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Cell morphogenesis is driven by cytoskeleton-generated 
forces that are regulated by biochemical signals1. The cas-
cade from signaling to cytoskeleton to shape control is well 

established for numerous morphological motifs, including lamelli-
podia, blebs and filopodia (Fig. 1a–c, Supplementary Video 1 and 
Supplementary Fig. 1), which depend on well-characterized assem-
blies of actin filaments (Fig. 1d–f)2. How morphology, in turn, may 
govern signaling is less investigated. Morphology may participate 
in signal transduction via mechanisms such as preferential protein 
interaction with membranes of particular curvature3, or modulation 
of the concentration and diffusion of signaling components4,5.

The integrated study of signaling and morphology at subcellular 
length scales has become possible with the recent advent of high-
resolution 3D light-sheet microscopy6–11. Using microenvironmental 
selective plane illumination microscopy (meSPIM)10 of PIP2, a mem-
brane-bound phosphoinositide implicated in diverse signaling path-
ways12, we found an unexpected formation of PIP2 clusters in both 
branched (Fig. 1g,h) and blebbed cells (Fig. 1i,j). 3D renderings of the 
local concentration of PIP2 suggest that these clusters tend to colo-
calize with filopodial tufts (Fig. 1h) and blebs (Fig. 1j). KrasV12, which 
is a constitutively active GTPase with broad oncogenic functional-
ity13, also appears to colocalize with certain morphological structures 
(Fig. 1k,l and Supplementary Videos 2 and 3). These observations 
pose the question of whether rugged surface geometries generally 
associate with elevated signaling, and whether there are differences 
in how PIP2 and Kras associate with cell morphologies.

Answering such questions with statistical robustness requires the 
interpretation of 3D images. Not only is the inspection and quan-
tification of such images exceedingly laborious, the difficulty of 
representing 3D images in meaningful two-dimensional (2D) per-
spectives renders the manual annotation of subcellular geometries 
extremely difficult. Automation by computer vision is essential. 
However, the tools for subcellular 3D morphometry do not exist14. 
Here, we introduce u-shape3D, a pipeline that combines computer 
graphics and machine-learning approaches to unravel the coupling 

between cell surface morphology and subcellular signaling. At its 
core is the segmentation of any morphological motif a user can pro-
vide systematic examples for. We show the robustness of a once-
learned motif classifier to changes in microscopy and cell type. We 
then apply the method to analyze the differential association of PIP2 
and KrasV12 with surface blebs. Moving forward, u-shape3D will 
be instrumental to furthering our understanding of the feedback 
interactions between signaling, the cytoskeleton and morphological 
dynamics in 3D.

Results
Detecting cellular morphological motifs. In designing u-shape3D, 
we decided to first represent the cell surface as a triangle mesh, and 
then segment the surface into motifs using machine learning (Fig. 
2a–e). An alternative approach would be to segment the motifs 
directly from the raw image data on a voxel-by-voxel basis, and then 
generate a surface representation with classified motifs. This would 
simplify the application of deep learning algorithms, but would 
require the acquisition of training data in the raw image volume, 
where manual outlining of interesting motifs can become exceed-
ingly cumbersome. In contrast, the proposed machine-learning 
pipeline depends on training data that is defined on a surface repre-
sentation with pre-segmented patches, where a few easy-to-identify 
examples of the motif of interest are sufficient to constrain a robust 
classifier. This provides a versatile and efficient approach to quanti-
fying diverse cellular morphologies.

To generate the cell surface, for most cells we automati-
cally extract the mesh as an isosurface of the deconvolved image  
(Fig. 2f–h and Supplementary Fig. 2). However, some datasets 
require that surface extraction parameters be tailored to the cell type 
and fluorescence label (see the user’s guide to the software pack-
age). For example, we extract the surfaces of actin-labeled dendritic 
cells as an isosurface of an image that combines the deconvolved 
image, an image with enhanced planar features, and an image with 
an enhanced cell interior (Supplementary Fig. 3).
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After cell surface extraction, we decompose the surface into 
convex patches. People tend to partition 3D surfaces into convex 
regions15, suggesting that canonical protrusions are likely convex 
or composed of multiple convex regions. Convex decomposition 
is in general an NP-complete problem16, and thus is computation-
ally intractable for large meshes, even with extensive computing 
resources. We therefore combine several techniques to segment the 
surface into approximately convex patches. First, we calculate the 
mean curvature17 at every face on the mesh, and then break the sur-
face into small patches via a watershed-based segmentation of mean 
curvature (Fig. 2i–k)18. These small patches are computationally 
manipulated more easily than individual faces and are analogous to 
superpixels in image segmentation.

Next, we iteratively merge patches using two criteria (Fig. 2l,m 
and Supplementary Fig. 4). The line-of-sight (LOS)19 criterion 
merges patches if the percentage of rays that connect the two patches 
without exiting the cell is above a certain threshold. Hence, fulfill-
ing this criterion requires only approximate convexity between the 
patches. The triangle criterion10 merges adjacent patches whose joint 
closure surface area, defined as the additional surface area needed to 
close the mesh composing the patch, is small compared to the sum 
of their individual closure surface areas. This criterion embodies the 
short-cut rule20 that the preferred convex shape decomposition has 
the shortest cuts between segments.

Approximate convex patches are then classified by morpho-
logical motif type using a support vector machine (SVM). For each 

patch, 23 geometric features are calculated (Supplementary Table 1).  
Features are automatically selected for each set of training data  
by successively removing randomly chosen features until predic-
tion quality is hampered. Following SVM training (Fig. 2n), the  
trained motif model is used to classify each patch by motif type  
(Fig. 2o,p).

The outcomes of machine-learning approaches are critically 
dependent on training data quality. To generate training data, we 
built an interface where users can rotate 3D surfaces, zoom in and 
out and click on patches to identify them as motifs. Presented with 
the same four randomly chosen cells, three users chose 46 ± 6% of 
the patches when asked to click on blebs and 25 ± 4% of the patches 
when asked to click not on blebs. This discrepancy carried over into 
SVM models, where for the two training sets 45 ± 7 and 77 ± 6% of 
the patches were identified as blebs. Asking users to click only on 
patches that are certainly blebs and then only on patches that are 
certainly not blebs resulted in models that classified an intermediate 
percentage of patches, 52 ± 6%, as blebs. To avoid bias, we therefore 
train models with data where users only choose patches they can 
confidently classify.

Although many morphological motifs, including blebs and filo-
podia, are described by a single convex surface patch, some motifs, 
such as lamellipodia, are composites of multiple convex patches. 
To detect these motifs, we merge convex patches before patch 
classification using a machine-learning framework (Fig. 2q–u). 
Thirty-six geometric features are calculated for each pair of patches 
(Supplementary Table 2), and training data is generated by asking 
users to click on adjacent patches that should certainly or certainly 
not be merged. Following sequential feature selection, an SVM is 
used to merge patches.

We trained models to detect blebs, filopodia and lamellipodia 
(Fig. 3, Supplementary Video 4 and Supplementary Fig. 5). Most 
cells in our diverse dataset showed predominately one protrusion 
type. However, as a proof-of-concept, we also built a multiclass 
detector using a collection of melanoma cells that exhibited exten-
sive blebs and small numbers of filopodia (Fig. 4a). To do so, we 
generated multiple SVM models in a one-versus-one framework in 
which separate models were used to distinguish each pair of mor-
phological motifs.

