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Robust and automated detection of subcellular
morphological motifs in 3D microscopy images
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Rapid developments in live-cell three-dimensional (3D) microscopy enable imaging of cell morphology and signaling with
unprecedented detail. However, tools to systematically measure and visualize the intricate relationships between intracellular
signaling, cytoskeletal organization and downstream cell morphological outputs do not exist. Here, we introduce u-shape3D,
a computer graphics and machine-learning pipeline to probe molecular mechanisms underlying 3D cell morphogenesis and to
test the intriguing possibility that morphogenesis itself affects intracellular signaling. We demonstrate a generic morphological
motif detector that automatically finds lamellipodia, filopodia, blebs and other motifs. Combining motif detection with molecu-
lar localization, we measure the differential association of PIP, and Kras"'"2 with blebs. Both signals associate with bleb edges,
as expected for membrane-localized proteins, but only PIP, is enhanced on blebs. This indicates that subcellular signaling pro-
cesses are differentially modulated by local morphological motifs. Overall, our computational workflow enables the objective,

3D analysis of the coupling of cell shape and signaling.

forces that are regulated by biochemical signals'. The cas-

cade from signaling to cytoskeleton to shape control is well
established for numerous morphological motifs, including lamelli-
podia, blebs and filopodia (Fig. la—c, Supplementary Video 1 and
Supplementary Fig. 1), which depend on well-characterized assem-
blies of actin filaments (Fig. 1d-f)>. How morphology, in turn, may
govern signaling is less investigated. Morphology may participate
in signal transduction via mechanisms such as preferential protein
interaction with membranes of particular curvature®, or modulation
of the concentration and diffusion of signaling components**.

The integrated study of signaling and morphology at subcellular
length scales has become possible with the recent advent of high-
resolution 3D light-sheet microscopy®'!. Using microenvironmental
selective plane illumination microscopy (meSPIM)'° of PIP,, a mem-
brane-bound phosphoinositide implicated in diverse signaling path-
ways'?, we found an unexpected formation of PIP, clusters in both
branched (Fig. 1g,h) and blebbed cells (Fig. 1i,j). 3D renderings of the
local concentration of PIP, suggest that these clusters tend to colo-
calize with filopodial tufts (Fig. 1h) and blebs (Fig. 1j). Kras"'3, which
is a constitutively active GTPase with broad oncogenic functional-
ity", also appears to colocalize with certain morphological structures
(Fig. 1k,1 and Supplementary Videos 2 and 3). These observations
pose the question of whether rugged surface geometries generally
associate with elevated signaling, and whether there are differences
in how PIP, and Kras associate with cell morphologies.

Answering such questions with statistical robustness requires the
interpretation of 3D images. Not only is the inspection and quan-
tification of such images exceedingly laborious, the difficulty of
representing 3D images in meaningful two-dimensional (2D) per-
spectives renders the manual annotation of subcellular geometries
extremely difficult. Automation by computer vision is essential.
However, the tools for subcellular 3D morphometry do not exist'*.
Here, we introduce u-shape3D, a pipeline that combines computer
graphics and machine-learning approaches to unravel the coupling

{ :ell morphogenesis is driven by cytoskeleton-generated

between cell surface morphology and subcellular signaling. At its
core is the segmentation of any morphological motif a user can pro-
vide systematic examples for. We show the robustness of a once-
learned motif classifier to changes in microscopy and cell type. We
then apply the method to analyze the differential association of PIP,
and Kras""? with surface blebs. Moving forward, u-shape3D will
be instrumental to furthering our understanding of the feedback
interactions between signaling, the cytoskeleton and morphological
dynamics in 3D.

Results

Detecting cellular morphological motifs. In designing u-shape3D,
we decided to first represent the cell surface as a triangle mesh, and
then segment the surface into motifs using machine learning (Fig.
2a-e). An alternative approach would be to segment the motifs
directly from the raw image data on a voxel-by-voxel basis, and then
generate a surface representation with classified motifs. This would
simplify the application of deep learning algorithms, but would
require the acquisition of training data in the raw image volume,
where manual outlining of interesting motifs can become exceed-
ingly cumbersome. In contrast, the proposed machine-learning
pipeline depends on training data that is defined on a surface repre-
sentation with pre-segmented patches, where a few easy-to-identify
examples of the motif of interest are sufficient to constrain a robust
classifier. This provides a versatile and efficient approach to quanti-
fying diverse cellular morphologies.

To generate the cell surface, for most cells we automati-
cally extract the mesh as an isosurface of the deconvolved image
(Fig. 2f-h and Supplementary Fig. 2). However, some datasets
require that surface extraction parameters be tailored to the cell type
and fluorescence label (see the user’s guide to the software pack-
age). For example, we extract the surfaces of actin-labeled dendritic
cells as an isosurface of an image that combines the deconvolved
image, an image with enhanced planar features, and an image with
an enhanced cell interior (Supplementary Fig. 3).

'Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA. 2Department of Cell Biology, University of
Texas Southwestern Medical Center, Dallas, TX, USA. *e-mail: Gaudenz.Danuser@UTSouthwestern.edu

NATURE METHODS | VOL 16 | OCTOBER 2019 | 1037-1044 | www.nature.com/naturemethods

1037


mailto:Gaudenz.Danuser@UTSouthwestern.edu
http://orcid.org/0000-0001-5416-9379
http://orcid.org/0000-0003-0839-2320
http://orcid.org/0000-0003-0511-0156
http://orcid.org/0000-0002-4636-5000
http://orcid.org/0000-0001-8583-2014
http://www.nature.com/naturemethods

ARTICLES NATURE METHODS

Actin

Fig. 1| Cell morphology and signaling are coupled. a-c, Surface renderings
of a dendritic cell expressing Lifeact-GFP (a), an MV3 melanoma cell
expressing tractin-GFP (b) and a HBEC expressing tractin-GFP ().

d-f, Maximum intensity projections (MIPs) of the cells shown in a-¢, using
an inverse look-up table. a-f are shown at the same scale. Additional views
of these cells are shown in Supplementary Fig. 1. g, A MIP of a branched
MV 3 cells expressing PLCA-PH-GFP, a PIP, translocation biosensor.

h, A surface rendering of the same cell. Surface regions with relatively

high PIP, localization are shown in red, whereas regions of relatively low
localization are shown in blue. i,j, A MIP (i) and a surface rendering of a
blebbing MV3 cell expressing PLCA-PH-GFP (j). The PLCA-PH-GFP images
are representative of 23 cells from three experiments. k, A MIP of an MV3
cell expressing GFP-KrasV'2. I, A surface rendering of k. Surface regions

of relatively high Kras localization are shown in red, whereas regions of
relatively low localization are shown in blue. The GFP-Kras"" images are
representative of 31 cells from seven experiments. Scale bars, 10 pm.

After cell surface extraction, we decompose the surface into
convex patches. People tend to partition 3D surfaces into convex
regions'’, suggesting that canonical protrusions are likely convex
or composed of multiple convex regions. Convex decomposition
is in general an NP-complete problem'®, and thus is computation-
ally intractable for large meshes, even with extensive computing
resources. We therefore combine several techniques to segment the
surface into approximately convex patches. First, we calculate the
mean curvature'’ at every face on the mesh, and then break the sur-
face into small patches via a watershed-based segmentation of mean
curvature (Fig. 2i-k)'®. These small patches are computationally
manipulated more easily than individual faces and are analogous to
superpixels in image segmentation.

Next, we iteratively merge patches using two criteria (Fig. 2l,m
and Supplementary Fig. 4). The line-of-sight (LOS)" criterion
merges patches if the percentage of rays that connect the two patches
without exiting the cell is above a certain threshold. Hence, fulfill-
ing this criterion requires only approximate convexity between the
patches. The triangle criterion'® merges adjacent patches whose joint
closure surface area, defined as the additional surface area needed to
close the mesh composing the patch, is small compared to the sum
of their individual closure surface areas. This criterion embodies the
short-cut rule® that the preferred convex shape decomposition has
the shortest cuts between segments.

