Techniques d'Analyse par les Méthodes de Lyapunov (suite)

Analyse et Commande des Systèmes Non Linéaires

Leçon 5

- 🚺 Désavantage de la définition de la stabilité
- Méthode directe de Lyapunov
 - Candidat de Lyapunov
 - Fonction de Lyapunov
- Equivalence avec la définition de la stabilité
 - Démonstration (stabilité locale)
- Exemple : Robot
 - Lois de la mécanique
 - Candidat de Lyapunov
 - Fonction de Lyapunov
- Systèmes linéaires et Lyapunov
 - Démonstration de $A^TP + PA = -Q$

Désavantages de la définition de la stabilité

Inconvénients

- Il est nécessaire de pouvoir calculer de manière explicite chaque solution correspondant à chacune des conditions initiales.
- Le maniement de la définition est fastidieux.

Par conséquent, des résultats permettant de déterminer la stabilité sans devoir intégrer les équations dynamiques seraient les bienvenus.

Méthode directe de Lyapunov

Pour la bille, le comportement est stable lorsque :

- L'énergie E diminue et est minimum au point d'équilibre.
- L'énergie E est conservée et E est minimum à l'équilibre

Par contre, le comportement est instable lorsque :

- L'énergie mécanique E augmente.
- L'énergie E est conservée ou décroissante mais elle ne correspond pas à un minimum à l'équilibre.

Candidat de Lyapunov

Une fonction définie positive est une fonction :

- $2 V(x) > 0 \forall x \neq 0$
- V(x) = 0, x = 0

Définition (Candidat de Lyapunov) :

Une fonction définie positive et continue V(.) est un candidat de Lyapunov.

Fonction de Lyapunov

$$\dot{V}(x) = \left(\frac{\partial V}{\partial x}\right)^T f(x)$$

Définition (Fonction de Lyapunov) :

$$\bullet \ V(x) > 0 \quad \forall x \neq 0, \qquad V(x) = 0 \quad x = 0,$$

•
$$\dot{V}(x) \le 0 \quad \forall x \ne 0, \qquad \dot{V}(x) = 0 \quad x = 0.$$

Equivalence avec la définition de la stabilité

Théorème

S'il existe une boule \mathcal{B}_{R_0} telle que :

$$\bullet$$
 $V(x) > 0 \ (\forall x \neq 0 \ \text{dans} \ \mathcal{B}_{R_0}) \ \text{et} \ V(0) = 0$

②
$$\dot{V}(x) = \frac{d}{dt}V(x) = \frac{\partial V}{\partial x}\frac{dx}{dt} = \frac{\partial V}{\partial x}\dot{x} = \frac{\partial V}{\partial x}f(x) \le 0$$
 (dans \mathcal{B}_{R_0})

alors le point d'équilibre x=0 est stable au sens de Lyapunov.

Si en plus, $\dot{V}(x) < 0$, $\forall x \neq 0$, alors la stabilité est asymptotique.

Définitions préliminaires

Définitions

Une sphère de rayon r est notée \mathcal{S}_r , et une boule de même rayon est notée \mathcal{B}_r :

$$S_r = \{x | ||x|| = r\}$$

 $B_r = \{x | ||x|| < r\}.$

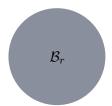


FIGURE : Sphère \mathcal{S}_r et boule \mathcal{B}_r

Cours NL Ph. Müllhaupt 8 / 24

Ce qu'il faut démontrer :

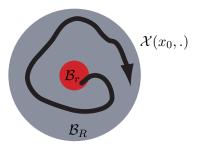


FIGURE : Système stable : $\forall \mathcal{B}_R, \exists \mathcal{B}_r \text{ avec } \forall x_0 \in \mathcal{B}_r \Rightarrow \mathcal{X}(x_0, t) \in \mathcal{B}_R, \forall t \geq 0.$

Démonstration (stabilité locale)

$$m = \min_{x \in \mathcal{S}_R} V(x).$$

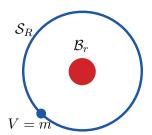


FIGURE : m représente le minimum de V(x) lorsque x parcourt la sphère $\mathcal{S}_{\mathcal{R}}$. Le rayon r est alors choisit de telle sorte que $\forall x \in \mathcal{B}_r, V(x) < m$.

