
ME-474 Numerical Flow Simulation

Exercise: unsteady convection-diffusion

Fall 2022

The aim of this exercise is to implement a FVM code in Matlab to solve the 1D unsteady convection-
diffusion equation,
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as well as the special cases of pure diffusion (u = 0) and pure convection (Γ = 0). You can reuse the code
from week 4 (steady convection-diffusion), and simply wrap the relevant part in a time integration loop.

For the temporal scheme, use the theta method. Define early on in the code a variable theta, so
that the scheme can be easily modified, simply by choosing the value of θ ∈ [0, 1]. Using for instance
upwind differencing for the convective term (with u > 0) and central differencing for the diffusive term, the
coefficients of the algebraic equation
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to be solved at each time step are the following:
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Use the following parameters:

� a domain x ∈ [0, L] with L of your choice between 1 and 5 m;

� a uniform mesh with a number of nodes n of your choice,

� a constant density ρ = 1 kg/m3;

� a constant velocity u = 0 for pure diffusion, and a value u > 0 otherwise;

� a constant diffusion coefficient Γ = 0 for pure convection and Γ > 0 otherwise;

� Dirichlet boundary conditions: ϕ(x = 0, t) = ϕ(x = L, t) = ϕw = 0 at all times;

Run simulations over an interval t ∈ [0, T ] with T of the order of 5-10 s. Try different schemes: explicit
Euler (θ = 0), Crank-Nicolson (θ = 0.5), implicit Euler (θ = 1).
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1 Pure diffusion

Here u = 0 and Γ = 0.1 kg/(m.s).
Start the simulation with a uniform initial condition ϕ(x, t = 0) = ϕ0.
Plot spatial snapshots ϕ(x, ti) as function of x, for different times ti.
Plot the time evolution ϕ(xp, t) at a specific location, for example xp = L/2. Compare with the

theoretical solution (in practice the infinite sum converges quickly):

ϕ(x, t) = ϕw +
2

π
(ϕ0 − ϕw)

∞∑
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nπ

L
.

Plot the spatio-temporal evolution ϕ(x, t) as function of both x and t. (For 2D plots you can use Matlab
functions such as surf, contour or imagesc.)

Play with ∆x and ∆t and check whether the different temporal schemes are stable, and whether the
solution has nonphysical oscillations.
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Figure 1: Pure diffusion. Left: Space-time plot of ϕ(x, t). Middle: snapshots ϕ(x) at different time instants.
Right: time evolution of ϕ(x = 0.5, t).

2 Convection-diffusion

Here u > 0, and Γ = 0 (pure convection) or Γ = 0.01 kg/(m.s) (convection-diffusion).
Start the simulation with a Gaussian initial condition ϕ(x, t = 0) ∝ exp(−(x− x0)

2/σ2) with center x0
and width σ of your choice.

Again, plot several snapshots, the temporal evolution at a specific location, and the spatio-temporal
evolution. Try different values of ∆x and ∆t.
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Figure 2: Convection-diffusion. Left: Space-time plot of ϕ(x, t). Middle: snapshots ϕ(x) at different time
instants. Right: time evolution of ϕ(x = 0.75, t).
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