Validation and robustness of motif detection. To validate the 
protrusion classification, we calculated the F1 score using patches 
selected by the trainer as certainly or certainly not a protrusion. 
For four randomly chosen blebby melanoma cells, the F1 score cal-
culated via leave-one-out-cross-validation over cells and averaged 
across three trainers was 0.986 ± 0.006, corresponding to 1.3 ± 0.6% 
incorrectly classified patches. This score is high, in part, because 
only patches users were certain about were included. Calculating F1 
scores for the models where users clicked on all the blebs or all the 
non-blebs yielded 0.77 ± 0.03 and 0.76 ± 0.04, respectively. However, 
as discussed above, these training data are biased toward selecting 
too few and too many blebs, respectively. Indeed, using these train-
ing data to validate our model, we find a 16 ± 1% false positive rate 
(5 ± 1% false negative rate) when users are asked to click on all the 
blebs and a 30 ± 6% false negative rate (2 ± 1% false positive rate) 
when users are asked to click on all the non-blebs. Validating over a 
larger number of cells with a single user, we measured an F1 score of 
0.99 for 19 MV3 cells with blebs, 0.94 for 13 human bronchial epi-
thelial cells (HBECs) with filopodia and 0.88 for 13 dendritic cells 
with lamellipodia (Fig. 4b and Supplementary Fig. 6a,b).

We also tested other machine-learning algorithms. We antici-
pated that the classifier performance would be primarily feature 
driven, rather than algorithm driven. Indeed, using random forests, 
linear SVMs and radial SVMs to detect filopodia and varying the 
number of rounds of feature selection, we calculated F1 scores of 
between 0.934 and 0.944 for almost all algorithms (Supplementary 
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Fig. 1 | Cell morphology and signaling are coupled. a–c, Surface renderings 
of a dendritic cell expressing Lifeact-GFP (a), an MV3 melanoma cell 
expressing tractin-GFP (b) and a HBEC expressing tractin-GFP (c).  
d–f, Maximum intensity projections (MIPs) of the cells shown in a–c, using 
an inverse look-up table. a–f are shown at the same scale. Additional views 
of these cells are shown in Supplementary Fig. 1. g, A MIP of a branched 
MV3 cells expressing PLCΔ-PH-GFP, a PIP2 translocation biosensor.  
h, A surface rendering of the same cell. Surface regions with relatively 
high PIP2 localization are shown in red, whereas regions of relatively low 
localization are shown in blue. i,j, A MIP (i) and a surface rendering of a 
blebbing MV3 cell expressing PLCΔ-PH-GFP (j). The PLCΔ-PH-GFP images 
are representative of 23 cells from three experiments. k, A MIP of an MV3 
cell expressing GFP-KrasV12. l, A surface rendering of k. Surface regions 
of relatively high Kras localization are shown in red, whereas regions of 
relatively low localization are shown in blue. The GFP-KrasV12 images are 
representative of 31 cells from seven experiments. Scale bars, 10 μm.
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Table 4). This suggests that in our workflow linear SVMs perform as 
well as a broad class of machine-learning algorithms.

Conversely, a carefully chosen feature set might be able to dis-
tinguish motifs from non-motifs using even an unsupervised algo-
rithm that does not require training. We hierarchically clustered 
all convex surface patches on a set of seven blebby cells into two 
clusters using such an algorithm (Supplementary Fig. 7). Although 
one of the clusters substantially overlaps with the bleb detection, the 
supervised algorithm clearly performs better.

Because of the selective power of the geometric feature set, our 
workflow requires relatively little training data. One user training 
on just one cell in a dataset of 19 blebby cells, yields an F1 score 

of 0.94 ± 0.04 (mean ± s.d.) on the remaining cells (Fig. 4c and 
Supplementary Fig. 6c). Additional training data improves the 
model accuracy marginally, suggesting that models generated by 
a single user on different datasets would be similar. Indeed, mod-
els trained by a single user on distinct sets of four MV3 cells show 
95.9 ± 0.7% overlap, as measured by the Sorrenson–Dice index21. 
This compares to an 88 ± 3% overlap between models generated by 
different users (Supplementary Fig. 6d). To maximize reproducibil-
ity, our classifiers therefore incorporate training data from multiple 
users via majority voting.

Motif models from one cell type can be extended to dissimilar 
cell types, enabling objective comparisons across biological systems. 
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Fig. 2 | Morphological motif detection framework and example workflow. a–e, To detect morphological motifs, following image acquisition (a), we extract 
the cell surface (b), decompose that surface into convex patches (c), optionally merge those patches (d) and finally classify the patches by morphological 
motif (e). f–p, Our detection framework applied to a blebbed cell. f, MIP of a 3D image of an MV3 melanoma cell expressing tractin-GFP. g, MIP of the 
deconvolved image of the same cell. h, The surface of the cell extracted from the deconvolved image as a triangle mesh. i, The mean surface curvature of 
the cell. Regions of large positive curvature are shown in red, flat regions are shown in white and regions of large negative curvature are shown in blue.  
j, A watershed segmentation of mean surface curvature. Segmented patches are shown in different colors. k, A spill depth-based merging of the 
segmented patches. l, A triangle-rule based merging of the patches. m, A LOS-based merging of the patches. The triangle and LOS rules are applied 
iteratively. n, User generated training data for two different cells. Patches identified as ‘certainly a bleb’ are shown in green, whereas patches identified 
as ‘certainly not a bleb’ are shown in purple. o, A SVM classifier trained on user data applied to the cell. Patches shown in green have high SVM scores 
and a high inferred likelihood of being a bleb, whereas patches shown in purple have low SVM scores and a low inferred likelihood. p, Detected blebs are 
shown as randomly colored and non-blebs are shown in gray. To detect non-convex motifs, such as lamellipodia, convex patches are merged as shown 
in q–u. q, The mean surface curvature of a lamellipodial dendritic cell expressing Lifeact-GFP. r, Convex surface patches for the same cell. s, A local LOS-
based merging of these patches. t, An SVM-based merging of the patches. The SVM was trained on user-supplied examples of adjacent patches that 
should certainly be merged and adjacent patches that should certainly not be merged. u, Detected lamellipodia are shown as randomly colored and non-
lamellipodia are shown in gray.
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Applying a bleb model generated from 19 cells originating from a 
melanoma cell line to 24 cells originating from a human melanoma 
xenografted into mice yields an F1 score of 0.97 (Fig. 4d). Likewise, 
applying a filopodia model generated from nine melanoma cells to 
13 transformed HBEC cells yields an F1 score of 0.90 (Fig. 4e).

The classifier can also be used to compare perturbed and non-
perturbed cell populations. To test whether greatly different cell 
morphologies confound the detection of particular motifs, we used 
identical analysis parameters to measure the fraction of the cell sur-
face that is blebby in wild-type U2OS cells and cells where the actin 
regulatory proteins cofilin-1 and Wave2 were knocked out with 
clustered regularly interspaced short palindromic repeats (CRISPR) 
(Fig. 4f,g). Compared to wild-type cells, CFL1 knockout (cofilinKO) 
cells exhibit greater cell-to-cell heterogeneity in their bleb surface 
fraction as well as a larger mean bleb fraction. WASF2 knockout 
(WaveKO) cells exhibit even greater heterogeneity and a yet larger 
mean fraction.

So far, we have presented data acquired via meSPIM, a high-
resolution light-sheet microscope with nearly isotropic resolution10. 
On microscopes with anisotropic resolution, the motif struc-
ture varies with orientation relative to the microscope. To test if  
resolution anisotropy impedes motif detection, we analyzed blebby 
cells imaged via a laser scanning confocal microscope (Fig. 5a,b). 
Blebs appeared stretched in the axial (z) direction (Supplementary 
Fig. 8), however, the workflow still achieved an F1 score of  
0.94 (Supplementary Fig. 9). Standard light-sheet microscopy also 
has reduced axial resolution compared to meSPIM. Analyzing 
microglial cells imaged in  vivo within a zebrafish via a lower  
resolution commercial light-sheet microscope, we successfully 
detected extensions (Fig. 5c,d). These findings demonstrate that 
our pipeline can analyze data from conventional microscopes with 
anisotropic resolution.

