
ME-474 Numerical Flow Simulation

Comments on exercise: 1D steady diffusion

Fall 2023

Implement a FVM code in Matlab to solve a 1D steady-state heat conduction problem.
Equation:

∂

∂x

(
k(x)

∂T

∂x

)
+ S(x) = 0

Domain: x ∈ [0, L], L = 1 m.
Assume the thermal conductivity is constant: k = 400 W/(K.m).

1. Consider Dirichlet boundary conditions: T (0) = Ta = 300 K, T (L) = Tb = 320 K. Assume the source
term is constant: S = Sc = 5000 W/m3.

� Define a uniform grid of n nodes: x1 = 0, x2 = ∆x = L/(n− 1) . . ., xn = L. Start with n = 21.
The usual Matlab command to create uniform grids is linspace(0,L,n). One can also use the
syntax 0:dx:L.

� Recall the discretized equation

aPTP = aWTW + aETE + b,

or in vectorial form AT = b. Define the n × n matrix A, and the n × 1 right-hand side vector
b. Implement boundary conditions in equations 1 and n.
Please note that the right notation to initialise a vector with zero entries is zeros(n,1) or
sparse(n,1), if you want to work with sparse matrices. The commands zeros(n) and sparse(n)
generates n×n matrices. If you use central differencing as discretization scheme, the matrix A
should be tri-diagonal. The first and last rows have to be replaced by the “Dirichlet” operator
(i.e. the identity δij).

� Solve for T and plot T (x).
The use of the command A\b is advised since it allows to save computational time with respect
to inv(A)*b.

� Compare with the theoretical solution (T ′′ = −S/k = cst → quadratic T (x)):

Ttheo(x) =

(
−Sc

2k

)
x2 +

(
Tb − Ta

L
+

ScL

2k

)
x+ Ta.

This solution can be evaluated at the nodes of the grid built at the beginning, which makes it
easier to compute the error (next question). It can also be evaluated on a finer grid, for instance
for plotting purposes.

� Check that the mean error

e =
1

n

∑
i

|Ti − Ttheo,i|

is exactly zero whatever the value of n. Why?
As explained below, this comes from the very specific situation we have here: the combination
of a uniform grid and a quadratic solution.

When discretizing the equation, we make two approximations: for the derivative ∂T/∂x, and
for the source term. With the central differencing scheme, the derivative is approximated as
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(∂T/∂x)e ≈ (TE − TP )/δxPE . Following the lecture slides, Taylor expansions at nodes P and E
with respect to e read:

TE = Te + (xE − xe)
∂T

∂x
+ . . .+

(xE − xe)
k

k!

∂kT

∂xk
+ . . . , (1)

TP = Te + (xP − xe)
∂T

∂x
+ . . .+

(xP − xe)
k

k!

∂kT

∂xk
+ . . . , (2)

where the derivatives are evaluated in e. The difference of these two expressions gives

TE − TP = 0 + (xE − xP )
∂T

∂x
+ . . .+

(xE − xe)
k − (xP − xe)

k

k!

∂kT

∂xk
+ . . . (3)

On a uniform grid, the spacing is constant: xE − xe = −(xP − xe) = δx. Therefore we have:

(xE − xe)
k − (xP − xe)

k = δxk − (−δx)k =
[
1− (−1)k

]
δxk =

{
0 if k is even,
2δxk if k is odd.

(4)

So what remains in (3) is:

TE − TP = (xE − xP )
∂T

∂x
+

∑
k≥3, odd

2δxk

k!

∂kT

∂xk
. (5)

If, in addition, the solution T (x) is quadratic, all the derivatives ∂kT/∂xk are 0 for all k ≥ 3, so
finally we have without any approximation

TE − TP = (xE − xP )
∂T

∂x
. (6)

In other words, in this very specific case, the central differencing scheme used to approximate
∂T/∂x is exact. A similar argument for the source term shows that the total error is zero.

2. Consider now the same Dirichlet boundary condition on the left, T (0) = Ta = 300 K, but a Neumann
boundary condition on the right, qb = −k(∂T/∂x)x=L = −5000 W/m2.

� Modify the implementation of the boundary conditions. (It may be a good idea to save two
different versions of your code.)
The only difference with respect to the previous point consists of the implementation of the
boundary condition.

� Solve for T and plot T (x).

� Compare with the theoretical solution:

Ttheo(x) =

(
−Sc

2k

)
x2 +

(
ScL− qb

k

)
x+ Ta.
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� Check that the mean error per control volume is exactly zero whatever the value of n. Why?
Same reason as in Q1.

3. Finally, come back to Dirichlet boundary conditions on both ends like in Q1, but assume now that
the source term varies linearly with temperature:

S = Sc + SlT.

Take for instance Sc = 5000 for the constant component, and Sl = −100 for the linear coefficient.
Note that the integration of this source term over a control volume yields∫ xe

xw

S dx ≈ S∆x = (Sc + SlTP )∆x,

so now the constant right-hand side is b = Sc∆x, while the solution-dependent term SlTP∆x goes
into the diagonal coefficient aPTP .

� Modify the matrix A accordingly.
It is sufficient to properly modify i) the entries of b and ii) the entries Aii on the diagonal since,
as we see from the previous formula, T is evaluated in the central point P.

� Solve for T and plot T (x).

� Compare with the theoretical solution, that can be obtained as the sum of (i) a particular
solution of the full equation kT ′′ + SlT = −Sc, i.e. T = −Sc/Sl, and (ii) the general solution of
the homogeneous equation kT ′′ + SlT = 0, which is T = c1e

µx + c2e
−µx, with µ =

√
−Sl/k, and

c1 and c2 such that boundary conditions are satisfied, which yields:

Ttheo(x) = −Sc

Sl
+ c1e

µx + c2e
−µx, c1 =

Tb −
(
Sc
Sl

+ Ta

)
e−µL + Sc

Sl

eµL − e−µL
, c2 = Ta +

Sc

Sl
− c1.

� Observe that the mean error per control volume is not zero. Why? How does it decrease with
n? (Plot the mean error as a function of n in log-log scale.)
In this case the solution does not have higher-order derivatives that vanish, so the approximation
is not exact.

When using a scheme of order M , the mean error in a log-log plot is represented by a straight
line of slope M . Here the scheme should be of order 2, so the error should decrease like:

e ∼ (∆x)2 ∼ 1/n2 ⇒ log(e) ∼ −2 log(n).

This is indeed what is observed in the figure below (right panel), where the error is plotted for
n = 4, 8, 16, 32, 64 in log-log scale.
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