{I} \quad \forall t \ge 0 \}$$

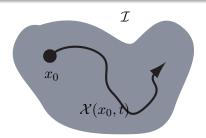


FIGURE: Ensemble invariant \mathcal{I}

Ensemble définit par $\dot{V}=0$

Ensemble \mathcal{V} :

$$\mathcal{V} = \{x | \dot{V}(x) = 0\}$$

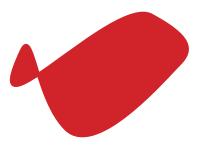


FIGURE : Ensemble des points pour lesquels $\dot{V}=0$.

Théorème d'invariance de LaSalle

Théorème

Soit l > 0, et $\Omega_l = \{x | V(x) \le l\}$:

- Ω_l fermé et borné
- $\forall x \in \Omega_l$ on a $\dot{V} \leq 0$
- $\mathcal{V} \subset \Omega_l$ et $\mathcal{V} = \{x | \dot{V}(x) = 0\}$
- ullet ${\mathcal I}$ le plus grand ensemble invariant, ${\mathcal I}\subset {\mathcal V}$

$$\Rightarrow \\ \forall x_0 \in \Omega_l, \, \mathcal{X}(x_0, t) \to \mathcal{I} \text{ lorsque } t \to \infty.$$

Particularités

Remarques

- Il n'y est pas question de stabilité, mais uniquement de convergence.
- 2 La fonction V(x) n'est pas nécessairement définie positive.
- **3** La stabilité asymptotique est garantie lorsque la condition V > 0, $x \neq 0$ et V(0) = 0 est explicitement ajoutée.

Illustrations

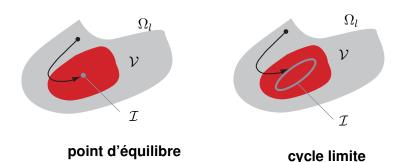


FIGURE : Le théorème d'invariance s'applique aussi bien aux points d'équilibre qu'aux cycles limites.

Exemple du pendule (modèle d'état)

$$E_{cin} = 1/2m(\dot{x}^2 + \dot{y}^2) = 1/2m\dot{\theta}^2.$$

$$E_{pot} = mg(1 - \cos\theta).$$

$$L = E_{cin} - E_{pot}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = F_{\theta}$$

conduit, avec $x_1 = \theta$, $x_2 = \dot{\theta}$, à :

$$\dot{x}_1 = x_2 = f_1$$
 $\dot{x}_2 = -g \sin x_1 - \frac{b}{m} x_2 = f_2$

Cours NL Ph. Müllhaupt 20 / 23

Exemple du pendule (candidat de Lyapunov)

Candidat de Lyapunov:

$$V = E_{cin} + E_{pot} = \frac{1}{2}mx_2^2 + mg(1 - x_1)$$

Cette fonction est positive pour autant que $\dot{\theta}$ et le second terme ne s'annulent pas simultanément. Par conséquent, V est nul pour

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2k\pi \\ 0 \end{pmatrix}$$
 avec $k \in \mathbb{Z}$.

$$\dot{V}(x) = \frac{\partial V}{\partial x} f = mx_2(-g\sin x_1 - \frac{b}{m}x_2) + mgx_2\sin x_1 = -bx_2^2 \le 0.$$

Cours NL Ph. Müllhaupt 21 / 23

Exemple du pendule (ensembles V et I)

L'ensemble
$$\mathcal{V} = \{x | \dot{V}(x) = 0\}$$
 :

 $\mathcal{V} = \{ x_1, x_2 | x_2 = 0 \}$ est la droite horizontale passant par l'origine.

L'ensemble \mathcal{I} , le plus grand invariant inclu dans \mathcal{V} :

f(x) définissant la dynamique soit tangent ou nul à l'axe horizontal des abscisses.

$$f_2(x) = 0$$

$$g\sin x_1 = 0$$

C'est une multitude de points isolés $\dot{\theta} = 0$, $\theta = k\pi$ avec $k \in \mathbb{Z}$.

Cours NL Ph. Müllhaupt 22 / 23

Exemple du pendule (illustrations)

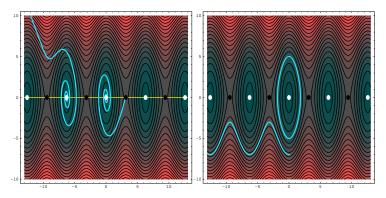


FIGURE : (θ selon l'axe horizontal et $\dot{\theta}$ selon la verticale) A gauche, le frottement est non nul. L'ensemble $\mathcal V$ est représenté en jaune et $\mathcal I$ correspond aux points blancs (minimum de V), et aux points noirs (extremum de V, points selle). A droite, le frottement est nul.