

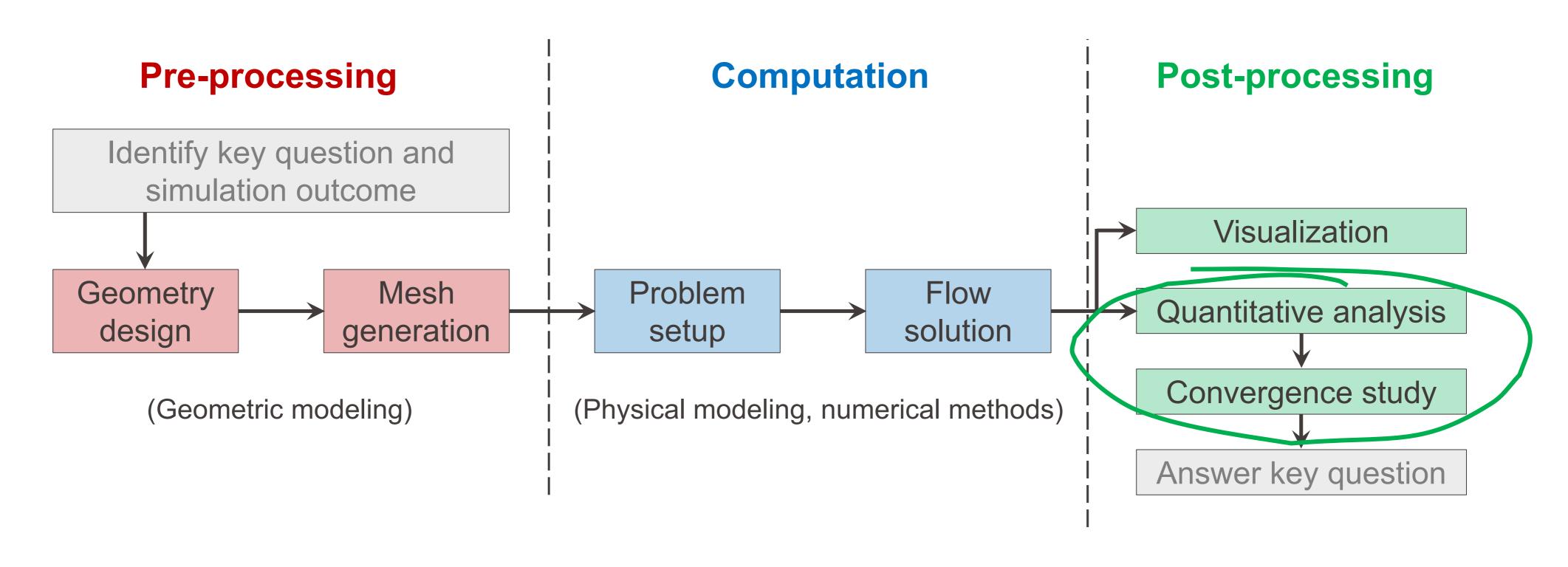
Verification & Validation

Numerical Flow Simulation

École polytechnique fédérale de Lausanne

Edouard Boujo Fall 2024

Numerical simulation workflow



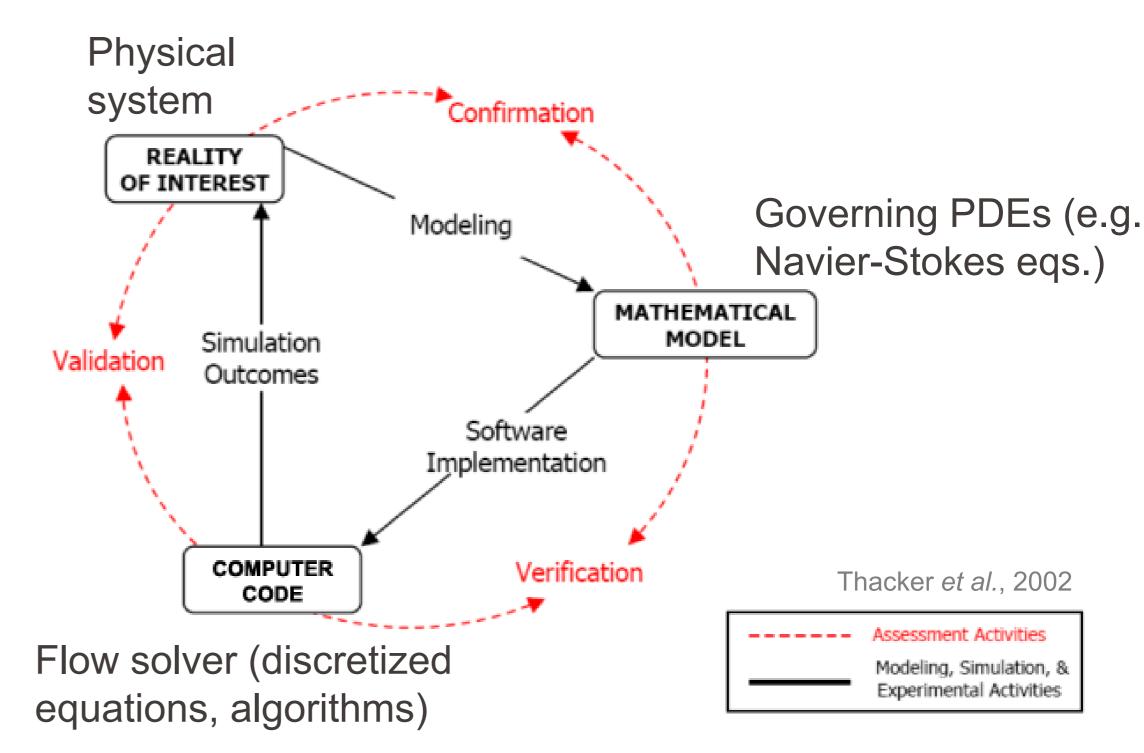
Verification and validation

- Various sources of error:
 - Numerical errors: roundoff, iterative convergence, discretization.
 - Coding errors: mistakes.
 - User errors: incorrect use of software.
- Various sources of uncertainty:
 - Input uncertainty: limited information / approximation of material properties, geometry, boundary conditions.
 - Physical model uncertainty:
 - inadequate representation of physical processes (e.g. turbulence, combustion),
 - simplifying modelling assumptions (e.g. incompressible vs. compressible, steady vs. unsteady, 2D or symmetric vs. fully 3D).

Verification and validation

 V&V examine the credibility of the code and simulation results by demonstrating acceptable levels of error and uncertainty.

- Two processes:
 - Verification: are we solving the equations correctly? (Are the math and the code correct? Is the mesh fine enough?)
 - Validation: are we solving the correct equations? (Are the physics and the BCs correct?)



Verification and validation

- Verification (are we solving the equations correctly?)