Approximate convex patches are then classified by morpho-
logical motif type using a support vector machine (SVM). For each
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patch, 23 geometric features are calculated (Supplementary Table 1).
Features are automatically selected for each set of training data
by successively removing randomly chosen features until predic-
tion quality is hampered. Following SVM training (Fig. 2n), the
trained motif model is used to classify each patch by motif type
(Fig. 20,p).

The outcomes of machine-learning approaches are critically
dependent on training data quality. To generate training data, we
built an interface where users can rotate 3D surfaces, zoom in and
out and click on patches to identify them as motifs. Presented with
the same four randomly chosen cells, three users chose 46 +6% of
the patches when asked to click on blebs and 25+ 4% of the patches
when asked to click not on blebs. This discrepancy carried over into
SVM models, where for the two training sets 45+7 and 77 +6% of
the patches were identified as blebs. Asking users to click only on
patches that are certainly blebs and then only on patches that are
certainly not blebs resulted in models that classified an intermediate
percentage of patches, 52 + 6%, as blebs. To avoid bias, we therefore
train models with data where users only choose patches they can
confidently classify.

Although many morphological motifs, including blebs and filo-
podia, are described by a single convex surface patch, some motifs,
such as lamellipodia, are composites of multiple convex patches.
To detect these motifs, we merge convex patches before patch
classification using a machine-learning framework (Fig. 2q-u).
Thirty-six geometric features are calculated for each pair of patches
(Supplementary Table 2), and training data is generated by asking
users to click on adjacent patches that should certainly or certainly
not be merged. Following sequential feature selection, an SVM is
used to merge patches.

We trained models to detect blebs, filopodia and lamellipodia
(Fig. 3, Supplementary Video 4 and Supplementary Fig. 5). Most
cells in our diverse dataset showed predominately one protrusion
type. However, as a proof-of-concept, we also built a multiclass
detector using a collection of melanoma cells that exhibited exten-
sive blebs and small numbers of filopodia (Fig. 4a). To do so, we
generated multiple SVM models in a one-versus-one framework in
which separate models were used to distinguish each pair of mor-
phological motifs.

Validation and robustness of motif detection. To validate the
protrusion classification, we calculated the F, score using patches
selected by the trainer as certainly or certainly not a protrusion.
For four randomly chosen blebby melanoma cells, the F, score cal-
culated via leave-one-out-cross-validation over cells and averaged
across three trainers was 0.986 +0.006, corresponding to 1.3 +0.6%
incorrectly classified patches. This score is high, in part, because
only patches users were certain about were included. Calculating F,
scores for the models where users clicked on all the blebs or all the
non-blebs yielded 0.77 +0.03 and 0.76 + 0.04, respectively. However,
as discussed above, these training data are biased toward selecting
too few and too many blebs, respectively. Indeed, using these train-
ing data to validate our model, we find a 16 +1% false positive rate
(5+ 1% false negative rate) when users are asked to click on all the
blebs and a 30 +6% false negative rate (2+1% false positive rate)
when users are asked to click on all the non-blebs. Validating over a
larger number of cells with a single user, we measured an F, score of
0.99 for 19 MV3 cells with blebs, 0.94 for 13 human bronchial epi-
thelial cells (HBECs) with filopodia and 0.88 for 13 dendritic cells
with lamellipodia (Fig. 4b and Supplementary Fig. 6a,b).

We also tested other machine-learning algorithms. We antici-
pated that the classifier performance would be primarily feature
driven, rather than algorithm driven. Indeed, using random forests,
linear SVMs and radial SVMs to detect filopodia and varying the
number of rounds of feature selection, we calculated F, scores of
between 0.934 and 0.944 for almost all algorithms (Supplementary
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Fig. 2 | Morphological motif detection framework and example workflow. a-e, To detect morphological motifs, following image acquisition (a), we extract
the cell surface (b), decompose that surface into convex patches (c), optionally merge those patches (d) and finally classify the patches by morphological
motif (e). f-p, Our detection framework applied to a blebbed cell. f, MIP of a 3D image of an MV3 melanoma cell expressing tractin-GFP. g, MIP of the
deconvolved image of the same cell. h, The surface of the cell extracted from the deconvolved image as a triangle mesh. i, The mean surface curvature of

the cell. Regions of large positive curvature are shown in red, flat regions are shown in white and regions of large negative curvature are shown in blue.

j, A watershed segmentation of mean surface curvature. Segmented patches are shown in different colors. k, A spill depth-based merging of the
segmented patches. I, A triangle-rule based merging of the patches. m, A LOS-based merging of the patches. The triangle and LOS rules are applied
iteratively. n, User generated training data for two different cells. Patches identified as ‘certainly a bleb’ are shown in green, whereas patches identified
as ‘certainly not a bleb’ are shown in purple. o, A SVM classifier trained on user data applied to the cell. Patches shown in green have high SVM scores
and a high inferred likelihood of being a bleb, whereas patches shown in purple have low SVM scores and a low inferred likelihood. p, Detected blebs are
shown as randomly colored and non-blebs are shown in gray. To detect non-convex motifs, such as lamellipodia, convex patches are merged as shown
in g-u. g, The mean surface curvature of a lamellipodial dendritic cell expressing Lifeact-GFP. ¥, Convex surface patches for the same cell. s, A local LOS-
based merging of these patches. t, An SVM-based merging of the patches. The SVM was trained on user-supplied examples of adjacent patches that
should certainly be merged and adjacent patches that should certainly not be merged. u, Detected lamellipodia are shown as randomly colored and non-

lamellipodia are shown in gray.

Table 4). This suggests that in our workflow linear SVMs perform as
well as a broad class of machine-learning algorithms.

Conversely, a carefully chosen feature set might be able to dis-
tinguish motifs from non-motifs using even an unsupervised algo-
rithm that does not require training. We hierarchically clustered
all convex surface patches on a set of seven blebby cells into two
clusters using such an algorithm (Supplementary Fig. 7). Although
one of the clusters substantially overlaps with the bleb detection, the
supervised algorithm clearly performs better.

Because of the selective power of the geometric feature set, our
workflow requires relatively little training data. One user training
on just one cell in a dataset of 19 blebby cells, yields an F, score
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of 0.94+0.04 (mean=+s.d.) on the remaining cells (Fig. 4c and
Supplementary Fig. 6¢). Additional training data improves the
model accuracy marginally, suggesting that models generated by
a single user on different datasets would be similar. Indeed, mod-
els trained by a single user on distinct sets of four MV3 cells show
95.9+0.7% overlap, as measured by the Sorrenson-Dice index’'.
This compares to an 88 +3% overlap between models generated by
different users (Supplementary Fig. 6d). To maximize reproducibil-
ity, our classifiers therefore incorporate training data from multiple
users via majority voting.

Motif models from one cell type can be extended to dissimilar
cell types, enabling objective comparisons across biological systems.
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Fig. 3 | Detected blebs, filopodia and lamellipodia. a, Blebs detected on an MV3 melanoma cell (representative of 19 cells). b, Filopodia detected on an
HBEC cell (representative of 13 cells). ¢, Lamellipodia detected on a dendritic cell (representative of 13 cells). Additional example detections are shown in

Supplementary Fig. 5.

Applying a bleb model generated from 19 cells originating from a
melanoma cell line to 24 cells originating from a human melanoma
xenografted into mice yields an F, score of 0.97 (Fig. 4d). Likewise,
applying a filopodia model generated from nine melanoma cells to
13 transformed HBEC cells yields an F, score of 0.90 (Fig. 4e).

The classifier can also be used to compare perturbed and non-
perturbed cell populations. To test whether greatly different cell
morphologies confound the detection of particular motifs, we used
identical analysis parameters to measure the fraction of the cell sur-
face that is blebby in wild-type U20S cells and cells where the actin
regulatory proteins cofilin-1 and Wave2 were knocked out with
clustered regularly interspaced short palindromic repeats (CRISPR)
(Fig. 4f,g). Compared to wild-type cells, CFLI knockout (cofilinKO)
cells exhibit greater cell-to-cell heterogeneity in their bleb surface
fraction as well as a larger mean bleb fraction. WASF2 knockout
(WaveKO) cells exhibit even greater heterogeneity and a yet larger
mean fraction.