Cours NL Ph. Müllhaupt 10 / 24

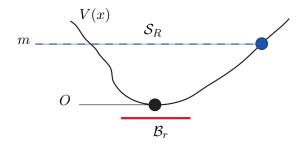


FIGURE : Le choix de \mathcal{B}_r est rendu possible par la continuité de la fonction de Lyapunov et de son annulation au point d'équilibre.

La stabilité (simple) est une conséquence directe

Comme

$$\frac{d}{dt}V(x) \le 0$$

il est vrai que:

$$V(\mathcal{X}(x_0, t)) \le V(x_0) \qquad \forall t \ge 0.$$

$$x_0 \in \mathcal{B}_r \Rightarrow V(x_0) < m, \quad V(\mathcal{X}(x_0, t)) < m, \quad \forall t \ge 0$$

La stabilité est donc bien démontrée, car alors $\mathcal{X}(x_0,t) \in \mathcal{B}_R$.

La stabilité asymptotique est plus subtile à établir....

Puisque $V\geq 0$ et $\dot{V}\leq 0$, la fonction de Lyapunov tend vers une limite le long des solutions de $\dot{x}=f(x)$, c-à-d. $V(\mathcal{X}(x_0,t))\to \bar{V},\,\bar{V}\geq 0$, $t\to\infty$:

Deux cas sont à envisager :

- Si $\bar{V}=0$ alors $\mathcal{X}(x_0,t)\to 0$, étant donné que V(x)=0 implique x=0. La stabilité asymptotique est démontrée.
- $\bar{V} > 0$.

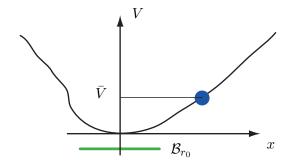


FIGURE : Pour tout point dans \mathcal{B}_{r_0} , V est garantit inférieur à \bar{V} .

Cours NL Ph. Müllhaupt 14 / 24

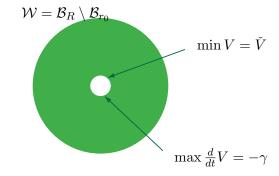


FIGURE : Une boule de taille r_0 est extraite de la boule de taille R. On y définit le minimum de $V=\check{V}$ et la décroissance la plus lente de V.

Cours NL Ph. Müllhaupt 15 / 24

Démonstration par l'absurde en supposant :

$$\mathcal{X}(x_0, t) \in \mathcal{W}, \quad \forall t \ge 0$$

En se restreignant à la fermeture $\bar{\mathcal{W}}$, il est évident que $0 \notin \bar{\mathcal{W}}$ et que $\bar{\mathcal{W}}$ est un compact (ensemble fermé et borné).

$$\check{V} = \min_{x \in \bar{\mathcal{W}}} V(x), \quad (0 < \check{V} < \bar{V}).$$

De plus, $\dot{V}<0$ pour tout point de \mathcal{W} et de $\bar{\mathcal{W}}$. Par conséquent, une décroissance minimum de V est atteinte en un point particulier de $\bar{\mathcal{W}}$, à savoir

$$\gamma = \min_{x \in \bar{\mathcal{W}}} \left(-\frac{d}{dt} V(x) \right).$$

Cours NL Ph. Müllhaupt 16 / 24

En intégrant, on obtient

$$\int_0^t \dot{V}(\mathcal{X}(x_0, \tau))d\tau = V(\mathcal{X}(x_0, t)) - V(x_0)$$

$$V(\mathcal{X}(x_0,t)) = \int_0^t \dot{V}(\mathcal{X}(x_0,\tau))d\tau + V(x_0)$$

Comme $-\frac{d}{dt}V > \gamma$, il est garantit que

$$V(\mathcal{X}(x_0,t)) < -\gamma t + V(x_0)$$

ce qui implique $\exists t_1$ tel que $V(\mathcal{X}(x_0, t_1)) < \check{V}$. Mais ceci contredit $\mathcal{X}(x_0,t) \in \mathcal{W}, \forall t > 0$, et donc que $\bar{V} = 0$.