 - Motivation: verify that computer code can be used to obtain correct solution to given model / PDEs.
 - Goal: identify / eliminate mathematical-based errors (e.g. coding mistakes, poor discretization, coarse mesh, insufficient convergence).
 - Method: compare numerical results with exact (analytical) or highly accurate (numerical) results.
- Validation (are we solving the correct equations?)
 - Motivation: increase confidence in the predictive capacity of the model / PDEs / BCs.
 - Goal: identify/eliminate errors in the model / PDEs / BCs.
 - Method: compare numerical results with validation experiment results.

Verification

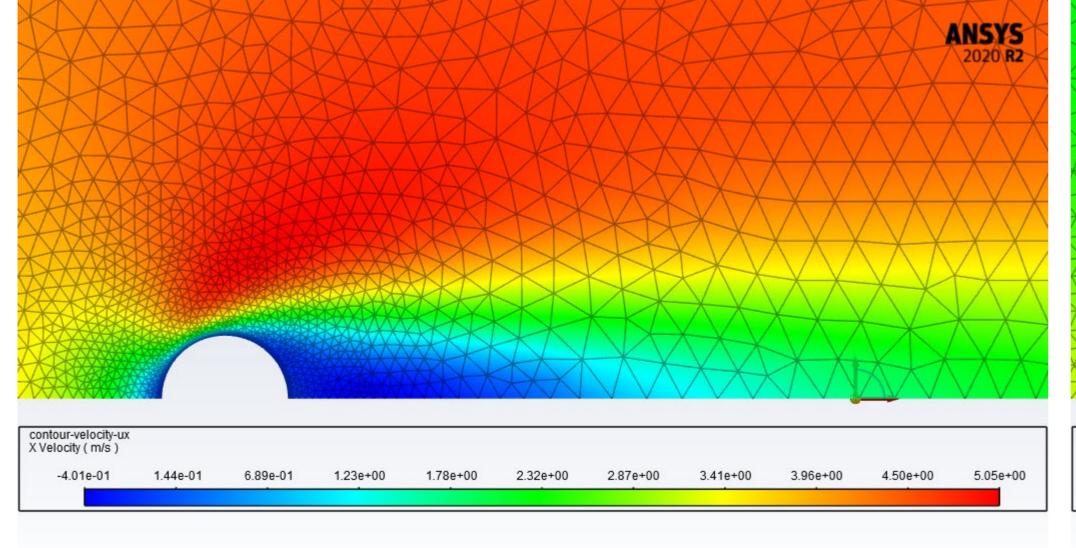
- Qualitative analysis: numerical solution should be physically realistic.
 - Smooth solution (except if shock), with no evidence of the underlying mesh.
 - All important fine flow structures are resolved.
- Quantitative analysis: numerical solution should be independent of computational mesh → mesh convergence study is essential.
 - Numerical solution should become more accurate when the mesh is refined.
 - The mesh must be refined until the desired accuracy is obtained.
 - Refining further has no significant influence on computed flow solution.
 - Different quantities of interest may exhibit different convergence behaviors.
 - Mesh-to-mesh interpolation convenient to speed up the process.