So far, we have presented data acquired via meSPIM, a high-
resolution light-sheet microscope with nearly isotropic resolution'’.
On microscopes with anisotropic resolution, the motif struc-
ture varies with orientation relative to the microscope. To test if
resolution anisotropy impedes motif detection, we analyzed blebby
cells imaged via a laser scanning confocal microscope (Fig. 5a,b).
Blebs appeared stretched in the axial () direction (Supplementary
Fig. 8), however, the workflow still achieved an F, score of
0.94 (Supplementary Fig. 9). Standard light-sheet microscopy also
has reduced axial resolution compared to meSPIM. Analyzing
microglial cells imaged in vivo within a zebrafish via a lower
resolution commercial light-sheet microscope, we successfully
detected extensions (Fig. 5c,d). These findings demonstrate that
our pipeline can analyze data from conventional microscopes with
anisotropic resolution.

To determine whether motif models were transferable among
similar microscopes, we directly applied meSPIM motif models
to cells imaged by other high-resolution light-sheet microscopes.
Detecting blebs on cytosolically labeled cells imaged by axially
swept light-sheet microscopy (ASLM)’, we measured an F, score
of 0.96 for both meSPIM and ASLM derived models (Fig. 5e,f).
Analyzing previously published movies, we used a meSPIM derived
model to detect lamellipodia on a T cell imaged by lattice light-sheet
microscopy® (Fig. 5g,h), and trained a new model to detect exten-
sions on a human breast cancer cell moving through the vasculature
of a zebrafish embryo imaged by adaptive-optics lattice light-sheet
microscopy” (Fig. 5i and Supplementary Video 5). Together, these
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test cases show the broad applicability of u-shape3D, allowing
objective comparisons between large numbers of diverse datasets.

Kras and PIP, signals associate differently with blebs. Equipped
with a computational framework to analyze 3D cell morphology,
we set out to identify relationships between morphological motifs
and signaling events. We focused on blebs as the predominant mor-
phological feature of melanoma cells in soft 3D environments'’ and
sought to measure how PIP, and constitutively active Kras"'2, may
associate with this motif. Both Kras"'? (Fig. 11) and PIP, (Fig. 1j)
appear to polarize and associate with blebs. To test these hypoth-
eses, we measured the localization of Kras'!? within 2um of the
cell surface for 13 MV3 melanoma cells (Fig. 6a,b). We computed
at every mesh face the average fluorescence intensity in a sphere
around that face, including only pixels within the cell and correcting
for surface curvature-dependent artifacts by depth-normalization®.
In addition to blebs, cells expressing green fluorescent protein
(GFP)-Kras""? exhibited retraction fibers and uropods, which could
lead to bias. To exclude these structures from the analysis, we built
a retraction fiber/uropod detector and subtracted those patches
from the set of detected blebs (Supplementary Fig. 10). Next, using
spherical statistics we found that the Kras"'? distribution on the cell
surface was polarized (Fig. 6¢). Likewise, blebs and Kras"'? surface
intensity were directionally correlated (Fig. 6d). However, ran-
domizing the location of blebs on the surface, the directional cor-
relation of Kras"'> with blebs was not significantly different from
random. This suggests that Kras"? and bleb polarization are cor-
related partially through their joint coupling to global cell shape.
Measuring the mean Kras"'? localization on and off detected blebs,
we found no statistically significant difference (Fig. 6¢). However,
Kras"'? does localize to bleb edges (Fig. 6f). In contrast, cytosolic
GFP showed no localization to bleb edges (Fig. 6f). This confirms
that the modulation of Kras"'? across the cell surface is related to
the distribution of blebs. To further examine the mechanism of
this association we measured bleb density locally over a scale less
than that of a single bleb by simulating the diffusion on the mesh
of the motif classification label (Supplementary Fig. 11a,b). In
this representation, high-density values localize to the bleb center,
low-density values to areas away from any bleb and intermediate
values colocalize with bleb edges. In agreement with our previous
conclusion, high Kras"'? signal associated with intermediate local
bleb densities (Supplementary Fig. 11c). Thus, these analyses sug-
gest that KrasY'> may be organized to bleb edges. This may at first
seem surprising: Kras''? is a constitutively activated GTPase
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Fig. 4 | Validation and robustness of morphological motif detection. a, A multiclass detector applied to cells derived from a human melanoma xenograft
cultured in mice (representative of nine cells). Filopodia are shown in blue, blebs are shown in red and areas with neither filopodia nor blebs are shown in
gray. b, Validation measures for a bleb detector (B) trained on 19 MV3 melanoma cells, a filopodia detector (F) trained on 13 HBEC cells, and a lamellipodia
detector (L) trained on 13 dendritic cells. TP, true positive; TN, true negative; FP, false positive; FN, false negative. ¢, The F, score as a function of the
number of cells trained on. The black line indicates the mean F, score averaged over a maximum of 100 sets of cells, whereas the black circles show
individual sets of cells. d, A bleb detector trained on the MV3 melanoma cell line applied to cells derived from a human melanoma xenograft cultured in
mice (representative of 24 cells). e, A filopodia detector trained on xenograft-derived melanoma cells applied to HBEC cells (representative of 13 cells).

A filopodia detector trained on HBECs applied to the cell on the left is shown in Supplementary Fig. 5 and applied to the cell on the right is shown in Fig. 3.
f, Blebs detected on wild type, cofilin-1 knock out and Wave2 knockout U20S cells in 3D collagen. g, For these three cell types, the percentage of the
surface that is blebby. We analyzed 19 wild type (WT), 15 cofilin-1 knockout (Cof) and 14 Wave2 knockout (WAV) cells.

without spatially organized interactions with guanine nucleotide
exchange factors, GTPase activating proteins and GDP dissocia-
tion inhibitors. Accordingly, the Kras"'? distribution is expected to
be dominated by diffusion within the plasma membrane with an
overall uniform steady state. Simulations of uniformly labeled
surface distributions in synthetic cells demonstrate an intensity
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co-modulation with bleb edges for a variety of surface thicknesses,
but not for cytosolically labeled cells (Supplementary Fig. 11e). This
shows that the Kras"'? localization at bleb edges is consistent with a
uniform surface distribution. This discovery also shows how, in 3D,
cell morphological motifs alone offer a mechanism for the spatial
organization of molecular signals at the subcellular scale.
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Fig. 5 | Motif detection on images acquired via diverse microscopic
techniques. a, A MIP, taken over the xz direction, of an MV3 cell
expressing tractin-GFP imaged via laser scanning confocal microscopy
(representative of eight cells). b, Blebs detected on the same cell using

a model derived from eight MV 3 cells imaged with this microscope.

¢, An xz-MIP of a microglia inside a zebrafish embryo imaged using a
commercial light-sheet microscope (representative of eight cells).

d, Extensions detected on the same cell using a model derived from eight
microglia imaged with this microscope. e, An xz-MIP of an MV3 cell
expressing cytosolic GFP imaged using ASLM, a high-resolution light-sheet
microscopy modality (representative of eight cells). f, Blebs detected on
the same cell using a model derived from 19 MV3 cells imaged via meSPIM.
g, An xz-MIP of a T cell expressing Lifeact-mEmerald imaged using lattice
light-sheet microscopy®. h, Lamellipodia detected on the same cell using

a model derived from 13 dendritic cells imaged via meSPIM. i, Extensions
detected on an MDA-MB-231 human breast cancer cell moving through
the vasculature of a zebrafish embryo imaged via adaptive-optics lattice
light-sheet microscopy?’. The cell is shown as a surface rendering, whereas
the vasculature is shown in gray as a MIP of the deconvolved image.

Scale bars, 10 pm.