To determine whether motif models were transferable among 
similar microscopes, we directly applied meSPIM motif models 
to cells imaged by other high-resolution light-sheet microscopes. 
Detecting blebs on cytosolically labeled cells imaged by axially 
swept light-sheet microscopy (ASLM)9, we measured an F1 score 
of 0.96 for both meSPIM and ASLM derived models (Fig. 5e,f). 
Analyzing previously published movies, we used a meSPIM derived 
model to detect lamellipodia on a T cell imaged by lattice light-sheet 
microscopy8 (Fig. 5g,h), and trained a new model to detect exten-
sions on a human breast cancer cell moving through the vasculature 
of a zebrafish embryo imaged by adaptive-optics lattice light-sheet 
microscopy22 (Fig. 5i and Supplementary Video 5). Together, these 

test cases show the broad applicability of u-shape3D, allowing 
objective comparisons between large numbers of diverse datasets.

Kras and PIP2 signals associate differently with blebs. Equipped 
with a computational framework to analyze 3D cell morphology, 
we set out to identify relationships between morphological motifs 
and signaling events. We focused on blebs as the predominant mor-
phological feature of melanoma cells in soft 3D environments10 and 
sought to measure how PIP2 and constitutively active KrasV12, may 
associate with this motif. Both KrasV12 (Fig. 1l) and PIP2 (Fig. 1j) 
appear to polarize and associate with blebs. To test these hypoth-
eses, we measured the localization of KrasV12 within 2 μm of the 
cell surface for 13 MV3 melanoma cells (Fig. 6a,b). We computed 
at every mesh face the average fluorescence intensity in a sphere 
around that face, including only pixels within the cell and correcting 
for surface curvature-dependent artifacts by depth-normalization23. 
In addition to blebs, cells expressing green fluorescent protein 
(GFP)-KrasV12 exhibited retraction fibers and uropods, which could 
lead to bias. To exclude these structures from the analysis, we built 
a retraction fiber/uropod detector and subtracted those patches 
from the set of detected blebs (Supplementary Fig. 10). Next, using 
spherical statistics we found that the KrasV12 distribution on the cell 
surface was polarized (Fig. 6c). Likewise, blebs and KrasV12 surface 
intensity were directionally correlated (Fig. 6d). However, ran-
domizing the location of blebs on the surface, the directional cor-
relation of KrasV12 with blebs was not significantly different from 
random. This suggests that KrasV12 and bleb polarization are cor-
related partially through their joint coupling to global cell shape. 
Measuring the mean KrasV12 localization on and off detected blebs, 
we found no statistically significant difference (Fig. 6e). However, 
KrasV12 does localize to bleb edges (Fig. 6f). In contrast, cytosolic 
GFP showed no localization to bleb edges (Fig. 6f). This confirms 
that the modulation of KrasV12 across the cell surface is related to 
the distribution of blebs. To further examine the mechanism of 
this association we measured bleb density locally over a scale less 
than that of a single bleb by simulating the diffusion on the mesh 
of the motif classification label (Supplementary Fig. 11a,b). In 
this representation, high-density values localize to the bleb center, 
low-density values to areas away from any bleb and intermediate 
values colocalize with bleb edges. In agreement with our previous 
conclusion, high KrasV12 signal associated with intermediate local 
bleb densities (Supplementary Fig. 11c). Thus, these analyses sug-
gest that KrasV12 may be organized to bleb edges. This may at first  
seem surprising: KrasV12 is a constitutively activated GTPase 

a b c

Fig. 3 | Detected blebs, filopodia and lamellipodia. a, Blebs detected on an MV3 melanoma cell (representative of 19 cells). b, Filopodia detected on an 
HBEC cell (representative of 13 cells). c, Lamellipodia detected on a dendritic cell (representative of 13 cells). Additional example detections are shown in 
Supplementary Fig. 5.
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without spatially organized interactions with guanine nucleotide  
exchange factors, GTPase activating proteins and GDP dissocia-
tion inhibitors. Accordingly, the KrasV12 distribution is expected to 
be dominated by diffusion within the plasma membrane with an  
overall uniform steady state. Simulations of uniformly labeled  
surface distributions in synthetic cells demonstrate an intensity  

co-modulation with bleb edges for a variety of surface thicknesses, 
but not for cytosolically labeled cells (Supplementary Fig. 11e). This 
shows that the KrasV12 localization at bleb edges is consistent with a 
uniform surface distribution. This discovery also shows how, in 3D, 
cell morphological motifs alone offer a mechanism for the spatial 
organization of molecular signals at the subcellular scale.
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We next analyzed MV3 cells expressing PLCΔ-PH-GFP  
(Fig. 6h,i), a PIP2 translocation biosensor that reports the activation 
of PIP2. Like KrasV12, the surface localization of PIP2 is polarized 
(Fig. 6j), and blebs and PIP2 are directionally correlated (Fig. 6k). 
However, unlike KrasV12, the directional correlation of PIP2 with 
blebs was significantly different from that of PIP2 with randomized 
bleb distributions. Hence, PIP2 polarization is directly correlated 
with bleb polarization rather than coupled via the overall cell shape. 
Indeed, PIP2 localizes to blebs, with each cell exhibiting a higher 
mean PIP2-intensity on blebs than off (Fig. 6l). Consistent with a 
surface fluorescence distribution, PIP2 like KrasV12 also associates 
with bleb edges (Fig. 6m). However, whereas KrasV12 localization 
falls off with increasing distance from a bleb edge both on and off 
blebs, PIP2 localization falls off with increasing distance from a 
bleb edge only in regions that are not identified as blebs. Similarly, 
high PIP2 activity associates with intermediate local bleb densities 
(Supplementary Fig. 11d), whereas low PIP2 activity associates with 
small but not with high local bleb densities. This shows a specific 
recruitment of active PIP2 to the entire bleb surface. The mechanism 
underlying this process remains elusive.

Our workflow supports many other types of analysis relating cell 
morphology and molecular distributions. For example, underlying 

the extraction of morphological motifs are geometric properties 
that can be analyzed. Measuring bleb volume, we found that small 
and large blebs show a similar association with KrasV12 (Fig. 6g), 
whereas large blebs show greater association with PIP2 than small 
blebs (Fig. 6n). Cytosolically labeled cells show no association of 
intensity with bleb volume (Supplementary Fig. 11f).

Since the study of many signaling pathways benefits from mea-
suring not just morphology, but also morphodynamics, we devel-
oped a measure of boundary motion at each mesh face. Figure 6o 
shows the PIP2 activation of an MV3 cell, and Fig. 6p shows that 
cell’s boundary motion. Measuring the motion difference over 
~30 s, which is on the order of the bleb lifetime24, we found that 
blebs preferentially associate with regions of protrusive motion  
(Fig. 6q). We also observed that regions of high PIP2 tend to be more 
retractive than regions of low PIP2 (Fig. 6r), which is consistent with 
increased PIP2 localization on blebs because blebs form and retract 
cyclically. These and other evidence of relations between local sur-
face geometry and PIP2 activation will be essential to uncovering 
the mechanism of a bleb-formation and bleb-size dependent orga-
nization of PIP2 signals.