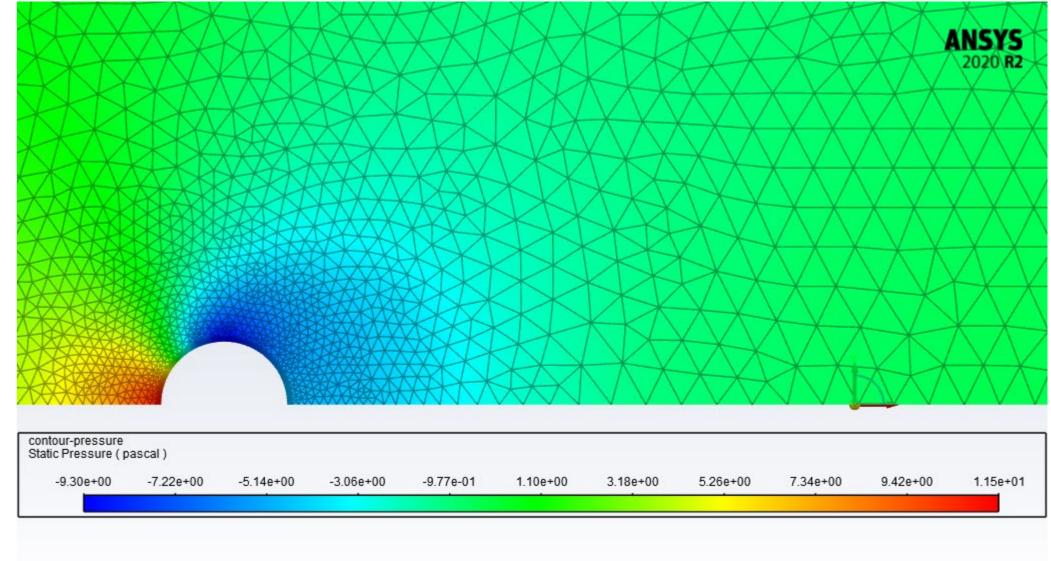
Verification: mesh convergence study

- Theoretical study:
 - Compare with exact (analytical) solution and analyze how the error decreases.
 - Useful when developing a new CFD code. Impossible for practical problems.
- Practical study:
 - Use numerical solution on the finest mesh as a reference;
 - Or analyze relative variation from one mesh to the next.

- 2D laminar, Re=40 (U=4 m/s, D=10 mm, $\nu=1e-3$ m²/s)
- Probe: pressure p and velocity u_x at (x,y)=(5D,0)
- Drag force F_d on the cylinder → drag force coefficient $C_d = \frac{F_d}{\frac{1}{2}\rho_\infty U_\infty^2 D}$ No analytical solution available
- No analytical solution available