We next analyzed MV3 cells expressing PLCA-PH-GFP
(Fig. 6h,i), a PIP, translocation biosensor that reports the activation
of PIP,. Like Kras'"?, the surface localization of PIP, is polarized
(Fig. 6j), and blebs and PIP, are directionally correlated (Fig. 6k).
However, unlike Kras"!?, the directional correlation of PIP, with
blebs was significantly different from that of PIP, with randomized
bleb distributions. Hence, PIP, polarization is directly correlated
with bleb polarization rather than coupled via the overall cell shape.
Indeed, PIP, localizes to blebs, with each cell exhibiting a higher
mean PIP,-intensity on blebs than off (Fig. 61). Consistent with a
surface fluorescence distribution, PIP, like Kras'!? also associates
with bleb edges (Fig. 6m). However, whereas Kras"'? localization
falls off with increasing distance from a bleb edge both on and off
blebs, PIP, localization falls off with increasing distance from a
bleb edge only in regions that are not identified as blebs. Similarly,
high PIP, activity associates with intermediate local bleb densities
(Supplementary Fig. 11d), whereas low PIP, activity associates with
small but not with high local bleb densities. This shows a specific
recruitment of active PIP, to the entire bleb surface. The mechanism
underlying this process remains elusive.

Our workflow supports many other types of analysis relating cell
morphology and molecular distributions. For example, underlying
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the extraction of morphological motifs are geometric properties
that can be analyzed. Measuring bleb volume, we found that small
and large blebs show a similar association with Kras¥'? (Fig. 6g),
whereas large blebs show greater association with PIP, than small
blebs (Fig. 6n). Cytosolically labeled cells show no association of
intensity with bleb volume (Supplementary Fig. 11f).

Since the study of many signaling pathways benefits from mea-
suring not just morphology, but also morphodynamics, we devel-
oped a measure of boundary motion at each mesh face. Figure 60
shows the PIP, activation of an MV3 cell, and Fig. 6p shows that
cell's boundary motion. Measuring the motion difference over
~30s, which is on the order of the bleb lifetime*, we found that
blebs preferentially associate with regions of protrusive motion
(Fig. 6q). We also observed that regions of high PIP, tend to be more
retractive than regions of low PIP, (Fig. 6r), which is consistent with
increased PIP, localization on blebs because blebs form and retract
cyclically. These and other evidence of relations between local sur-
face geometry and PIP, activation will be essential to uncovering
the mechanism of a bleb-formation and bleb-size dependent orga-
nization of PIP, signals.

Discussion

High-resolution 3D light-sheet microscopy®"', has enabled the
direct observation of subcellular molecular processes. However,
incorporating these observations into a framework for unbiased
data exploration, hypothesis testing and ultimately the development
of new biological theories remains a challenge.

Most publications describing innovations in 3D microscopy
end with the appealing rendering of a few images on a 2D screen.
Even this mere visualization task imposes a particular perspective
and thus introduces bias'’. Moreover, compared to one- and two-
dimensional features, such as length and area, human observers
exhibit decreased ability to assess 3D features, such as shape and
volume®. Thus, to turn innovation in 3D imaging into biological
insight, computing infrastructures are required that minimize the
need for human visual interpretation when comparing datasets.

Here, we focused on algorithms that enable the analysis of bio-
logical surfaces at the scale of single cells. We developed an algo-
rithm to detect diverse morphological motifs on the cell surface
using machine learning. As a demonstration, we trained classifiers
for blebs, filopodia and lamellipodia, among other motifs. To detect
a new type of morphological motif, users need only click on exam-
ples of surface regions that are and are not that motif. This detector
is one of the first image analysis tools for cell biology that incorpo-
rates techniques from computer graphics. With the rapid rise of 3D
microscopy, computer graphics methods will become an important
factor in biological discovery.

In addition to a morphological motif detector, we developed
an integrated suite of tools for investigating the coupling between
morphology, morphology change and intracellular signaling. Since
signaling networks are usually highly nonlinear, the spatial distribu-
tion of signaling molecules can greatly affect downstream signaling.
Cells take advantage of this effect to control signaling via spatial
localization in myriad ways including compartmentalization, phase
separation and active transport. Cell morphology may also gov-
ern signaling. For example, we found that on blebby melanoma
cells both Kras¥'? and PIP, polarize with blebs. PIP, is enriched on
blebs, whereas Kras""? is not. Investigating further, we discovered
that Kras¥'? localizes to bleb edges and that its distribution is con-
sistent with that of a membrane label. Together, these data suggest
the possibility that membrane wrinkling alone or enrichment on
blebs could modulate nonlinear signaling networks by concentrat-
ing membrane-bound proteins. These two examples also illustrate
how u-shape3D supports the acquisition of maps and statistics of
the spatial modulation of protein concentrations that would be
inaccessible by visual inspection, and the numerical treatment of
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Fig. 6 | Kras and PIP, associate with blebs differently. a, An MV3 cell expressing GFP-Kras"'? shown as a MIP (left) and an xy-slice (right)
(representative of 31 cells). b, Kras localization, measured over 2 um, near the surface of an MV3 cell expressing GFP-Kras'™. ¢, For 13 cells, the
cumulative polarization distribution of Kras intensity (solid line) compared to random (dashed line). d, The directional correlation (dir. cor.) of blebs
with Kras localization. The cumulative correlation distribution is shown as solid, the control distribution is shown as dashed and the zero correlation
(no cor.) distribution is shown as a dotted line. The correlation and control populations are not statistically different (P=0.3; Kolmogorov-Smirnov
statistic = 0.3). e, The differences between the mean Kras intensity on and off blebs (P=0.5; effect size=—0.006; t-statistic=—0.017). The error
bar indicates the standard error of the mean. f, Fluorescence localization versus distance from a bleb edge for 13 GFP-Kras"*? labeled cells and 35 GFP
cytosolically labeled cells. g, Distributions of Kras intensity for mesh faces on blebs of greater than average volume and on blebs of less than average
volume (P=0.6; effect size=0.05; Kolmogorov-Smirnov statistic =0.05; no. of blebs =1,425). h, An MV3 cell expressing PLCA-PH-GFP shown as a
MIP (left) and an xy-slice (right) (representative of 23 cells). i, PIP, localization, measured over 2 um, near the surface of an MV3 cells expressing
PLCA-PH-GFP. j, For six movies of distinct cells, the cumulative polarization distribution of PIP, intensity (solid line) compared to random (dashed line).

k, The directional correlation of blebs with PIP, localization. The correlation and control populations are statistically different (P=42 x10-%°; Kolmogorov-

Smirnov statistic=0.6). |, The differences between the mean PIP, intensity on and off blebs for six movies of cells (P=0.0005; effect size=1.7;

t=6.9). The error bar indicates the standard error of the mean. m, PIP, and Kras localization, both on and off blebs, versus distance from a bleb edge.

n, Distributions of PIP, intensity for mesh faces on blebs of greater than average volume and on blebs of less than average volume (P=2x10-7’; effect
size=0.5; Kolmogorov-Smirnov statistic=0.24, no. of blebs =10,625). o, Surface renderings of PIP, localization, measured over 2 pum, near the surface
of an MV3 cell expressing PLCA-PH-GFP. Cells were imaged every 37 s. p, Surface renderings of the boundary motion of this same cell. Purple indicates
regions of high protrusive motion, whereas green indicates regions of high retractive motion. q, For six cells, the frequency of protrusive motion minus
the frequency of retractive motion on and off blebs as a function of surface speed. r, The same measure shown in f for mesh faces in the top and bottom
deciles of PIP, localization. Scale bars, 10 pm.
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complex geometric arrangements that are at the root of non-intui-
tive cell behaviors. In future, these features of u-shape3D will enable
projects ranging from cell behavioral screens and fluorescence reso-
nance energy transfer measurements linking signaling to morphol-
ogy to molecularly specific investigations of 3D signaling in vivo.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41592-019-0539-z.
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Methods

Cell culture and genetic engineering. Cells were cultured at 5% CO, and 21% O,.
MV 3 melanoma cells (a gift from P. Friedl at the MD Anderson Cancer Center)
were cultured using DMEM (Gibco) supplemented with 10% fetal bovine serum.
Primary melanoma cells (a gift from S. Morrison at UT Southwestern Medical
Center) were cultured using the Primary Melanocyte Growth Kit (ATCC). HBEC
(a gift from J. Minna at UT Southwestern Medical Center), immortalized with
Cdk4 and hTERT expression and transformed with p53 knockdown, Kras"'? and
cMyc expression”, were cultured in keratinocyte serum-free medium (Gibco)
supplemented with 50 mgml~ of bovine pituitary extract (Gibco), 5ngml™ of
enhanced growth factor (Gibco) and 1% Anti-Anti (Gibco). U20S osteosarcoma
cells (a gift from R. McIntosh at the University of Colorado, Boulder) were cultured
using high-glucose DMEM (Gibco) supplemented with pyruvate, stable glutamine
and 10% fetal bovine serum. Conditionally immortalized hematopoietic precursors
to dendritic cells” that express Lifeact-GFP* (a gift from M. Sixt, IST Austria) were
cultured and differentiated as previously described®.