Discussion
High-resolution 3D light-sheet microscopy6–11, has enabled the 
direct observation of subcellular molecular processes. However, 
incorporating these observations into a framework for unbiased 
data exploration, hypothesis testing and ultimately the development 
of new biological theories remains a challenge.

Most publications describing innovations in 3D microscopy 
end with the appealing rendering of a few images on a 2D screen. 
Even this mere visualization task imposes a particular perspective 
and thus introduces bias14. Moreover, compared to one- and two-
dimensional features, such as length and area, human observers 
exhibit decreased ability to assess 3D features, such as shape and 
volume25. Thus, to turn innovation in 3D imaging into biological 
insight, computing infrastructures are required that minimize the 
need for human visual interpretation when comparing datasets.

Here, we focused on algorithms that enable the analysis of bio-
logical surfaces at the scale of single cells. We developed an algo-
rithm to detect diverse morphological motifs on the cell surface 
using machine learning. As a demonstration, we trained classifiers 
for blebs, filopodia and lamellipodia, among other motifs. To detect 
a new type of morphological motif, users need only click on exam-
ples of surface regions that are and are not that motif. This detector 
is one of the first image analysis tools for cell biology that incorpo-
rates techniques from computer graphics. With the rapid rise of 3D 
microscopy, computer graphics methods will become an important 
factor in biological discovery.

In addition to a morphological motif detector, we developed 
an integrated suite of tools for investigating the coupling between 
morphology, morphology change and intracellular signaling. Since 
signaling networks are usually highly nonlinear, the spatial distribu-
tion of signaling molecules can greatly affect downstream signaling. 
Cells take advantage of this effect to control signaling via spatial 
localization in myriad ways including compartmentalization, phase 
separation and active transport. Cell morphology may also gov-
ern signaling. For example, we found that on blebby melanoma 
cells both KrasV12 and PIP2 polarize with blebs. PIP2 is enriched on 
blebs, whereas KrasV12 is not. Investigating further, we discovered 
that KrasV12 localizes to bleb edges and that its distribution is con-
sistent with that of a membrane label. Together, these data suggest 
the possibility that membrane wrinkling alone or enrichment on 
blebs could modulate nonlinear signaling networks by concentrat-
ing membrane-bound proteins. These two examples also illustrate 
how u-shape3D supports the acquisition of maps and statistics of 
the spatial modulation of protein concentrations that would be 
inaccessible by visual inspection, and the numerical treatment of 
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Fig. 5 | Motif detection on images acquired via diverse microscopic 
techniques. a, A MIP, taken over the xz direction, of an MV3 cell  
expressing tractin-GFP imaged via laser scanning confocal microscopy 
(representative of eight cells). b, Blebs detected on the same cell using  
a model derived from eight MV3 cells imaged with this microscope.  
c, An xz-MIP of a microglia inside a zebrafish embryo imaged using a 
commercial light-sheet microscope (representative of eight cells).  
d, Extensions detected on the same cell using a model derived from eight 
microglia imaged with this microscope. e, An xz-MIP of an MV3 cell 
expressing cytosolic GFP imaged using ASLM, a high-resolution light-sheet 
microscopy modality (representative of eight cells). f, Blebs detected on 
the same cell using a model derived from 19 MV3 cells imaged via meSPIM. 
g, An xz-MIP of a T cell expressing Lifeact-mEmerald imaged using lattice 
light-sheet microscopy8. h, Lamellipodia detected on the same cell using 
a model derived from 13 dendritic cells imaged via meSPIM. i, Extensions 
detected on an MDA-MB-231 human breast cancer cell moving through  
the vasculature of a zebrafish embryo imaged via adaptive-optics lattice 
light-sheet microscopy22. The cell is shown as a surface rendering, whereas 
the vasculature is shown in gray as a MIP of the deconvolved image.  
Scale bars, 10 μm.
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Fig. 6 | Kras and PIP2 associate with blebs differently. a, An MV3 cell expressing GFP-KrasV12 shown as a MIP (left) and an xy-slice (right)  
(representative of 31 cells). b, Kras localization, measured over 2 μm, near the surface of an MV3 cell expressing GFP-KrasV12. c, For 13 cells, the  
cumulative polarization distribution of Kras intensity (solid line) compared to random (dashed line). d, The directional correlation (dir. cor.) of blebs  
with Kras localization. The cumulative correlation distribution is shown as solid, the control distribution is shown as dashed and the zero correlation  
(no cor.) distribution is shown as a dotted line. The correlation and control populations are not statistically different (P = 0.3; Kolmogorov–Smirnov  
statistic = 0.3). e, The differences between the mean Kras intensity on and off blebs (P = 0.5; effect size = −0.006; t-statistic = −0.017). The error 
bar indicates the standard error of the mean. f, Fluorescence localization versus distance from a bleb edge for 13 GFP-KrasV12 labeled cells and 35 GFP 
cytosolically labeled cells. g, Distributions of Kras intensity for mesh faces on blebs of greater than average volume and on blebs of less than average 
volume (P = 0.6; effect size = 0.05;  Kolmogorov–Smirnov statistic = 0.05; no. of blebs = 1,425). h, An MV3 cell expressing PLCΔ-PH-GFP shown as a  
MIP (left) and an xy-slice (right) (representative of 23 cells). i, PIP2 localization, measured over 2 μm, near the surface of an MV3 cells expressing  
PLCΔ-PH-GFP. j, For six movies of distinct cells, the cumulative polarization distribution of PIP2 intensity (solid line) compared to random (dashed line). 
k, The directional correlation of blebs with PIP2 localization. The correlation and control populations are statistically different (P = 42 × 10−29; Kolmogorov–
Smirnov statistic = 0.6). l, The differences between the mean PIP2 intensity on and off blebs for six movies of cells (P = 0.0005; effect size = 1.7; 
t = 6.9). The error bar indicates the standard error of the mean. m, PIP2 and Kras localization, both on and off blebs, versus distance from a bleb edge. 
n, Distributions of PIP2 intensity for mesh faces on blebs of greater than average volume and on blebs of less than average volume (P = 2 × 10−77; effect 
size = 0.5; Kolmogorov–Smirnov statistic = 0.24, no. of blebs = 10,625). o, Surface renderings of PIP2 localization, measured over 2 μm, near the surface 
of an MV3 cell expressing PLCΔ-PH-GFP. Cells were imaged every 37 s. p, Surface renderings of the boundary motion of this same cell. Purple indicates 
regions of high protrusive motion, whereas green indicates regions of high retractive motion. q, For six cells, the frequency of protrusive motion minus 
the frequency of retractive motion on and off blebs as a function of surface speed. r, The same measure shown in f for mesh faces in the top and bottom 
deciles of PIP2 localization. Scale bars, 10 μm.
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complex geometric arrangements that are at the root of non-intui-
tive cell behaviors. In future, these features of u-shape3D will enable 
projects ranging from cell behavioral screens and fluorescence reso-
nance energy transfer measurements linking signaling to morphol-
ogy to molecularly specific investigations of 3D signaling in vivo.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0539-z.
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Methods
Cell culture and genetic engineering. Cells were cultured at 5% CO2 and 21% O2. 
MV3 melanoma cells (a gift from P. Friedl at the MD Anderson Cancer Center) 
were cultured using DMEM (Gibco) supplemented with 10% fetal bovine serum. 
Primary melanoma cells (a gift from S. Morrison at UT Southwestern Medical 
Center) were cultured using the Primary Melanocyte Growth Kit (ATCC). HBEC 
(a gift from J. Minna at UT Southwestern Medical Center), immortalized with 
Cdk4 and hTERT expression and transformed with p53 knockdown, KrasV12 and 
cMyc expression26, were cultured in keratinocyte serum-free medium (Gibco) 
supplemented with 50 mg ml−1 of bovine pituitary extract (Gibco), 5 ng ml−1 of 
enhanced growth factor (Gibco) and 1% Anti-Anti (Gibco). U2OS osteosarcoma 
cells (a gift from R. McIntosh at the University of Colorado, Boulder) were cultured 
using high-glucose DMEM (Gibco) supplemented with pyruvate, stable glutamine 
and 10% fetal bovine serum. Conditionally immortalized hematopoietic precursors 
to dendritic cells27 that express Lifeact-GFP28 (a gift from M. Sixt, IST Austria) were 
cultured and differentiated as previously described29.