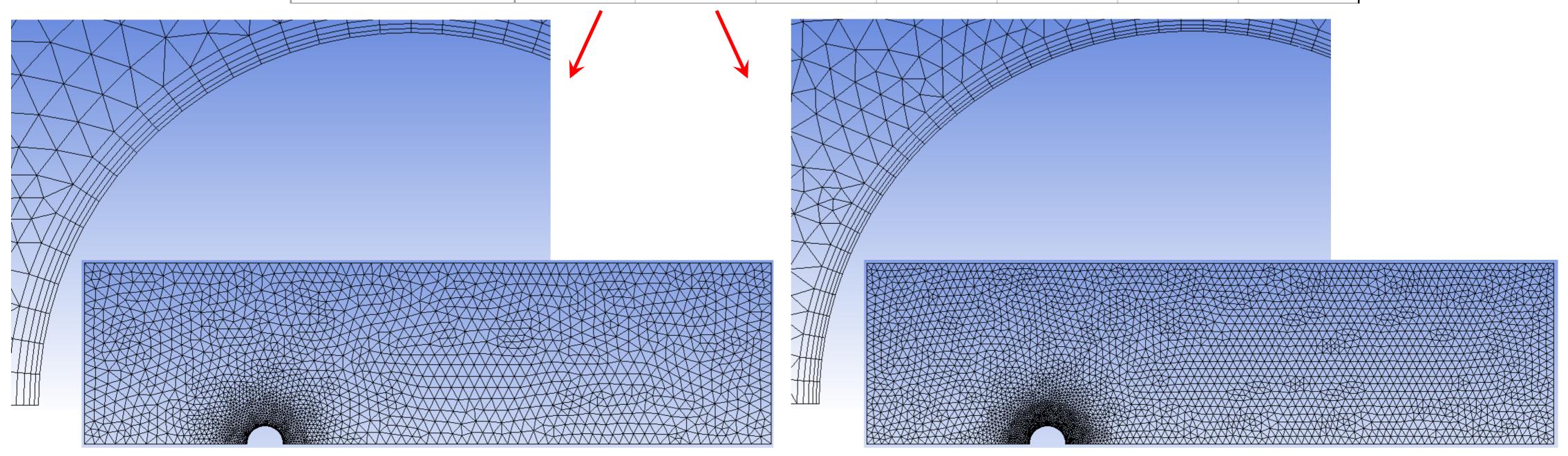
Numerical Flow Simulation



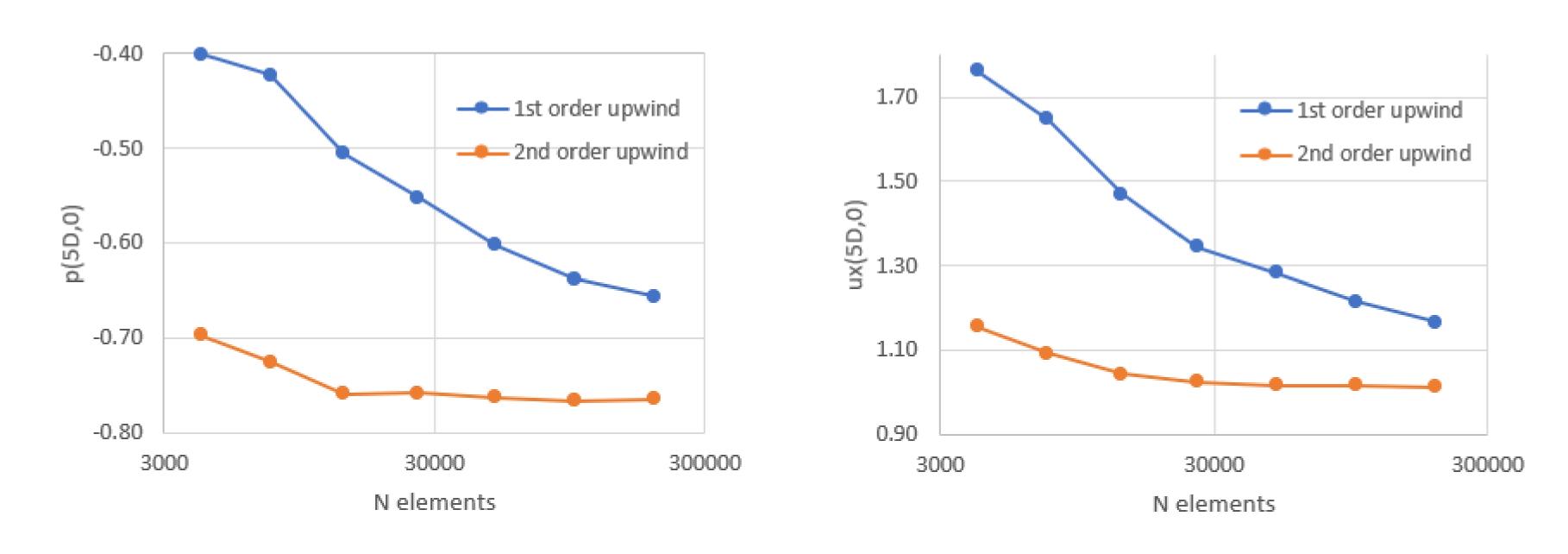


- Uniform refinement: at each iteration, divide size h by approx. $\sqrt{2}$ in the whole domain.
- 2D → at each iteration, number of elements N multiplied by approximately 2.

Mesh	1	2	3	4	5	6	7
h max (mm)	2.820	2.000	1.400	1.000	0.710	0.500	0.350
h cyl (mm)	0.420	0.300	0.210	0.150	0.110	0.075	0.053
Nb of elements	4106	7385	13808	26083	50495	98620	193551