Unless stated otherwise, fluorescent constructs were introduced into cells using
the pLVX lentiviral system (Clontech) and selected using antibiotic resistance to
either puromycin or geniticin. The GFP-tractin construct contains residues 9-52
of the enzyme IPTKA™ fused to GFP*'. The CyOFP-tractin peptide contains the
tractin peptide fused to the CyOFP protein. CyOFP is a cyan-excitable orange
fluorescent protein with peak excitation at 505 nm and peak emission at 588 nm*.
The GFP-Kras"'? plasmid was constructed by cloning a Kras"'? fragment from
the pLenti-Kras"'? construct® into the pLVX-GFP vector. The biosensor for PIP,,
PLCA-PH-GFP, encodes a PI(4,5)P2 lipid selective PH domain that can be used
as a fluorescent translocation biosensor to monitor changes in the concentration
of plasma membrane PI(4,5)P2 lipids*™. Some MV3 cells expressing GFP in the
cytosol and imaged via meSPIM, appeared in a previous publication and were
analyzed here as a control population'’.

For the CRISPR knockouts, U20S cells were transiently transfected with
pX458 including gene-specific guide RNAs together with a self-cleaving donor
vector to deliver a blasticidin S resistant cassette into the genomic cut site. Cells
were selected with 5ugml~ blasticidin S and surviving colonies were isolated
using 6 mm Pyrex cloning cylinders (Sigma-Aldrich). The pSpCas9(BB)-2A-GFP
(pX458) was a gift from F. Zhang (Addgene plasmid no. 48138). The self-cleaving
donor vector pMA-tiall was a kind gift from T. Buerckstuemmer (Horizon
Genomics). Guide RNA sequences were cloned into pX458 by Golden Gate
cloning using the BbsI cut site. Guide RNA sequences targeting Wave2 (WASF2,
exon 3) and cofilin-1 (CFL1, exon 2) were 5'-TGAGAGGGTCGACCGACTAC-3',
and 5'-CGTAGGGGTCGTCGACAGTC-3/, respectively. Gene knockout was
verified by western blotting using rabbit anti-cofilin-1 (Cell Signaling, D3F9 XP
no. 5175) and rabbit anti-Wave2 (Cell Signaling, D2C8 XP no. 3659) antibodies
(Supplementary Fig. 12).

Imaging. Unless stated otherwise, imaging was performed via microenvironmental
selective plane illumination microscopy'’, a type of two-photon Bessel beam light-
sheet microscopy that confers near-isotropic resolution (300 nm lateral, 340 nm
axial) and permits recording of cell behavior several millimeters from mechanically
perturbing hard surfaces. Images were acquired at 37°C in a non-descanned image
capture mode with an axial step size of 160 or 200 nm and an excitation wavelength
of 900 nm. Melanoma cells were imaged in cell culture medium supplemented with
HEPES buffer to maintain the pH during imaging.

Confocal imaging was performed using a Zeiss LSM 780 with a x40
(1.4 numerical aperture (NA)) objective. Microglia were imaged within zebrafish
using a Zeiss Lightsheet Z.1 with X20 detection (1.0NA) and X5 illumination
(0.1 NA) objectives. The zebrafish line was P2Y12:P2Y12-GFP and was 3.5 days
post-fertilization. ASLM imaging was performed using a custom-built microscope
as previously described’.

U208 cells were allowed to spread overnight in pH-neutralized rat-tail collagen
(3 mgml™") before imaging. All other cells, except for those imaged by the Peri and
Betzig laboratories, were imaged in collagen gels created by mixing bovine collagen
I (Advanced Biomatrix) with concentrated PBS and water to a collagen density
of 2.0mgml™. This collagen solution was then neutralized with 1 M NaOH and
mixed with cells just before incubation at 37 °C to induce collagen polymerization.
U20S cells and MV3 cells imaged via confocal microscopy were fixed in 4%
paraformaldehyde before imaging.

Image deconvolution. All microscopy images shown are raw, non-deconvolved
images. However, as a first analysis step, we deconvolved each 3D image. Most
images acquired via meSPIM were Wiener deconvolved as previously described'’.
The microscope’s point spread function was measured using fluorescent beads. The
Wiener parameter, which is the inverse of the signal-to-noise ratio, was usually set
to 0.018. However, to better detect the dim ends of filopodia, it was set to 0.015.
For cytosolically labeled cells, we automatically estimated the Wiener parameter in
each frame by defining the signal as the average fluorescence intensity within the
cell and the noise as the standard deviation of the fluorescence intensity outside
the cell. Supplementary Fig. 2 shows the effect of varying the Wiener and other
deconvolution parameters, and Supplementary Table 5 shows the deconvolution
and surface extraction parameters for all datasets presented in this paper. Since
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Wiener deconvolution is sensitive to point spread function quality, for images
acquired via microscopy modalities other than meSPIM, we used the Richardson-
Lucy deconvolution algorithm built-in to MATLAB. The movie of the MDA-
MB-231 human breast cancer cell was deconvolved as previously described”.
Following deconvolution, an apodization filter was applied to the optical
transfer function of the image in the spatial frequency domain. This filter
had a value of 1 at the origin and decayed linearly to 0 at the edge of the filter
support, which is set by the user as a percentage of the maximum optical transfer
function value. This threshold value, here termed the apodization height, was
usually adjusted according to the homogeneity of the fluorescence label and the
fineness of the morphological motif being detected. Higher apodization heights
smooth the image more and allow for more robust detection of large objects,
whereas lower apodization heights allow for the detection of finer structures but
also admit more noise.

Cell surface extraction. The deconvolved images were further processed before
cell surface extraction. For most datasets, an Otsu threshold was first calculated
from the 3D image™, holes were filled using a 3D grayscale flood-fill operation
and objects disconnected from the main cell were removed. We also optionally
smoothed the image with a 3D Gaussian kernel and applied a gamma correction.
MATLAB's isosurface function was then used to create a triangle mesh at the
intensity value specified by the Otsu threshold. Finally, the triangle mesh was
smoothed using curvature flow smoothing™.

For some datasets, this procedure does not segment the nucleus along with
the cytoplasm. In these cases, we therefore combined the output image of the
procedure described above with an ‘inside’ image that segmented the cell interior.
To create the ‘inside’ image from the gamma corrected image, we applied an
additional gamma correction, smoothed the image with a 3D Gaussian kernel of
standard deviation 2 pixels, Otsu thresholded the image, morphologically dilated
the image, filled holes in each xy-slice, morphologically eroded the image by a
radius greater than the morphological dilation and finally smoothed the binary
image with a 3D Gaussian kernel of 1 pixel width. Since this process shrinks the
cell, if the parameters are chosen correctly the edges of the morphological motifs
should mostly lay outside the ‘inside’ image. To combine the ‘inside’ image with
the image outputted by the procedure above, we normalized this image by its
Otsu threshold value, took the pixel-by-pixel maximum of this image and the
‘inside’ image, and extracted a triangle mesh as an isosurface at an intensity
level of one.

