I. Méthode du Premier Harmonique (2ème partie) II. Introduction à la Méthode de Lyapunov

Analyse et Commande des Systèmes Non Linéaires

Leçon 4

- Système en rétroaction
- Conditions pour la présence d'un cycle limite
 - lacksquare Détermination approximative de A et ω
- Croisement et Stabilité
 - Théorème des résidus
 - Critère de Nyquist
- Fiabilité de l'analyse par le premier harmonique
- Point d'équilibre
 - Stabilité pour les systèmes linéaires
- Définition intuitive de la stabilité
- Définition formelle de la stabilité
 - Notion de distance
 - Stabilité au sens de Lyapunov
 - Instabilité
 - Stabilité asymptotique

Système en rétroaction

L'entrée u est égale à l'opposé de la sortie z:

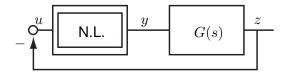


FIGURE: u(t) = -z(t).

Conditions pour la présence d'un cycle limite

Equations des éléments de la boucle :

$$y(t) = \phi(u(t)) \tag{1}$$

$$z(t) = \int_0^t y(\tau)g(t-\tau)d\tau \tag{2}$$

$$u(t) = -z(t), (3)$$

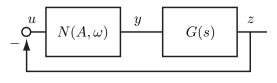
où q(.) représente la réponse impulsionnelle de G(s).

Equivalent à déterminer le point fixe z(.) de l'équation intégrale :

$$z(t) = \int_0^T \phi(-z(\tau))g(t-\tau)d\tau \tag{4}$$

Paramètres A et ω du cycle limite :

Gain équivalent et système linéaire en boucle fermée :



Condition sur N(A) et $G(j\omega)$:

$$Y(j\omega) = N(A,\omega)U(j\omega)$$
 (5)

$$Z(j\omega) = G(j\omega)Y(j\omega)$$
 (6)

$$U(j\omega) = -Z(j\omega). (7)$$

$$Z(j\omega) = -G(j\omega)N(A,\omega)Z(j\omega)$$
 (8)

Cours CN Ph. Müllhaupt 5 / 18

Croisement et Stabilité

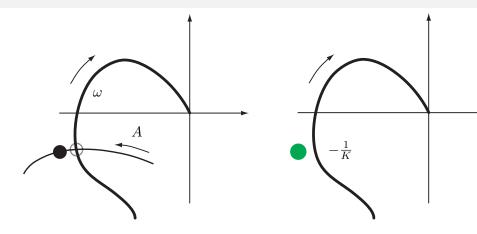


FIGURE : Illustration d'une prévision de la présence d'un cycle limite stable.

Croisement et Stabilité

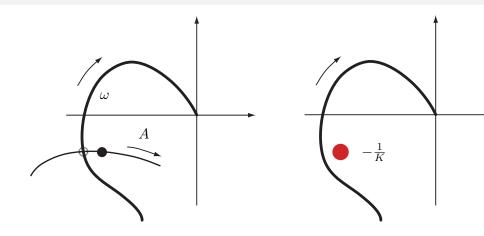


FIGURE : Illustration d'une prévision de la présence d'un cycle limite instable.

Théorème des résidus : N = Z - P

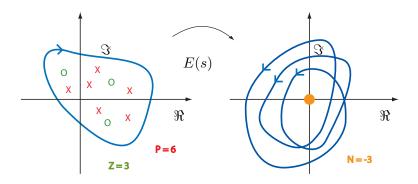


FIGURE : Nbr. de zeros : Z=3 ; Nbr. de pôles : P=6 ; Nombre de tours : $N=Z-P=-3,\,3$ tours dans le sens contraire.

Cours CN Ph. Müllhaupt 8 / 18

Critère de Nyquist

Conséquence du th. des résidus lorsque :

$$E(s) = 1 + G(s)H(s)$$

Théorème

- **1** On prend l'axe imaginaire du plan s, c.-à-d. $j\omega$, $\omega \in [-\infty; \infty]$.
- ② On prend son image par G(s)H(s)
- **3** N = nbr de fois que $G(j\omega)H(j\omega)$ encercle -1 (sens trig. -).
- 4 P = nbr de pôles de G(s)H(s) instables (\equiv pôles instables de 1 + G(s)H(s))

$$Z = N + P = nbr$$
 de pôles inst. de la boucle fermée (zéros inst. de $1 + G(s)H(s)$)

Fiabilité de l'analyse par le premier harmonique

Attention!