Unless stated otherwise, fluorescent constructs were introduced into cells using 
the pLVX lentiviral system (Clontech) and selected using antibiotic resistance to 
either puromycin or geniticin. The GFP-tractin construct contains residues 9–52 
of the enzyme IPTKA30 fused to GFP31. The CyOFP-tractin peptide contains the 
tractin peptide fused to the CyOFP protein. CyOFP is a cyan-excitable orange 
fluorescent protein with peak excitation at 505 nm and peak emission at 588 nm32. 
The GFP-KrasV12 plasmid was constructed by cloning a KrasV12 fragment from 
the pLenti-KrasV12 construct26 into the pLVX-GFP vector. The biosensor for PIP2, 
PLCΔ-PH-GFP, encodes a PI(4,5)P2 lipid selective PH domain that can be used 
as a fluorescent translocation biosensor to monitor changes in the concentration 
of plasma membrane PI(4,5)P2 lipids33. Some MV3 cells expressing GFP in the 
cytosol and imaged via meSPIM, appeared in a previous publication and were 
analyzed here as a control population10.

For the CRISPR knockouts, U2OS cells were transiently transfected with 
pX458 including gene-specific guide RNAs together with a self-cleaving donor 
vector to deliver a blasticidin S resistant cassette into the genomic cut site. Cells 
were selected with 5 µg ml−1 blasticidin S and surviving colonies were isolated 
using 6 mm Pyrex cloning cylinders (Sigma-Aldrich). The pSpCas9(BB)-2A-GFP 
(pX458) was a gift from F. Zhang (Addgene plasmid no. 48138). The self-cleaving 
donor vector pMA-tial1 was a kind gift from T. Buerckstuemmer (Horizon 
Genomics). Guide RNA sequences were cloned into pX458 by Golden Gate 
cloning using the BbsI cut site. Guide RNA sequences targeting Wave2 (WASF2, 
exon 3) and cofilin-1 (CFL1, exon 2) were 5′-TGAGAGGGTCGACCGACTAC-3′, 
and 5′-CGTAGGGGTCGTCGACAGTC-3′, respectively. Gene knockout was 
verified by western blotting using rabbit anti-cofilin-1 (Cell Signaling, D3F9 XP 
no. 5175) and rabbit anti-Wave2 (Cell Signaling, D2C8 XP no. 3659) antibodies 
(Supplementary Fig. 12).

Imaging. Unless stated otherwise, imaging was performed via microenvironmental 
selective plane illumination microscopy10, a type of two-photon Bessel beam light-
sheet microscopy that confers near-isotropic resolution (300 nm lateral, 340 nm 
axial) and permits recording of cell behavior several millimeters from mechanically 
perturbing hard surfaces. Images were acquired at 37 °C in a non-descanned image 
capture mode with an axial step size of 160 or 200 nm and an excitation wavelength 
of 900 nm. Melanoma cells were imaged in cell culture medium supplemented with 
HEPES buffer to maintain the pH during imaging.

Confocal imaging was performed using a Zeiss LSM 780 with a ×40 
(1.4 numerical aperture (NA)) objective. Microglia were imaged within zebrafish 
using a Zeiss Lightsheet Z.1 with ×20 detection (1.0 NA) and ×5 illumination 
(0.1 NA) objectives. The zebrafish line was P2Y12::P2Y12-GFP and was 3.5 days 
post-fertilization. ASLM imaging was performed using a custom-built microscope 
as previously described9.

U2OS cells were allowed to spread overnight in pH-neutralized rat-tail collagen 
(3 mg ml−1) before imaging. All other cells, except for those imaged by the Peri and 
Betzig laboratories, were imaged in collagen gels created by mixing bovine collagen 
I (Advanced Biomatrix) with concentrated PBS and water to a collagen density 
of 2.0 mg ml−1. This collagen solution was then neutralized with 1 M NaOH and 
mixed with cells just before incubation at 37 °C to induce collagen polymerization. 
U2OS cells and MV3 cells imaged via confocal microscopy were fixed in 4% 
paraformaldehyde before imaging.

Image deconvolution. All microscopy images shown are raw, non-deconvolved 
images. However, as a first analysis step, we deconvolved each 3D image. Most 
images acquired via meSPIM were Wiener deconvolved as previously described10. 
The microscope’s point spread function was measured using fluorescent beads. The 
Wiener parameter, which is the inverse of the signal-to-noise ratio, was usually set 
to 0.018. However, to better detect the dim ends of filopodia, it was set to 0.015. 
For cytosolically labeled cells, we automatically estimated the Wiener parameter in 
each frame by defining the signal as the average fluorescence intensity within the 
cell and the noise as the standard deviation of the fluorescence intensity outside 
the cell. Supplementary Fig. 2 shows the effect of varying the Wiener and other 
deconvolution parameters, and Supplementary Table 5 shows the deconvolution 
and surface extraction parameters for all datasets presented in this paper. Since 

Wiener deconvolution is sensitive to point spread function quality, for images 
acquired via microscopy modalities other than meSPIM, we used the Richardson–
Lucy deconvolution algorithm built-in to MATLAB. The movie of the MDA-
MB-231 human breast cancer cell was deconvolved as previously described22.

Following deconvolution, an apodization filter was applied to the optical 
transfer function of the image in the spatial frequency domain. This filter  
had a value of 1 at the origin and decayed linearly to 0 at the edge of the filter 
support, which is set by the user as a percentage of the maximum optical transfer 
function value. This threshold value, here termed the apodization height, was 
usually adjusted according to the homogeneity of the fluorescence label and the 
fineness of the morphological motif being detected. Higher apodization heights 
smooth the image more and allow for more robust detection of large objects, 
whereas lower apodization heights allow for the detection of finer structures but 
also admit more noise.

Cell surface extraction. The deconvolved images were further processed before 
cell surface extraction. For most datasets, an Otsu threshold was first calculated 
from the 3D image34, holes were filled using a 3D grayscale flood-fill operation 
and objects disconnected from the main cell were removed. We also optionally 
smoothed the image with a 3D Gaussian kernel and applied a gamma correction. 
MATLAB’s isosurface function was then used to create a triangle mesh at the 
intensity value specified by the Otsu threshold. Finally, the triangle mesh was 
smoothed using curvature flow smoothing35.

For some datasets, this procedure does not segment the nucleus along with 
the cytoplasm. In these cases, we therefore combined the output image of the 
procedure described above with an ‘inside’ image that segmented the cell interior. 
To create the ‘inside’ image from the gamma corrected image, we applied an 
additional gamma correction, smoothed the image with a 3D Gaussian kernel of 
standard deviation 2 pixels, Otsu thresholded the image, morphologically dilated 
the image, filled holes in each xy-slice, morphologically eroded the image by a 
radius greater than the morphological dilation and finally smoothed the binary 
image with a 3D Gaussian kernel of 1 pixel width. Since this process shrinks the 
cell, if the parameters are chosen correctly the edges of the morphological motifs 
should mostly lay outside the ‘inside’ image. To combine the ‘inside’ image with  
the image outputted by the procedure above, we normalized this image by its  
Otsu threshold value, took the pixel-by-pixel maximum of this image and the 
‘inside’ image, and extracted a triangle mesh as an isosurface at an intensity  
level of one.