The ends of the long, thin lamellipodia of dendritic cells fail to segment using
the techniques described above. To better segment lamellipodia, we combined the
‘inside’ and normalized deconvolved images described above for PIP, labeled cells
with a ‘surface filtered’ image that enhances planar features, such as lamellipodia
(Supplementary Fig. 3). The surface filter, which was developed by Elliott et al.”,
uses multiscale Gaussian second order partial-derivative kernels of the form

- 7|X72X,|2
xX'€Q 32 5,1 ,
s(),,= 1 d% Zx,a 1) (1)
s N2 A 0x;

x

where I(x) is the image intensity, o, is the half width of the Gaussian in dimension
i at scale w, £, is the filter kernel support and s(x),, is the filter response at scale w.
The total filter response, S(x), is merged across scales via

S(x) =max({|s (x) | g lo=1,...,n}) @)

a,=2"" 3)

We used filter scales 1.5, 2 and 4 pixels to segment lamellipodia of various
thicknesses. To combine the response of the surface filter with the ‘inside’ and
normalized deconvolved images, we normalized the response by subtracting both
the mean image intensity and twice the standard deviation of the image intensity
before dividing by the standard deviation of the image intensity.

Although not used in this paper, our software also includes the option to
segment cells by combining a normalized deconvolved image with a steerable
filtered image. Steerable filters are computationally efficient edge detectors that,
depending on the parameters chosen, enhance linear or planar structures at
specified scales’®”".

Segmentations were spot checked by thresholding the 3D image at the
isosurface intensity value immediately before mesh extraction and examining
the overlaid raw and thresholded images as 3D image stacks in Image]**
(Supplementary Fig. 13). For analyses where internal mesh cavities could alter
results, meshes were also exported to ChimeraX* for further examination.
Segmentations that were found to be inaccurate or had cavities were excluded from
further analysis.

Decomposition of the cell surface into convex patches. Although the image
deconvolution and cell surface extraction parameters require customization for
different cell types, the remainder of the workflow does not, and its parameters
were kept constant throughout the paper.
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To decompose the cell surface into convex patches, we first performed a
watershed segmentation of surface mean curvature, as previously described'’.
This oversegments the cell surface into small patches, which are analogous to
superpixels in image analysis, which we later merge to create convex patches. First,
we calculated the mean and Gaussian curvature at every triangle face'”*". Next, we
constructed an adjacency graph of faces where each face is a node that is connected
to exactly three other spatially adjacent faces. MATLAB's isosurface function does
not always produce triangle meshes with sufficient topological consistency to
create such a graph. Our software fixes common topological inconsistencies, such
as triangular edges that are only connected to one face. Rarely, however, a face
graph cannot be constructed. In these situations, very slightly changing the image
deconvolution parameters usually solves the problem, although we did not need
to do so here. Since curvature can be noisy, we next smoothed mean curvature in
two different ways. First, we used a kd-tree to median filter curvature in 3D space
over two pixels. The meSPIM is Nyquist sampled, and so 2 pixels, which is 320 nm,
is approximately the microscope’s spatial resolution. Second, to reduce spurious
curvature fluctuations, we diffused mean curvature on the mesh using a diffusion
kernel**! according to the equation

S=AR 4)

for 20 iterations, where R is the curvature, A is a normalized, weighted adjacency
matrix of the faces graph, k is the number of iterations and § is the smoothed
curvature. We defined A as

1, ifi=j

1

—,if i is adjacent to j (5)
d;

0, otherwise

where d; is the distance between faces i and j. To normalize A, we multiplied it by

a diagonal matrix, where each diagonal element was the inverse of the sum of that
row. Next, we performed a watershed segmentation of the smoothed curvature
over the cell surface'®. Watershed segmentations are often performed on 2D
images, where each pixel is adjacent to exactly four other pixels. Here, we similarly
performed a watershed segmentation over the adjacency graph of faces, where each
face is adjacent to exactly three faces.

We next merged adjacent patches using a spill depth criterion'®. Here, the spill
depth between two adjacent patches was defined as the maximum curvature of
the two patches minus the maximum curvature at the patch-patch interface. This
is analogous to the depth of water that the patch can hold before spilling into the
neighboring patch. Starting with the smallest spill depth, we merged patches until
no spill depth was below a cutoff of 0.6 times the Otsu threshold of mean curvature
for the cell. Supplementary Fig. 4 shows the effect of altering the spill depth cutoff
and other patch-merging parameters.

Finally, we decomposed the surface into approximately convex patches by
iteratively applying the triangle and LOS criteria. To apply the triangle criterion'’,
we first calculated the closure surface area for each patch and pair of adjacent
patches. We defined the closure surface area as the minimum additional surface
area needed to create a closed polyhedron from a surface patch. We then merged
adjacent patches if they meet the criterion

Os+0p—04

>

5.0 p (6)
where o, and o, are the closure surface areas of the two patches, o, is the closure
surface area of the merged patch and p is the triangle cutoff parameter, which we
here set to 0.7. The triangle criterion can be thought of as similar to the law of
cosines and intuitively seeks to merge patches that meet at small angles. Starting
with the largest p, we merged all pairs of patches that met the triangle criterion
before applying the LOS criterion.

The LOS criterion merges adjacent patches with high mutual visibility'**2. We
defined the mutual visibility of patches A and B as the percentage of line segments
that connect a face in A with a face in B that are lines of sight, where a LOS is a
line segment that falls entirely within the mesh. We calculated mutual visibility
by randomly selecting a face on each patch, and using a triangle-ray intersection*
algorithm to determine whether a line segment connecting the two faces exited
and reentered the mesh. A small patch and an adjacent very large patch may have
a large mutual visibility because of lines of sight that extend across the width of the
cell, even if these two patches should not be merged. When merging two patches,
we therefore discarded line segments that were longer than twice the smaller
patch size. Supplementary Fig. 14a shows the convergence of mutual visibility as
a function of the number of line segments tested. We calculated mutual visibility
from 20 line segments per pair of patches. In an exact convex decomposition, any
two points within any patch could be connected by a LOS. However, because of
biological variation and image noise, requiring a mutual visibility of one is too
strict a requirement for cell images. We instead merge patches if their mutual
visibility is greater than 0.7. Starting with the largest mutual visibility between
patch pairs, we merged all patch pairs meeting the LOS criterion, before again
applying the triangle criterion.

Having three patch-merging criteria for convex surface decomposition allows
us to balance accuracy, speed and robustness to noise. The spill depth criterion
is fast but potentially inaccurate, whereas the LOS criterion is relatively slow, but
exact. The triangle criterion implements the short-cut rule®, which biases merging
toward certain types of convex decomposition. By adjusting the three merging
parameters, users can control which criteria dominate in their analysis.

Classification of morphological motifs. To classify each patch by morphological
motif, we first performed feature selection on the geometric patch features listed
in Supplementary Table 1. Implemented by the MATLAB built-in function
sequentialfs(), our sequential feature selection randomly successively removed
features as long as doing so reduced the misclassification rate. The misclassification
rate was measured using ten-fold cross validation. The geometric features selected
can vary considerably from dataset to dataset even for similar training sets,
presumably because of correlations between features, randomness and dataset
differences. For example, Supplementary Table 6 shows the features selected for
bleb detection models generated by three different users training on the same
four cells. In this example, no feature was selected by all three models and no

two models shared more than two selected features. Once features were selected,
features were normalized to have the same mean and standard deviation, and a
linear SVM* was used to classify patches. Since SVM models vary from user to
user, to analyze actin, Kras and PIP, localization, we had models created by three
different users vote on the classification of each bleb.

We also validated our workflow with the linear SVM replaced with a radial
SVM or a random forest”. Supplementary Table 6 shows the precision, recall and
F, score of these algorithms for various iterations of feature selection. For the radial
SVM, we used the Gaussian kernel,

2
K (x}_, Xk) = e~ IIx—xll 7)

To implement the random forest, we used the treeBagger() function in
MATLAB. Measuring the out-of-bag classification error as a function of the
number of trees grown, we observed that the error plateaued at approximately ten
trees, which is well below the 30 and 200 tree forests that we tested.