Ph. Müllhaupt 17/24

Exemple: Robot

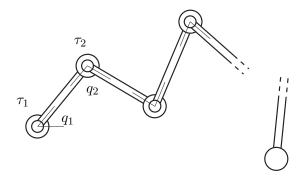


FIGURE: Robot planaire

Lois de la mécanique

Energie cinétique :

$$E_c = \frac{1}{2}\dot{q}^T M(q)\dot{q}$$

Bilan de puissance :

$$\frac{d}{dt}E_c = P$$

$$\frac{d}{dt}1/2\left(\dot{q}^T M(q)\dot{q}\right) = \dot{q}^T \tau.$$

Cours NL Ph. Müllhaupt 19 / 24

Candidat de Lyapunov

$$V = \frac{1}{2} (q - \overline{q})^T K_p (q - \overline{q}) + \frac{1}{2} \dot{q}^T M(q) \dot{q}$$

$$K_p = \begin{pmatrix} k_{p,1} & 0 & 0 & \dots & 0 \\ 0 & k_{p,2} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & k_{p,n} \end{pmatrix}$$

Comme $k_{p,i} > 0$, i = 1, ..., n, on constate bien que V(.) est définie positive au sens où $V(q, \dot{q}) > 0$, $\forall q \neq \overline{q}$, $\forall \dot{q} \neq 0$ et $V(\overline{q}, 0) = 0$.

Ph. Müllhaupt 20 / 24

Fonction de Lyapunov

$$\dot{V} = \dot{q}^T K_p (q - \overline{q}) + \dot{q}^T \tau$$

En introduisant la loi de commande $\tau = K_p(\bar{q} - q) - K_d\dot{q}$ avec $k_{d,i} > 0$, $i = 1, \ldots, n$ et

$$K_d = \begin{pmatrix} k_{d,1} & 0 & 0 & \dots & 0 \\ 0 & k_{d,2} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & k_{d,n} \end{pmatrix}$$

nous avons

$$\dot{V} = \dot{q}^T K_p(q - \overline{q}) + \dot{q}^T (-K_d \dot{q} - K_p(q - \overline{q})) = -\dot{q}^T K_d \dot{q} \le 0,$$

Ceci admet une généralisation avec des matrices définies positives arbitraires $K_p > 0$, $K_d > 0$.

Cours NL Ph. Müllhaupt 21 / 24

Systèmes linéaires et Lyapunov

Théorème

Soit $\dot{x}=Ax$ ayant toutes ses valeurs propres λ de A ($|\lambda I-A|=0$) à partie réelle strictement négative ($\Re(\lambda)<0$), alors pour toute matrice Q>0 (définie positive), il existe une matrice P>0 (définie positive) telle que

$$A^T P + PA = -Q$$

Démonstration de $A^TP + PA = -Q$

Comme $\Re\left(\lambda_i(A)\right) < 0, i = 1, \dots, n, \|e^{At}\| \to 0$, lorsque $t \to \infty$. En choisissant Q > 0 (une matrice définie positive)

$$||e^{tA^T}Qe^{tA}|| \le c||Q||e^{2\sigma t} \qquad t \ge 0, \exists \sigma < 0.$$

Ainsi,

$$P = \int_0^\infty e^{tA^T} Q e^{tA} dt$$

est bien définie.

Démonstration de $A^TP + PA = -Q$

De plus,

$$A^{T}P + PA = \int_{0}^{\infty} \left(A^{T}e^{tA^{T}}Qe^{tA} + e^{tA^{T}}Qe^{tA} A \right) dt$$
$$= \int_{0}^{\infty} \frac{d(e^{tA^{T}}Qe^{tA})}{dt} dt$$
$$= \lim_{t \to \infty} e^{tA^{T}}Qe^{tA} - Q$$
$$= -Q$$

Cours NL Ph. Müllhaupt 24 / 24