The ends of the long, thin lamellipodia of dendritic cells fail to segment using 
the techniques described above. To better segment lamellipodia, we combined the 
‘inside’ and normalized deconvolved images described above for PIP2 labeled cells 
with a ‘surface filtered’ image that enhances planar features, such as lamellipodia 
(Supplementary Fig. 3). The surface filter, which was developed by Elliott et al.23, 
uses multiscale Gaussian second order partial-derivative kernels of the form
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where I(x) is the image intensity, σi,ω is the half width of the Gaussian in dimension 
i at scale ω, Ωk is the filter kernel support and s(x)ω is the filter response at scale ω. 
The total filter response, S(x), is merged across scales via
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We used filter scales 1.5, 2 and 4 pixels to segment lamellipodia of various 
thicknesses. To combine the response of the surface filter with the ‘inside’ and 
normalized deconvolved images, we normalized the response by subtracting both 
the mean image intensity and twice the standard deviation of the image intensity 
before dividing by the standard deviation of the image intensity.

Although not used in this paper, our software also includes the option to 
segment cells by combining a normalized deconvolved image with a steerable 
filtered image. Steerable filters are computationally efficient edge detectors that, 
depending on the parameters chosen, enhance linear or planar structures at 
specified scales36,37.

Segmentations were spot checked by thresholding the 3D image at the 
isosurface intensity value immediately before mesh extraction and examining 
the overlaid raw and thresholded images as 3D image stacks in ImageJ38 
(Supplementary Fig. 13). For analyses where internal mesh cavities could alter 
results, meshes were also exported to ChimeraX39 for further examination. 
Segmentations that were found to be inaccurate or had cavities were excluded from 
further analysis.

Decomposition of the cell surface into convex patches. Although the image 
deconvolution and cell surface extraction parameters require customization for 
different cell types, the remainder of the workflow does not, and its parameters 
were kept constant throughout the paper.
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To decompose the cell surface into convex patches, we first performed a 
watershed segmentation of surface mean curvature, as previously described10. 
This oversegments the cell surface into small patches, which are analogous to 
superpixels in image analysis, which we later merge to create convex patches. First, 
we calculated the mean and Gaussian curvature at every triangle face17,23. Next, we 
constructed an adjacency graph of faces where each face is a node that is connected 
to exactly three other spatially adjacent faces. MATLAB’s isosurface function does 
not always produce triangle meshes with sufficient topological consistency to 
create such a graph. Our software fixes common topological inconsistencies, such 
as triangular edges that are only connected to one face. Rarely, however, a face 
graph cannot be constructed. In these situations, very slightly changing the image 
deconvolution parameters usually solves the problem, although we did not need 
to do so here. Since curvature can be noisy, we next smoothed mean curvature in 
two different ways. First, we used a kd-tree to median filter curvature in 3D space 
over two pixels. The meSPIM is Nyquist sampled, and so 2 pixels, which is 320 nm, 
is approximately the microscope’s spatial resolution. Second, to reduce spurious 
curvature fluctuations, we diffused mean curvature on the mesh using a diffusion 
kernel40,41 according to the equation

Ā=S R (4)k

for 20 iterations, where R is the curvature, Ā is a normalized, weighted adjacency 
matrix of the faces graph, k is the number of iterations and S is the smoothed 
curvature. We defined A as











=

=

A

i j

d
i j

1, if
1 , if is adjacent to

0, otherwise

(5)ij
ij

where dij is the distance between faces i and j. To normalize A, we multiplied it by 
a diagonal matrix, where each diagonal element was the inverse of the sum of that 
row. Next, we performed a watershed segmentation of the smoothed curvature 
over the cell surface18. Watershed segmentations are often performed on 2D 
images, where each pixel is adjacent to exactly four other pixels. Here, we similarly 
performed a watershed segmentation over the adjacency graph of faces, where each 
face is adjacent to exactly three faces.

We next merged adjacent patches using a spill depth criterion18. Here, the spill 
depth between two adjacent patches was defined as the maximum curvature of 
the two patches minus the maximum curvature at the patch–patch interface. This 
is analogous to the depth of water that the patch can hold before spilling into the 
neighboring patch. Starting with the smallest spill depth, we merged patches until 
no spill depth was below a cutoff of 0.6 times the Otsu threshold of mean curvature 
for the cell. Supplementary Fig. 4 shows the effect of altering the spill depth cutoff 
and other patch-merging parameters.

Finally, we decomposed the surface into approximately convex patches by 
iteratively applying the triangle and LOS criteria. To apply the triangle criterion10, 
we first calculated the closure surface area for each patch and pair of adjacent 
patches. We defined the closure surface area as the minimum additional surface 
area needed to create a closed polyhedron from a surface patch. We then merged 
adjacent patches if they meet the criterion

σ σ σ
σ σ

ρ
+ −

> (6)
A B AB

A B

where σA and σB are the closure surface areas of the two patches, σAB is the closure 
surface area of the merged patch and ρ is the triangle cutoff parameter, which we 
here set to 0.7. The triangle criterion can be thought of as similar to the law of 
cosines and intuitively seeks to merge patches that meet at small angles. Starting 
with the largest ρ, we merged all pairs of patches that met the triangle criterion 
before applying the LOS criterion.

The LOS criterion merges adjacent patches with high mutual visibility19,42. We 
defined the mutual visibility of patches A and B as the percentage of line segments 
that connect a face in A with a face in B that are lines of sight, where a LOS is a 
line segment that falls entirely within the mesh. We calculated mutual visibility 
by randomly selecting a face on each patch, and using a triangle-ray intersection43 
algorithm to determine whether a line segment connecting the two faces exited 
and reentered the mesh. A small patch and an adjacent very large patch may have 
a large mutual visibility because of lines of sight that extend across the width of the 
cell, even if these two patches should not be merged. When merging two patches, 
we therefore discarded line segments that were longer than twice the smaller 
patch size. Supplementary Fig. 14a shows the convergence of mutual visibility as 
a function of the number of line segments tested. We calculated mutual visibility 
from 20 line segments per pair of patches. In an exact convex decomposition, any 
two points within any patch could be connected by a LOS. However, because of 
biological variation and image noise, requiring a mutual visibility of one is too 
strict a requirement for cell images. We instead merge patches if their mutual 
visibility is greater than 0.7. Starting with the largest mutual visibility between 
patch pairs, we merged all patch pairs meeting the LOS criterion, before again 
applying the triangle criterion.

Having three patch-merging criteria for convex surface decomposition allows 
us to balance accuracy, speed and robustness to noise. The spill depth criterion 
is fast but potentially inaccurate, whereas the LOS criterion is relatively slow, but 
exact. The triangle criterion implements the short-cut rule20, which biases merging 
toward certain types of convex decomposition. By adjusting the three merging 
parameters, users can control which criteria dominate in their analysis.

Classification of morphological motifs. To classify each patch by morphological 
motif, we first performed feature selection on the geometric patch features listed 
in Supplementary Table 1. Implemented by the MATLAB built-in function 
sequentialfs(), our sequential feature selection randomly successively removed 
features as long as doing so reduced the misclassification rate. The misclassification 
rate was measured using ten-fold cross validation. The geometric features selected 
can vary considerably from dataset to dataset even for similar training sets, 
presumably because of correlations between features, randomness and dataset 
differences. For example, Supplementary Table 6 shows the features selected for 
bleb detection models generated by three different users training on the same 
four cells. In this example, no feature was selected by all three models and no 
two models shared more than two selected features. Once features were selected, 
features were normalized to have the same mean and standard deviation, and a 
linear SVM44 was used to classify patches. Since SVM models vary from user to 
user, to analyze actin, Kras and PIP2 localization, we had models created by three 
different users vote on the classification of each bleb.