To compare our workflow, which employs a supervised machine-learning
algorithm, to an unsupervised algorithm, we performed an agglomerative
hierarchical clustering on all the patches and the patches classified by the
supervised algorithm as motifs of interest (Supplementary Fig. 7), respectively.
We used the correlation as a distance metric and measured the distance between
a pair of clusters as the average distance between any two pairs of patches in these
clusters. To avoiding biasing the algorithm, we only clustered on statistics defined
at the patch scale, and did not include cell scale statistics, such as cell volume.

Characterization of patches. To classify patches by morphological motif, we
calculated geometric descriptions of each patch. The full list of 23 features used
by the SVM classifier is provided in Supplementary Table 1. In calculating these
features, mean curvature was smoothed as described above, but Gaussian curvature
was not. We defined the average patch position as the mean location of the faces
in the patch, and we similarly defined the weighted average patch position as the
mean location of the faces weighted by curvature. The feature ‘variation from a
sphere’ was defined by the standard deviation of the distances from a patch’s faces
to the average patch position divided by the mean distance of those faces to the
average patch position. We defined the closure surface area as described above. The
closure center was also defined as the mean position of the mesh vertices at the
patch edge. We defined the patch radius as the mean distance of the patch’s faces
from the closure center.

The volume, V, was calculated using the equation

N
1
V= 5 Z Vit (VX)) ®)
i

where N is the number of faces, and v, , v,, and v, are the vertices of face i. The
vertices must be ordered such that the face normal extends outward from the

cell. To derive this equation, the mesh can be thought of as decomposed into
tetrahedrons where the vertices of each tetrahedron are those of a face combined
with the origin*’. The signed volumes of the tetrahedrons sum to the volume of the
mesh. Patches were closed before calculating their volumes.

We calculated the shape diameter function similarly to Shapira et al.*”. For
each patch, we randomly picked 20 mesh faces on the patch and extended a ray
inward from the mesh face at a randomly chosen angle within /3 of the direction
opposite to the face’s normal. We calculated the distance each ray traveled before
intersecting the opposite side of the mesh. The shape diameter function of the
patch was then defined as the mean travel distance within one standard deviation
of the median distance.

Features selected for patch classification. The feature selection algorithm selected
different geometric features to detect the three morphologies. To determine which
geometric features best distinguished morphologies, starting from no features, we
successively added the most discriminative feature to the model (Supplementary
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Table 3). The features that best distinguished blebs from non-blebs were
volume/(closure surface area)* and mean curvature on the protrusion edge.
Closure surface area is the minimum amount of additional surface area needed
to create a closed polygon from the mesh of the patch. The features that best
distinguished filopodia from non-filopodia were the distance from the center of
the closure surface area to the mean face position, a measure of morphological
feature length and patch surface area. This same measure of morphological
feature length as well as patch volume were the best features for distinguishing
lamellipodia from non-lamellipodia.

Optional merging of convex patches. Some morphological motifs, such as
lamellipodia and flagella, are not convex but are composed of multiple convex
regions. To detect such motifs, we optionally merge convex patches into patch
composites. Since adjacent patches that compose a larger structure often have
smooth curvature at their interface, we first merge patches using a modified LOS
criterion with line segment length capped at 10 pixels and a mutual visibility cutoff
of 0.7. The LOS criterion is described above. This step is not required for convex
patch merging and can be disabled by the user. We next employed a more versatile
machine learning-based framework to merge adjacent patches. Using the geometric
features for pairs of adjacent patches listed in Supplementary Table 2, as well as user
provided training data, we trained an SVM to automatically merge patches. We used
the same feature selection procedure and SVM parameters as for patch classification.

Characterization of adjacent patches. To merge adjacent patches into patch
composites using an SVM, we calculated geometric characterizations of each pair
of adjacent patches. The full list of 36 features used by the SVM is provided in
Supplementary Table 2. Some measures of patch pairs incorporate individual patch
measures, which are described above. Unless otherwise specified, mean curvature
was smoothed as described above, but Gaussian curvature was not.

To better describe the surface geometry at patch-patch interfaces, we calculated
the two principal curvatures, k; and k,, everywhere on the cell surface,

k,=H+H-K ©)

k,=H-+H’-K (10)

where H is the unsmoothed mean curvature and K is the unsmoothed Gaussian
curvature. For various geometries defined by principal curvature values, we then
calculated the fraction of the interface that had that geometry. As a noise threshold,
we used the standard deviation of the smoothed mean curvature. Principal
curvatures above this threshold or below the negative of this threshold were defined
as large, and those more than four times above or below it as very large. We defined
aridged geometry as a large positive k; and a small k,, a very ridged geometry as a
very large positive k, and a small k,, a valley-like geometry as a small , and a large
negative k,, a very valley-like geometry as a small k, and a very large negative k,, a
domed geometry as a large positive k, and a large positive k,, a cratered geometry as
alarge negative k, and a large negative k,, a flat geometry as a small k, and a small
K,, and a saddle-like geometry as a large positive k, and a large negative «,.

Generation of training data. We designed a graphical user interface to enable the
collection of training data necessary for motif classification. Users are shown a
surface rendering of a cell with surface patches outlined and can interact with the
cell by rotating and moving it, and zooming in and out on regions of interest. To
generate data for patch classification, we asked users to click on patches that are
certainly the morphological motif of interest and then subsequently asked them to
click on patches that are certainly not that motif. Similarly, to generate data for the
optional step of convex patch merging, we asked users to click on pairs of patches
that should certainly be merged and then asked them to click on pairs of patches
that should certainly not be merged. Pairs of patches that were not adjacent were
automatically excluded from the training set. We have successfully tested this
interface in MATLAB v.R2017b and v.R2013b. However, since in MATLAB user
interface functionality can vary from version to version, it may not work in some
versions of MATLAB.

Validation. To validate the protrusion classification, we calculated the F, score,
which is the harmonic mean of precision and recall. Here, precision is defined
as the ratio of patches correctly classified as protrusions to the total number

of patches classified as protrusions, whereas recall is defined as the ratio of
patches correctly classified as protrusions to the total number of patches that
are protrusions. Unless otherwise specified, in calculating the F, score, we only
used patches selected by the trainer as certainly a protrusion or certainly not a
protrusion.

Generation and analysis of synthetic images. For algorithm validation, we created
synthetic spherical cells of radius 48 pixels. The cell size was chosen to mimic the
pixel spacing on the meSPIM of 0.16 pm per pixel for a cell 7.6 pm in radius. Placed
randomly on the cells’ surfaces were spherical blebs that ranged in radius from 2 to
32 pixels and in number from 4 to 256 per cell (See Supplementary Fig. 15 for an
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example of synthetic cells). Since pixelation at the cell edge could hamper the cell
surface extraction and subsequent analysis, edge pixels were subdivided into a finer
3D grid to calculate the percentage of the pixel occupied by the synthetic cell. The
final synthetic images were saved with 32 grayscale intensity values. Synthetic cells
were not deconvolved, but the remainder of the analysis workflow was identical to
that used for microscopic data. The same surface extraction parameters were used
as for bleb detection on tractin and cytosolically labeled cells.

An F, score does not measure whether or not the workflow preferentially
detects certain subtypes of protrusion. Since patch-merging algorithms could be
sensitive to protrusion size, we used synthetic data to test the algorithm’s sensitivity
to bleb size (Supplementary Fig. 15). On synthetic cells of radius 7.6 pm (48 pixels)
we simulated blebs ranging in radius from 0.32 pm (2 pixels) and 0.64 pm (4 pixels)
to 5.1 pm (32 pixels). Although only 70% of the smallest 0.32 pm radii blebs
were decomposed as convex surface patches, almost all of the larger blebs were
decomposed. A bleb detector trained on synthetic data correctly classified all blebs
that were decomposed as convex surfaces.

Mapping fluorescence intensity to the cell surface. To measure the fluorescence
intensity local to each mesh face, we used the raw, non-deconvolved, fluorescence
image. At each mesh face, we used a kd-tree to measure the average pixel intensity
within the cell and within a sampling radius of the mesh face. To correct for surface
curvature-dependent artifacts, we depth normalized” the image before measuring
intensity localization by normalizing each pixel by the average pixel intensity at
that distance interior to the cell surface. Before analysis, we also normalized each
cell’s surface intensity localization to a mean of one.

