ME-474 Numerical Flow Simulation

Exercise: unsteady convection-diffusion

Fall 2022

The aim of this exercise is to implement a FVM code in Matlab to solve the 1D unsteady convectiondiffusion equation,

 $\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho u\phi)}{\partial x} = \frac{\partial}{\partial x} \left(\Gamma \frac{d\phi}{dx} \right),$

as well as the special cases of pure diffusion (u = 0) and pure convection $(\Gamma = 0)$. You can reuse the code from week 4 (steady convection-diffusion), and simply wrap the relevant part in a time integration loop.

For the temporal scheme, use the theta method. Define early on in the code a variable theta, so that the scheme can be easily modified, simply by choosing the value of $\theta \in [0, 1]$. Using for instance upwind differencing for the convective term (with u > 0) and central differencing for the diffusive term, the coefficients of the algebraic equation

$$a_P \phi_P^{n+1} = a_W \phi_W^{n+1} + a_E \phi_E^{n+1} + b(\phi^n)$$

to be solved at each time step are the following:

$$\begin{split} a_P &= \frac{\rho_P \Delta x}{\Delta t} + \theta \left(\rho u \right)_e + \frac{\theta \, \Gamma_e}{\delta x_{PE}} + \frac{\theta \, \Gamma_w}{\delta x_{WP}}, \\ a_W &= \theta \left(\rho u \right)_w + \frac{\theta \, \Gamma_w}{\delta x_{WP}}, \\ a_E &= \frac{\theta \, \Gamma_e}{\delta x_{PE}}, \\ b &= \left[\frac{\rho \Delta x}{\Delta t} - (1 - \theta) \left((\rho u)_e + \frac{\Gamma_w}{\delta x_{WP}} + \frac{\Gamma_e}{\delta x_{PE}} \right) \right] \phi_P^n + (1 - \theta) \left((\rho u)_w + \frac{\Gamma_w}{\delta x_{WP}} \right) \phi_W^n + \left(\frac{(1 - \theta) \Gamma_e}{\delta x_{PE}} \right) \phi_E^n. \end{split}$$

Use the following parameters:

- a domain $x \in [0, L]$ with L of your choice between 1 and 5 m;
- \bullet a uniform mesh with a number of nodes n of your choice,
- a constant density $\rho = 1 \text{ kg/m}^3$;
- a constant velocity u = 0 for pure diffusion, and a value u > 0 otherwise;
- a constant diffusion coefficient $\Gamma = 0$ for pure convection and $\Gamma > 0$ otherwise;
- Dirichlet boundary conditions: $\phi(x=0,t) = \phi(x=L,t) = \phi_w = 0$ at all times;

Run simulations over an interval $t \in [0, T]$ with T of the order of 5-10 s. Try different schemes: explicit Euler $(\theta = 0)$, Crank-Nicolson $(\theta = 0.5)$, implicit Euler $(\theta = 1)$.

1 Pure diffusion

Here u = 0 and $\Gamma = 0.1$ kg/(m.s).

Start the simulation with a uniform initial condition $\phi(x, t = 0) = \phi_0$.

Plot spatial snapshots $\phi(x, t_i)$ as function of x, for different times t_i .

Plot the time evolution $\phi(x_p, t)$ at a specific location, for example $x_p = L/2$. Compare with the theoretical solution (in practice the infinite sum converges quickly):

$$\phi(x,t) = \phi_w + \frac{2}{\pi}(\phi_0 - \phi_w) \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} e^{-(\Gamma/\rho)\mu_n^2 t} \sin(\mu_n x), \quad \mu_n = \frac{n\pi}{L}.$$

Plot the spatio-temporal evolution $\phi(x,t)$ as function of both x and t. (For 2D plots you can use Matlab functions such as surf, contour or imagesc.)

Play with Δx and Δt and check whether the different temporal schemes are stable, and whether the solution has nonphysical oscillations.

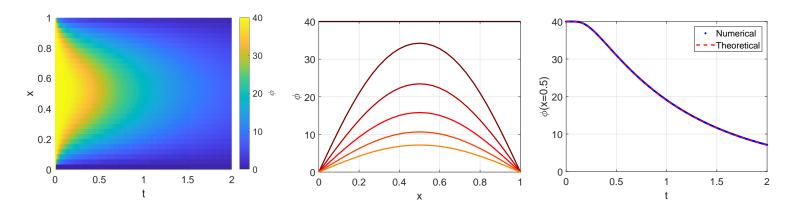


Figure 1: Pure diffusion. Left: Space-time plot of $\phi(x,t)$. Middle: snapshots $\phi(x)$ at different time instants. Right: time evolution of $\phi(x=0.5,t)$.

2 Convection-diffusion

Here u > 0, and $\Gamma = 0$ (pure convection) or $\Gamma = 0.01$ kg/(m.s) (convection-diffusion).

Start the simulation with a Gaussian initial condition $\phi(x, t = 0) \propto \exp(-(x - x_0)^2/\sigma^2)$ with center x_0 and width σ of your choice.

Again, plot several snapshots, the temporal evolution at a specific location, and the spatio-temporal evolution. Try different values of Δx and Δt .

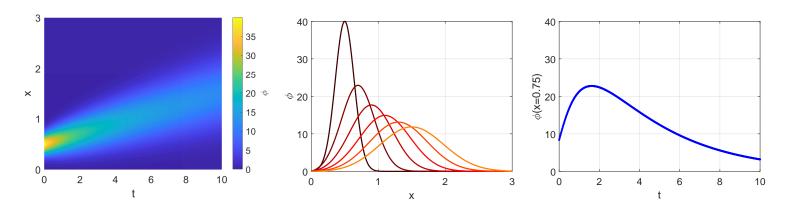


Figure 2: Convection-diffusion. Left: Space-time plot of $\phi(x,t)$. Middle: snapshots $\phi(x)$ at different time instants. Right: time evolution of $\phi(x=0.75,t)$.