We also validated our workflow with the linear SVM replaced with a radial 
SVM or a random forest45. Supplementary Table 6 shows the precision, recall and 
F1 score of these algorithms for various iterations of feature selection. For the radial 
SVM, we used the Gaussian kernel,

= −∥ − ∥K x x( , ) e (7)j k
x xj k

2

To implement the random forest, we used the treeBagger() function in 
MATLAB. Measuring the out-of-bag classification error as a function of the 
number of trees grown, we observed that the error plateaued at approximately ten 
trees, which is well below the 30 and 200 tree forests that we tested.

To compare our workflow, which employs a supervised machine-learning 
algorithm, to an unsupervised algorithm, we performed an agglomerative 
hierarchical clustering on all the patches and the patches classified by the 
supervised algorithm as motifs of interest (Supplementary Fig. 7), respectively. 
We used the correlation as a distance metric and measured the distance between 
a pair of clusters as the average distance between any two pairs of patches in these 
clusters. To avoiding biasing the algorithm, we only clustered on statistics defined 
at the patch scale, and did not include cell scale statistics, such as cell volume.

Characterization of patches. To classify patches by morphological motif, we 
calculated geometric descriptions of each patch. The full list of 23 features used 
by the SVM classifier is provided in Supplementary Table 1. In calculating these 
features, mean curvature was smoothed as described above, but Gaussian curvature 
was not. We defined the average patch position as the mean location of the faces 
in the patch, and we similarly defined the weighted average patch position as the 
mean location of the faces weighted by curvature. The feature ‘variation from a 
sphere’ was defined by the standard deviation of the distances from a patch’s faces 
to the average patch position divided by the mean distance of those faces to the 
average patch position. We defined the closure surface area as described above. The 
closure center was also defined as the mean position of the mesh vertices at the 
patch edge. We defined the patch radius as the mean distance of the patch’s faces 
from the closure center.

The volume, V, was calculated using the equation

∑= ⋅ ×V v v v1
6

( ) (8)
i

N

i i i1, 2, 3,

where N is the number of faces, and v1,i, v2,i and v3,i are the vertices of face i. The 
vertices must be ordered such that the face normal extends outward from the 
cell. To derive this equation, the mesh can be thought of as decomposed into 
tetrahedrons where the vertices of each tetrahedron are those of a face combined 
with the origin46. The signed volumes of the tetrahedrons sum to the volume of the 
mesh. Patches were closed before calculating their volumes.

We calculated the shape diameter function similarly to Shapira et al.47. For 
each patch, we randomly picked 20 mesh faces on the patch and extended a ray 
inward from the mesh face at a randomly chosen angle within π/3 of the direction 
opposite to the face’s normal. We calculated the distance each ray traveled before 
intersecting the opposite side of the mesh. The shape diameter function of the 
patch was then defined as the mean travel distance within one standard deviation 
of the median distance.

Features selected for patch classification. The feature selection algorithm selected 
different geometric features to detect the three morphologies. To determine which 
geometric features best distinguished morphologies, starting from no features, we 
successively added the most discriminative feature to the model (Supplementary 
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Table 3). The features that best distinguished blebs from non-blebs were  
volume/(closure surface area)3/2 and mean curvature on the protrusion edge. 
Closure surface area is the minimum amount of additional surface area needed 
to create a closed polygon from the mesh of the patch. The features that best 
distinguished filopodia from non-filopodia were the distance from the center of 
the closure surface area to the mean face position, a measure of morphological 
feature length and patch surface area. This same measure of morphological 
feature length as well as patch volume were the best features for distinguishing 
lamellipodia from non-lamellipodia.

Optional merging of convex patches. Some morphological motifs, such as 
lamellipodia and flagella, are not convex but are composed of multiple convex 
regions. To detect such motifs, we optionally merge convex patches into patch 
composites. Since adjacent patches that compose a larger structure often have 
smooth curvature at their interface, we first merge patches using a modified LOS 
criterion with line segment length capped at 10 pixels and a mutual visibility cutoff 
of 0.7. The LOS criterion is described above. This step is not required for convex 
patch merging and can be disabled by the user. We next employed a more versatile 
machine learning-based framework to merge adjacent patches. Using the geometric 
features for pairs of adjacent patches listed in Supplementary Table 2, as well as user 
provided training data, we trained an SVM to automatically merge patches. We used 
the same feature selection procedure and SVM parameters as for patch classification.

Characterization of adjacent patches. To merge adjacent patches into patch 
composites using an SVM, we calculated geometric characterizations of each pair 
of adjacent patches. The full list of 36 features used by the SVM is provided in 
Supplementary Table 2. Some measures of patch pairs incorporate individual patch 
measures, which are described above. Unless otherwise specified, mean curvature 
was smoothed as described above, but Gaussian curvature was not.

To better describe the surface geometry at patch-patch interfaces, we calculated 
the two principal curvatures, κ1 and κ2, everywhere on the cell surface,

κ = + −H H K (9)1
2

κ = − −H H K (10)2
2

where H is the unsmoothed mean curvature and K is the unsmoothed Gaussian 
curvature. For various geometries defined by principal curvature values, we then 
calculated the fraction of the interface that had that geometry. As a noise threshold, 
we used the standard deviation of the smoothed mean curvature. Principal 
curvatures above this threshold or below the negative of this threshold were defined 
as large, and those more than four times above or below it as very large. We defined 
a ridged geometry as a large positive κ1 and a small κ2, a very ridged geometry as a 
very large positive κ1 and a small κ2, a valley-like geometry as a small κ1 and a large 
negative κ2, a very valley-like geometry as a small κ1 and a very large negative κ2, a 
domed geometry as a large positive κ1 and a large positive κ2, a cratered geometry as 
a large negative κ1 and a large negative κ2, a flat geometry as a small κ1 and a small 
κ2, and a saddle-like geometry as a large positive κ1 and a large negative κ2.

Generation of training data. We designed a graphical user interface to enable the 
collection of training data necessary for motif classification. Users are shown a 
surface rendering of a cell with surface patches outlined and can interact with the 
cell by rotating and moving it, and zooming in and out on regions of interest. To 
generate data for patch classification, we asked users to click on patches that are 
certainly the morphological motif of interest and then subsequently asked them to 
click on patches that are certainly not that motif. Similarly, to generate data for the 
optional step of convex patch merging, we asked users to click on pairs of patches 
that should certainly be merged and then asked them to click on pairs of patches 
that should certainly not be merged. Pairs of patches that were not adjacent were 
automatically excluded from the training set. We have successfully tested this 
interface in MATLAB v.R2017b and v.R2013b. However, since in MATLAB user 
interface functionality can vary from version to version, it may not work in some 
versions of MATLAB.

Validation. To validate the protrusion classification, we calculated the F1 score, 
which is the harmonic mean of precision and recall. Here, precision is defined 
as the ratio of patches correctly classified as protrusions to the total number 
of patches classified as protrusions, whereas recall is defined as the ratio of 
patches correctly classified as protrusions to the total number of patches that 
are protrusions. Unless otherwise specified, in calculating the F1 score, we only 
used patches selected by the trainer as certainly a protrusion or certainly not a 
protrusion.