Calculation of distance from a bleb edge. On the adjacency graph of faces,

we calculated the distance from each face to the nearest bleb edge measured in
number of faces traversed. To convert this distance to micrometers, we multiplied
by the average distance between faces for each cell in each frame. Since the distance
in micrometers between adjacent faces varies, our calculation of distance is an
estimate rather than exact.

Calculation of local bleb density. To calculate bleb density, we first assigned the
value one to each mesh face on a bleb and the value zero to each mesh face not

on a bleb (Supplementary Fig. 11a). We then diffused these values on the mesh
surface using equation (4) over 600 iterations (Supplementary Fig. 11b). We choose
the number of iterations such that the bleb density would be calculated over a
short distance on the order of a bleb length. Equation (4) does not allow an exact
measurement of bleb density and may be unstable over distances on the order of
many bleb lengths.

Spherical statistics. The von Mises-Fisher distribution is defined on an R*!
sphere within R space*®. For d=2 dimensions it approximates a wrapped normal
distribution on a circle and, similar to the normal distribution, for any d is
parameterized by a mean and an inverse spread. For d=3 dimensions, the von
Mises-Fisher distribution is

pxspK) = exp (kp'x) (11)

K
27 (ef—e™)
where p is the mean direction parameter and « is the concentration parameter,
which is inversely related to the data spread. The maximum likelihood estimate of
the mean direction is simply

Z,in
R=7—r7 (12)

N
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A Newtons method approximation for «, k,, in three dimensions is

R= (13)
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where N is the number of data vectors and I are Bessel functions of the first kind*.


http://www.nature.com/naturemethods

ARTICLES

NATURE METHODS

In Fig. 6¢,j, we measured the magnitude of PIP, and Kras"'? polarization by
mapping the intensity values defined on each surface mesh onto a unit sphere and
then using spherical statistics to calculate k. To map the intensities onto the unit
sphere, we calculated a set of unit vectors, X;, .., that extended in the direction
from the cell center to every mesh face. The cell center was defined as the location
within the cell farthest from the cell edge. Since we measured intensity at every
mesh face over a radius of 2 pm, to avoid spatially oversampling, we used only
every 1000th mesh face. We defined .y, as the measured intensity value
associated with each unit vector and then discretized the range of intensity values
into 32 bins. Finally, we replaced every vector X, .., with w copies of that vector
and calculated  from this set of unit vectors. As a control, we also measured k
from a set of X;engey, With randomized directions.

In Fig. 6d,k we computed the directional correlation of morphological motifs,
here blebs, with intensity localization. In each frame, we defined the directional
correlationas p, -, ensjty’ To measure M., we calculated a set of unit vectors,
X that extended in the direction from the cell center to each mesh face on a
bleb. To measure W e,y We calculated X, e, and in equation (12) we weighted
X, by the intensity localization. Since the cell is not a sphere and most cells have
polarized shapes, the surface itself is expected to have a nonrandom p and a small
k. To account for this, we created a control distribution of directional correlations
Pyjetsrand “ Pintensity’ where My rang Was calculated from a set of vectors where the
patc dassification was randomly permuted. In each frame, we created 200 such
permutations by randomly assigning patches to be a bleb or not a bleb.

Measurement of boundary motion. To measure boundary motion, for each face
we found the closest face in the previous frame using a kd-tree. We then defined
the boundary motion as
m;=—sign(d;-n;) |d (18)

where m; is the boundary motion at face 4, d, is the vector from face i to the closest
point in the previous frame, and n, is the normal to the surface at face i.

This is not an ideal measure of boundary motion since the mapping vectors
d; may cluster on select faces of the previous frame’s surface, or even alter the
topology among faces, in a physically unrealistic manner (see Machacek et al.*’
for an illustration of these problems with 2D boundaries). As a control, we also
calculated the boundary motion for each face by finding the closest point in the
next frame. Supplementary Fig. 14b shows the protrusive and retractive motion of
six cells using both definitions of boundary motion. Here, backward motion is the
mapping of points from each frame to the previous frame and is the definition used
elsewhere, and forward motion is the mapping of points from each frame to the
subsequent frame. Even though the backward and forward motions of the cells are
different, in both cases blebs are more protrusive than non-blebs. This measure is
also not a subpixel measure of motion, and should not be used to measure subpixel
motions. Because we map each face to the closest face rather than the closest
surface point in the previous frame, motions that are less than the average distance
between faces will be undersampled in the motion distribution.

Statistical hypothesis testing. For each Kras and PIP, labeled cell, we measured
the mean intensity localization of faces on and off blebs and then performed a
one-sided t-test on the differences of the means after testing for normality using a
Kolmogorov-Smirnov test. The Cohen’s d effect size was measured.

Unless otherwise indicated, all errors and error bars show the standard error of
the mean.

Surface rendering. Most triangle meshes were rendered in ChimeraX”. Colored
triangle meshes were exported from MATLAB as Collada.dae files using custom-
written code and were rendered using full lighting mode. Lighting intensity and
ambient intensity were adjusted. Colormaps were modified from colorBrewer™.
The surfaces in Supplementary Figs. 11 and 15 were rendered within MATLAB.
Our software is capable of rendering all meshes shown in the paper within
MATLAB, as well as creating Collada files for export to ChimeraX.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data are available from the corresponding author upon reasonable request.

Code availability
The latest version of the software described here, as well as a user’s guide, is
available from https://github.com/DanuserLab/u-shape3D.
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Data analysis Custom code, which will be published with the manuscript, was written in Matlab. Surface renderings were performed by Matlab and
UCSF ChimeraX version 0.9 or earlier. Most versions of Matlab released in 2013 or later were used, but the software was most
thoroughly tested in MatlabR2018a.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen to be sufficiently large to demonstrate the feasibility of the method. More specifically, for software validation we
used large enough samples such that the F1 score converged as a function of the number of cells.

Data exclusions  Only single cells that were not in contact with other cells were analyzed. For morphological motif detection, cells not exhibiting the motif of
interest were excluded. Unless stated otherwise, cells where surface extraction failed were also excluded.

Replication We validated the software on multiple and diverse datasets as described in the manuscript.
Randomization  Cells were chosen for imaging based on apparent cell health, fluorescence expression, and optical clarity.

Blinding The analysis was automated and the same analysis parameters were used for populations being compared.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
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Antibodies

Antibodies used rabbit anti-cofilin-1 (Cell Signaling; D3F9 XP® # 5175 used at 1:2000 dilution), rabbit anti-Wave2 (Cell Signaling; D2C8 XP® #3659
used at 1:2000 dilution), rabbit anti-GFP (Rockland Inc; 600-401-215 used at 1:2000 dilution), and mouse anti-GAPDH (GeneTex,
GTX627408 used at 1:5000 dilution)

Validation - Anti-Cofilin-1 antibodies were reported by the manufacturer to react with endogenous levels of Cofilin-1 from Human, Mouse,
Rat, Monkey, Dog. We have further confirmed the specificity of the antibodies by blotting for cells knocked out for cofilin-1.
- Anti-Wave? antibodies were reported by the manufacturer to react with endogenous levels of Wave2 from Human, Mouse,
Rat, Monkey. We have further confirmed the specificity of the antibodies by blotting for cells knocked for Wave2.
- Anti-GFP antibodies were reported by the manufacturer to react with wt and all variants of GFP.
- Anti-GAPDH antibodies were reported by the manufacturer to react with GAPDH from Human, Mouse, Rat, Zebrafish, Yeast,
Drosophila, Pig, Monkey, E. coli.




Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) The MV3 melanoma cells were a gift from Peter Friedl (MD Anderson), the transformed HBEC cells were a gift from John
Minna and Jerry Shay (UT Southwestern), the U20S osteosarcoma cells were a gift from Dick McIntosh (University of
Colorado, Boulder) and the dendritic cell precursors were a gift from Michael Sixt (IST Austria).

Authentication None of the cell lines used were authenticated.
Mycoplasma contamination The MV3, HBEC, and U20S cell lines tested negative for mycoplasma contamination. The dendritic cell precursors were not
tested.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)
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