- amplitude et fréquence prédites ne sont pas exactes
- un cycle limite prévu ne se produit pas
- un cycle limite existant n'est pas prédit

Point d'équilibre

Point pour lequel $\dot{x} = 0$

Soit un système donnée sous la forme

$$\dot{x} = f(x),$$

où $x\in\mathbb{R}^n$ représente l'état. Un point d'équilibre est une valeur de l'état \bar{x} telle que lorsque l'argument x de f(x) est remplacé par \bar{x} , alors f(x) s'annule :

$$\dot{x} = 0 = f(\bar{x}).$$

Stabilité pour les systèmes linéaires

Soit
$$\dot{x} = Ax + Bu$$
 avec $u = -Kx$:

$$\dot{x} = (A - BK)x = \tilde{A}x$$

 $|\tilde{A}| \neq 0 \Rightarrow \bar{x} = 0$ est un point d'équilibre unique

Critère de stabilité (syst. linéaire)

$$\dot{x} = \tilde{A}x$$
 stable asymptotiquement $\Leftrightarrow \Re(\lambda_i(\tilde{A})) < 0$ $\dot{x} = \tilde{A}x$ stable $\Leftrightarrow \Re(\lambda_i(\tilde{A})) \leq 0$ et les blocs de Jordan, pour $\lambda = 0$, sont de dim. 1

Cours CN Ph. Müllhaupt 12 / 18

Définition intuitive de la stabilité

Définition intuitive de la stabilité

Si le système est initialement "légèrement" perturbé de son point d'équilibre le système reste "proche" de ce point d'équilibre.

FIGURE : Illustration de la définition intuitive de la stabilité.

Notion de distance

Il faut rendre mathématiquement précis ce que l'on entend par "proche" et "légèrement".

Définition de la norme

Un espace vectoriel $\mathcal V$ est dit *normé* lorsqu'il existe une fonction $x \to \|x\|$ de $\mathcal V \to \mathbb R$ telle que :

- $\|x\| \ge 0, \forall x \in \mathcal{V}$; et $\|x\| = 0$ seulement lorsque x = 0.

Notion de distance

Exemples

Dans un espace vectoriel \mathbb{R}^n , les normes suivantes sont définies :

$$||x||_1 = \sum_{i=1}^n |x_i|$$

avec
$$x = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T$$
, $x_i \in \mathbb{R}$, $i = 1, \dots, n$.

Stabilité : définition formelle

Stabilité au sens de Lyapunov :

Le point d'équilibre x = 0 est stable lorsque

$$\forall R > 0$$
, $\exists r > 0$ tel que $\forall x_0$, $||x_0|| < r$, il est vrai que

$$\|\mathcal{X}(x_0, t)\| < R, \quad \forall t \ge 0.$$

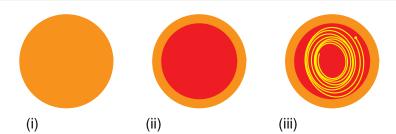


FIGURE : (i) $\forall R > 0$; (ii) $\exists r > 0$; (iii) $\forall x_0, \|x_0\| < r$, implique $\|\mathcal{X}(x_0, t)\| < R$.

Instabilité

Définition d'un système instable

Un système est instable au sens de Lyapunov lorsque il n'est pas stable au sens de Lyapunov.

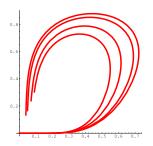


FIGURE: Exemple d'un système convergent mais instable.

Stabilité asymptotique

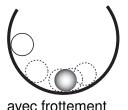


FIGURE: A gauche stabilité. A droite, stabilité asymptotique.

Définition de la stabilité asymptotique

- 1 Le point d'équilibre est stable au sens de Lyapunov. (stabilité)
- ② If existe une boule de taille r_0 telle que $\forall x_0$, $||x_0|| < r_0$ implique que $\mathcal{X}(x_0,t) \to 0$ forsque $t \to \infty$. (convergence asymptotique).