Generation and analysis of synthetic images. For algorithm validation, we created 
synthetic spherical cells of radius 48 pixels. The cell size was chosen to mimic the 
pixel spacing on the meSPIM of 0.16 μm per pixel for a cell 7.6 μm in radius. Placed 
randomly on the cells’ surfaces were spherical blebs that ranged in radius from 2 to 
32 pixels and in number from 4 to 256 per cell (See Supplementary Fig. 15 for an 

example of synthetic cells). Since pixelation at the cell edge could hamper the cell 
surface extraction and subsequent analysis, edge pixels were subdivided into a finer 
3D grid to calculate the percentage of the pixel occupied by the synthetic cell. The 
final synthetic images were saved with 32 grayscale intensity values. Synthetic cells 
were not deconvolved, but the remainder of the analysis workflow was identical to 
that used for microscopic data. The same surface extraction parameters were used 
as for bleb detection on tractin and cytosolically labeled cells.

An F1 score does not measure whether or not the workflow preferentially 
detects certain subtypes of protrusion. Since patch-merging algorithms could be 
sensitive to protrusion size, we used synthetic data to test the algorithm’s sensitivity 
to bleb size (Supplementary Fig. 15). On synthetic cells of radius 7.6 μm (48 pixels) 
we simulated blebs ranging in radius from 0.32 μm (2 pixels) and 0.64 μm (4 pixels) 
to 5.1 μm (32 pixels). Although only 70% of the smallest 0.32 μm radii blebs 
were decomposed as convex surface patches, almost all of the larger blebs were 
decomposed. A bleb detector trained on synthetic data correctly classified all blebs 
that were decomposed as convex surfaces.

Mapping fluorescence intensity to the cell surface. To measure the fluorescence 
intensity local to each mesh face, we used the raw, non-deconvolved, fluorescence 
image. At each mesh face, we used a kd-tree to measure the average pixel intensity 
within the cell and within a sampling radius of the mesh face. To correct for surface 
curvature-dependent artifacts, we depth normalized23 the image before measuring 
intensity localization by normalizing each pixel by the average pixel intensity at 
that distance interior to the cell surface. Before analysis, we also normalized each 
cell’s surface intensity localization to a mean of one.

Calculation of distance from a bleb edge. On the adjacency graph of faces, 
we calculated the distance from each face to the nearest bleb edge measured in 
number of faces traversed. To convert this distance to micrometers, we multiplied 
by the average distance between faces for each cell in each frame. Since the distance 
in micrometers between adjacent faces varies, our calculation of distance is an 
estimate rather than exact.

Calculation of local bleb density. To calculate bleb density, we first assigned the 
value one to each mesh face on a bleb and the value zero to each mesh face not 
on a bleb (Supplementary Fig. 11a). We then diffused these values on the mesh 
surface using equation (4) over 600 iterations (Supplementary Fig. 11b). We choose 
the number of iterations such that the bleb density would be calculated over a 
short distance on the order of a bleb length. Equation (4) does not allow an exact 
measurement of bleb density and may be unstable over distances on the order of 
many bleb lengths.

Spherical statistics. The von Mises–Fisher distribution is defined on an ℝd−1 
sphere within ℝd space48. For d = 2 dimensions it approximates a wrapped normal 
distribution on a circle and, similar to the normal distribution, for any d is 
parameterized by a mean and an inverse spread. For d = 3 dimensions, the von 
Mises–Fisher distribution is

κ κ
π

κμ μ=
−

′κ κ−p
e e

x x( ; , )
2 ( )

exp( ) (11)

where µ is the mean direction parameter and κ is the concentration parameter, 
which is inversely related to the data spread. The maximum likelihood estimate of 
the mean direction is simply
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where N is the number of data vectors and I are Bessel functions of the first kind48.
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In Fig. 6c,j, we measured the magnitude of PIP2 and KrasV12 polarization by 
mapping the intensity values defined on each surface mesh onto a unit sphere and 
then using spherical statistics to calculate κ. To map the intensities onto the unit 
sphere, we calculated a set of unit vectors, xintensity that extended in the direction 
from the cell center to every mesh face. The cell center was defined as the location 
within the cell farthest from the cell edge. Since we measured intensity at every 
mesh face over a radius of 2 μm, to avoid spatially oversampling, we used only 
every 1000th mesh face. We defined wintensity as the measured intensity value 
associated with each unit vector and then discretized the range of intensity values 
into 32 bins. Finally, we replaced every vector xintensity with w copies of that vector 
and calculated κ from this set of unit vectors. As a control, we also measured κ 
from a set of xintensity with randomized directions.

In Fig. 6d,k we computed the directional correlation of morphological motifs, 
here blebs, with intensity localization. In each frame, we defined the directional 
correlation as μ μ⋅blebs intensity. To measure μblebs, we calculated a set of unit vectors, 
xblebs, that extended in the direction from the cell center to each mesh face on a 
bleb. To measure µintensity, we calculated xintensity and in equation (12) we weighted 
xi by the intensity localization. Since the cell is not a sphere and most cells have 
polarized shapes, the surface itself is expected to have a nonrandom µ and a small 
κ. To account for this, we created a control distribution of directional correlations 
μ μ⋅blebsRand intensity, where µblebsRand was calculated from a set of vectors where the 
patch classification was randomly permuted. In each frame, we created 200 such 
permutations by randomly assigning patches to be a bleb or not a bleb.

Measurement of boundary motion. To measure boundary motion, for each face 
we found the closest face in the previous frame using a kd-tree. We then defined 
the boundary motion as

= − ⋅ ∣ ∣m d n dsign( ) (18)i i i i

where mi is the boundary motion at face i, di is the vector from face i to the closest 
point in the previous frame, and ni is the normal to the surface at face i.

This is not an ideal measure of boundary motion since the mapping vectors 
di may cluster on select faces of the previous frame’s surface, or even alter the 
topology among faces, in a physically unrealistic manner (see Machacek et al.49 
for an illustration of these problems with 2D boundaries). As a control, we also 
calculated the boundary motion for each face by finding the closest point in the 
next frame. Supplementary Fig. 14b shows the protrusive and retractive motion of 
six cells using both definitions of boundary motion. Here, backward motion is the 
mapping of points from each frame to the previous frame and is the definition used 
elsewhere, and forward motion is the mapping of points from each frame to the 
subsequent frame. Even though the backward and forward motions of the cells are 
different, in both cases blebs are more protrusive than non-blebs. This measure is 
also not a subpixel measure of motion, and should not be used to measure subpixel 
motions. Because we map each face to the closest face rather than the closest 
surface point in the previous frame, motions that are less than the average distance 
between faces will be undersampled in the motion distribution.

Statistical hypothesis testing. For each Kras and PIP2 labeled cell, we measured 
the mean intensity localization of faces on and off blebs and then performed a 
one-sided t-test on the differences of the means after testing for normality using a 
Kolmogorov–Smirnov test. The Cohen’s d effect size was measured.

Unless otherwise indicated, all errors and error bars show the standard error of 
the mean.

Surface rendering. Most triangle meshes were rendered in ChimeraX39. Colored 
triangle meshes were exported from MATLAB as Collada.dae files using custom-
written code and were rendered using full lighting mode. Lighting intensity and 
ambient intensity were adjusted. Colormaps were modified from colorBrewer50. 
The surfaces in Supplementary Figs. 11 and 15 were rendered within MATLAB. 
Our software is capable of rendering all meshes shown in the paper within 
MATLAB, as well as creating Collada files for export to ChimeraX.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the corresponding author upon reasonable request.

Code availability
The latest version of the software described here, as well as a user’s guide, is 
available from https://github.com/DanuserLab/u-shape3D.
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