ME-474 Numerical Flow Simulation

Comments on the exercise: 1D steady convection-diffusion

Fall 2021

After discretization with one of the four proposed schemes, we are left to solve a linear system A¢ = b.
Regardless of the chosen scheme, we have

[ALZ =ap, [A]i,ifl = —aw, [A]i,i+1 = —Aag fOI‘ 3 S 7 S N -1

)

where the indices 1 and N denote the boundary points. In addition, imposition of Dirichlet boundary
conditions requires [b]; = ¢g and [b]y = ¢r. Accordingly, [A];; = 1 and [A]yny = 1 such that

[A]11[o) [P]1 = ¢o,
[A]nN[o] N [9ln = ér.

o =

1.
[b]N = 1-

For the second line (i = 2) of the matrix A, and the expression of the right-hand side, we need to distinguish
several cases depending on the discretization scheme:

CD and UD

Knowledge of the solution at WW is never required in the determination of the one at P, thus the lines
2 and N — 1 of the matrix A are no different from the other “inner” lines 3 to N — 2: [A];; = ap,

[A]ii-1 = —aw, [Aliiq1 = —aE.

As neither natural nor deferred source is present, the right-hand side b is null everywhere except at
boundary nodes. As b does not depend on ¢, we can directly solve the linear system A¢ = b with the
command “\” of Matlab without iterating on ¢. Remember also that solving the linear system does not
imply to construct explicitly the inverse of A.

QUICK + dc and TVD + dc

For the next two schemes QUICK + dc and TVD + dc, we must iterate on ¢ until convergence because of
the deferred correction. Thus, b = b(¢*), where the asterisk denotes the values at the previous iteration.
Who says iterations says initial guess. Of course, in general the closer the initial guess to the final solution,
the quicker the convergence. For instance, it is good if this initial guess satisfies the boundary conditions
and has a physically plausible shape. For both schemes, we write for the right-hand side terms

(bli = S([¢"]i-2,[¢"]i-1, [#"]is [¢]i41), for 3<i< N -1

Because this requires the knowledge of the solution at node i—2 (node WW), the construction of the second
line (i = 2) of A and b needs a special treatment (since the node i = 2 —2 = 0 does not exist). It is detailed
as follows:

QUICK + dc: details

The general governing equation is:

F¢6*F¢w:D(¢E*¢P)*D(¢P*¢W)'

At node i = 2, we propose ¢ww = 20w — dp, thus ¢, expresses in particular:

_ —dww + 60w +30p 20w + 3¢p + 60w +dp 4dow +49p ow | dp
Pu = 8 B 8 a 8 o2 27

However, ¢. remains as usual:

—bw — 20p + 39k

Cbe:d)P"i‘ 3

As a consequence, at node i = 2 we have:

Fo. — Fop = D(¢op — ¢p) — D(op — dw) <

— gy — 2532 +3¢>7@> e <¢w N ¢2P> = D(¢5 — ¢p) — D(dp — dw) &

F<¢P—|— 5
<F+2D—Z> ¢p = (D) ¢r + <§+D) ow + Sqe

where

F
Sie = g (Giv + 267 — 30%).

As said, these equations only hold at ¢ = 2, and we write accordingly

(F Iy §> 6]z = (D) [6]s + (F T D) (611 + Sue.

2
where
F * * *
Sdc—g([ﬁf) J1+2[¢"]2 — 3[¢7]3) -

In the code, this corresponds to:
%--- Boundary condition in CV 2

A(2,1) = -(D+F/2); % West

A(2,3) = -(D); % East

A(2,2) = 2«D + F - F/2;) P

b(2) = F/8 *(Phi(1) +2%Phi(2) -3*Phi(3)); % deferred correction

Note: here, for node i = 2, we have injected the expression at the ghost node (¢ww = 2¢w — ¢p) in the
general expression of the QUICK scheme (before deferred correction) for ¢,,; this yielded ¢, = ¢ow /2+dp/2
with positive coefficients only, so no term needed to be moved to the source term.

Another option is to start from the expression of the QUICK scheme after deferred correction, and inject
the expression at the ghost node:

appp = awow + apdp + S
& (2D + F)pp = (D + F)pw + Dog + F(—diyw — &y + 505 — 3¢75)/8
= (D + F)¢w + Dog + F(—(2¢1y — ép) — ¢y + 56p — 3¢k5)/8
= (D + F)éw + Do + F(=3¢y, + 66p — 36%)/8,

l.e.

F * * *
(2D + F)[¢]2 = (D + F)l¢l1 + (D)[¢]s + o (=3[l1 + 6[4]2 — 3[¢]3).
The two options give the same converged solution (within the chosen tolerance): the same original linear
system is solved, only the details of the iterative method vary (i.e., when using deferred correction, how
much of ¢, and ¢,, is moved to the source term).

TVD + dc: details

For the TVD scheme, the second line of the matrix is similar to others between 3 and N — 1, namely
[Alii = ap, [Alii—1 = —aw, [A]ii+1 = —ag also holds for ¢ = 2. However, at node i = 2, opww = 20w — ¢p
thus r, = 1.

About this scheme, one should also be careful with the quantities ¢ — ¢p and ¢p — ¢y, that appear at
the denominators of r. and r,, but can be null. Dealing with infinity is numerically delicate and requires
a special treatment. In the code, we propose to test systematically the nullity of ¢ — ¢p and ¢p — dw.
If they are null indeed, and if in addition the numerator is not null, we set the corresponding r to a very
high value, for instance 1030, still treatable by Matlab. On the other hand, if the numerator is null too, the
corresponding r is set to 0 to avoid the undetermined form “NaN”.

In the code, this corresponds to:

%——— Define r (ratio of gradients) with test to avoid dividing by O
if (Phi(i+1)-Phi(i))==0
if abs(Phi(i)-Phi(i-1))>0,
r_e = 1e30 * sign(Phi(i)-Phi(i-1));

else
r_e = 0;
end
else
r_e = (Phi(i)-Phi(i-1)) / (Phi(i+1)-Phi(i));
end

if (Phi(i)-Phi(i-1))==0
if abs(Phi(i-1)-Phi(i-2))>0
r_w = 1e30 * sign(Phi(i-1)-Phi(i-2));

else
rw=20;
end
else
r_w = (Phi(i-1)-Phi(i-2)) / (Phi(i)-Phi(i-1));
end