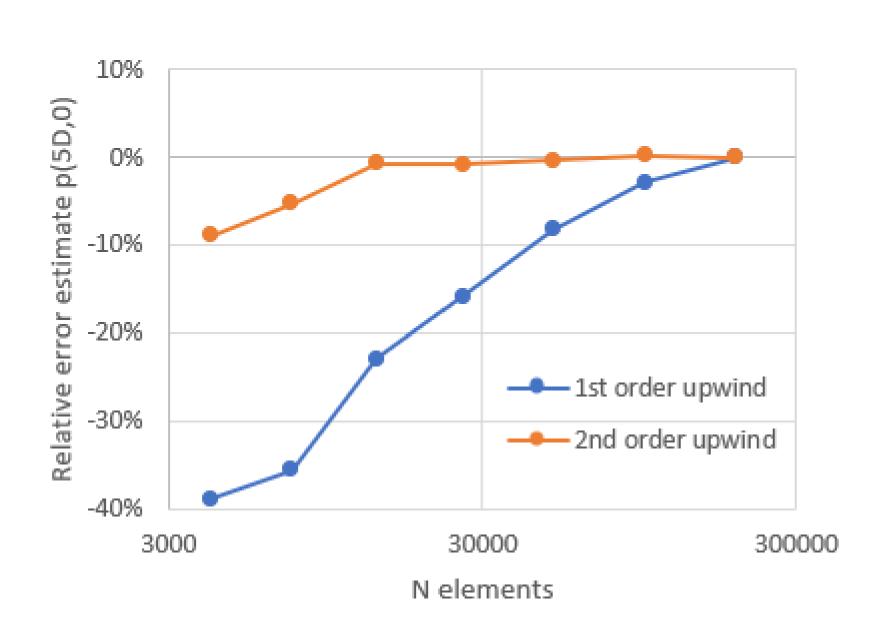


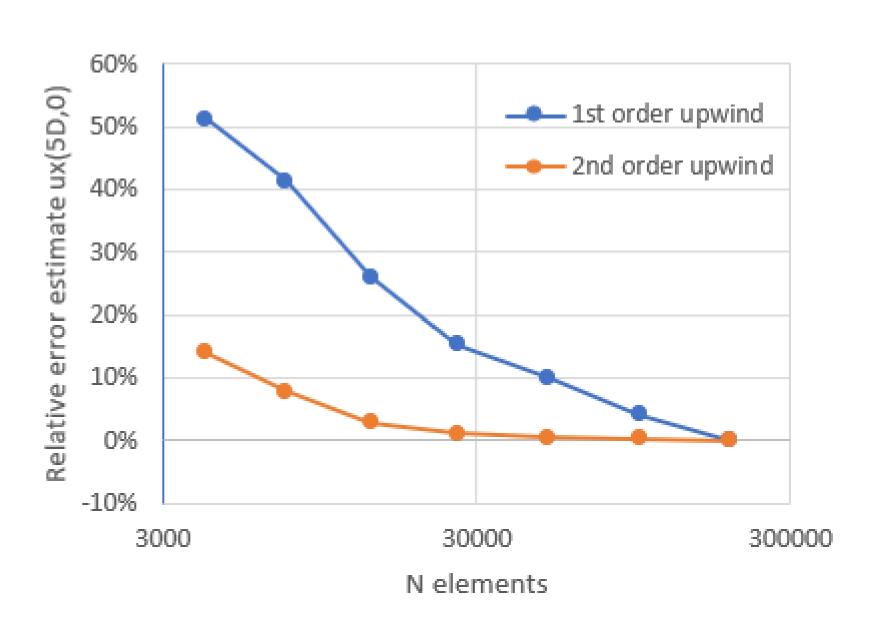
■ Plot data against *h* or 1/*h* or *N* etc. (May be clearer in log scale.)



- Check that 2nd-order spatial scheme converges faster than 1st-order scheme.
- Convergence is not necessarily monotonic.

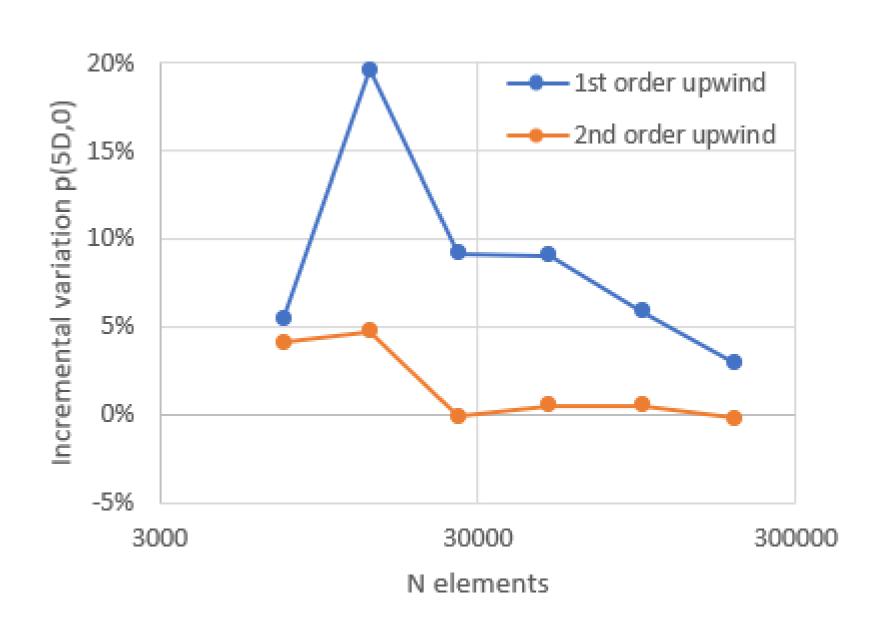
Error estimate with respect to finest mesh:

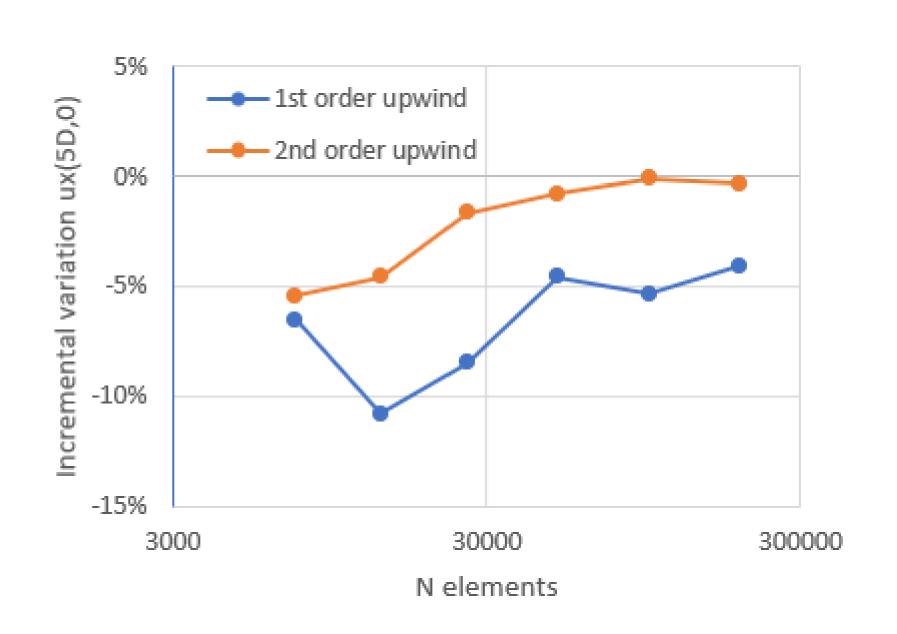




- Can choose the coarsest mesh such that the relative error remains smaller than a chosen threshold (depends on the required accuracy).
- For ex., would choose mesh 3 for an error threshold of 5%, and mesh 4 for an error threshold of 2%.

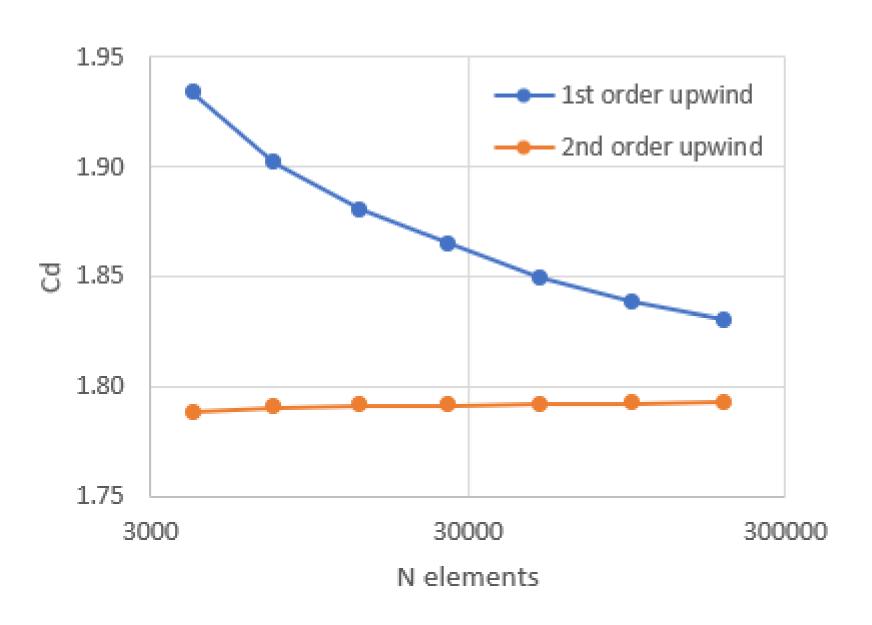
• Incremental variation from one mesh to the next:

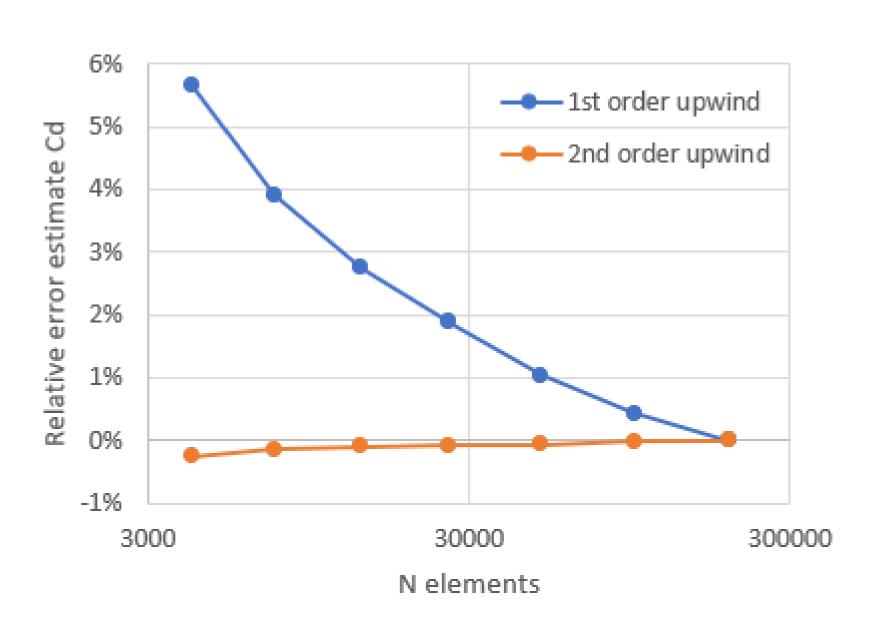




- Meaningful only if significant decrease in h from one mesh to the next.
- May be safer to use a smaller threshold in this case.
- In this example, would also choose mesh 3 for a threshold of 5%, and mesh 4 for a threshold of 2%.

- Note: convergence may depend on the quantity of interest and on the region.
- In this example, C_d turns out to converge faster than p and u_x measured in (5D,0):



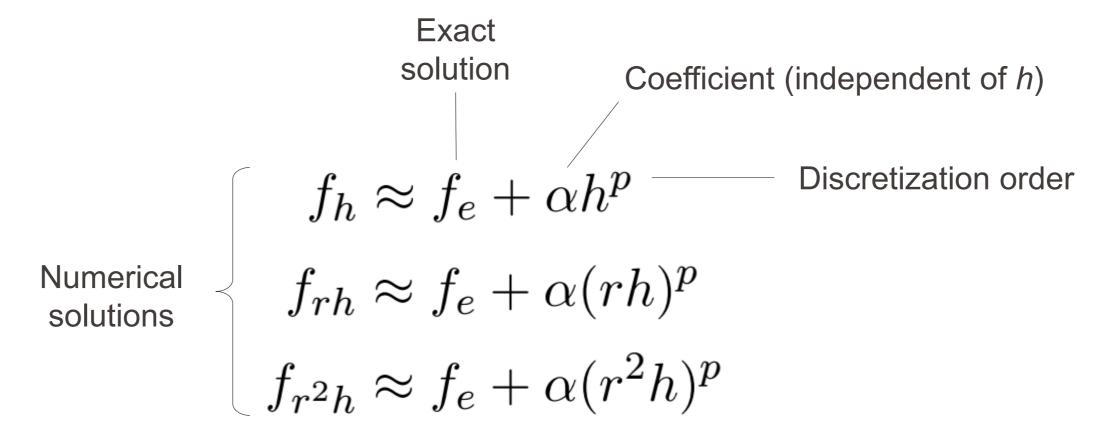


Richardson extrapolation

- Objective: estimate the discretization error and the exact solution, using numerical solutions computed on different meshes.
- Assumptions:
 - Smooth solution;
 - **Discretization order** = **p** (not the formal order known a priori in general 1st or 2nd order but the actual order observed a posteriori);
 - Monotonic convergence (achieved only on fine meshes; can only be checked with at least 3 solutions, 2 is not enough).

Richardson extrapolation

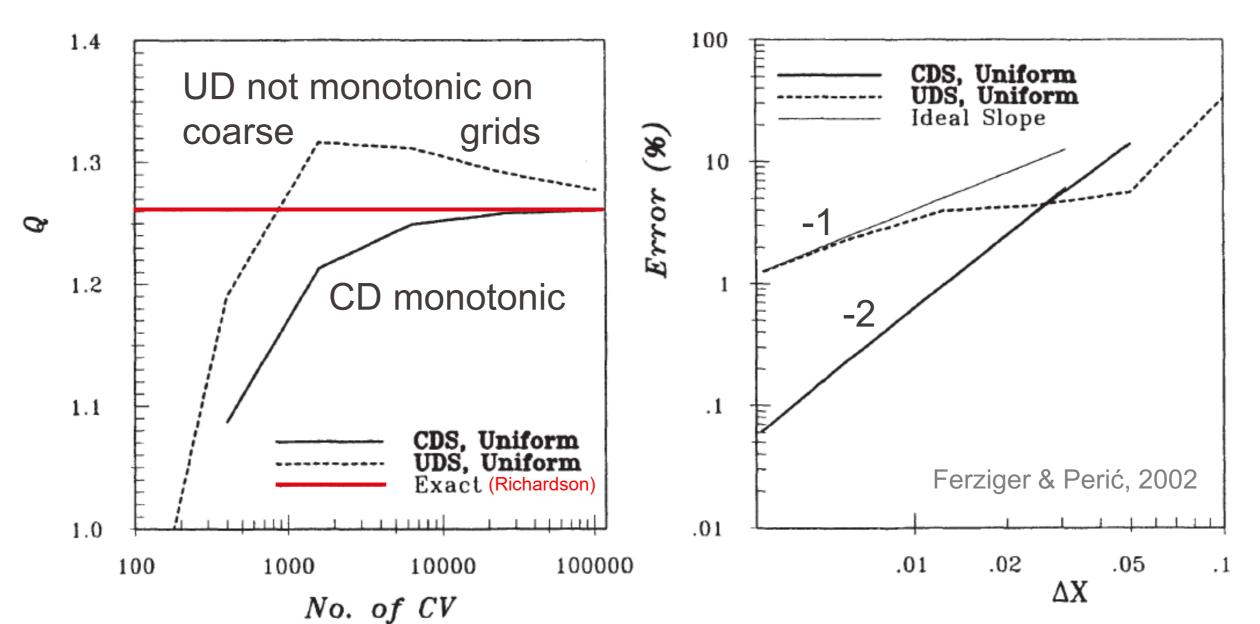
• On 3 grids of sizes h, rh, r^2h , write the calculated numerical solution as:

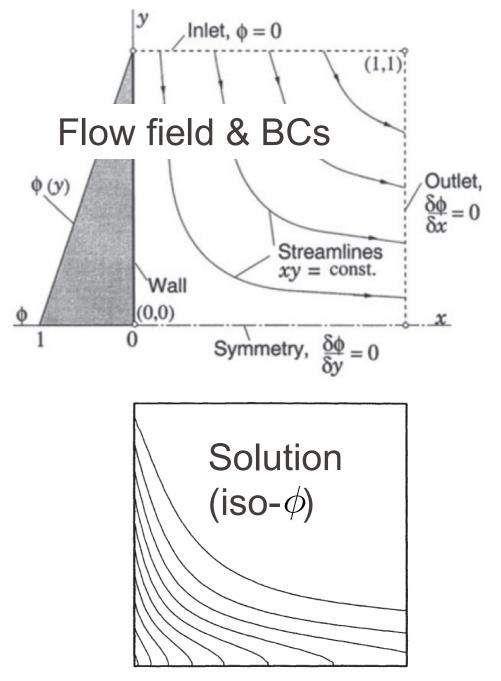


• Discretization error: $f_h - f_e pprox rac{f_h - f_{rh}}{r^p - 1}$

Richardson extrapolation

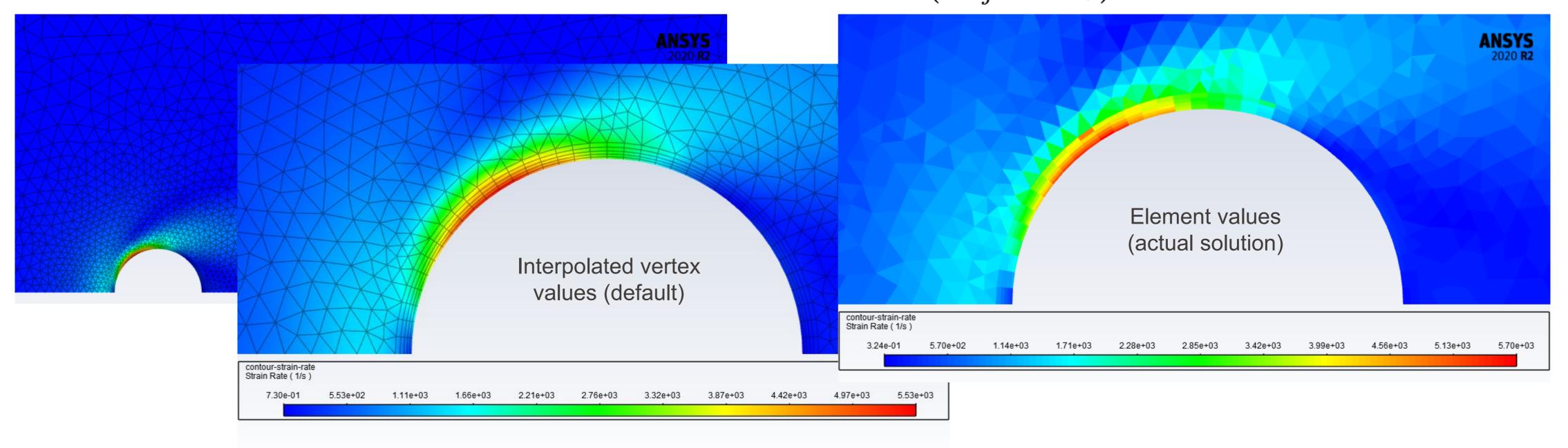
- Valid for **global** solution (and thus pointwise values) \rightarrow useful to compute error. (Can also approximate exact solution f_e , but this approximation does not satisfy governing eqs.)
- Valid for **integrated** quantities too (if integration scheme has same discretization order *p*): fluxes, forces etc.
- Example: transport of a scalar ϕ in a known 2D velocity field (stagnation point). Monitor total flux Q through west boundary.





Local refinement

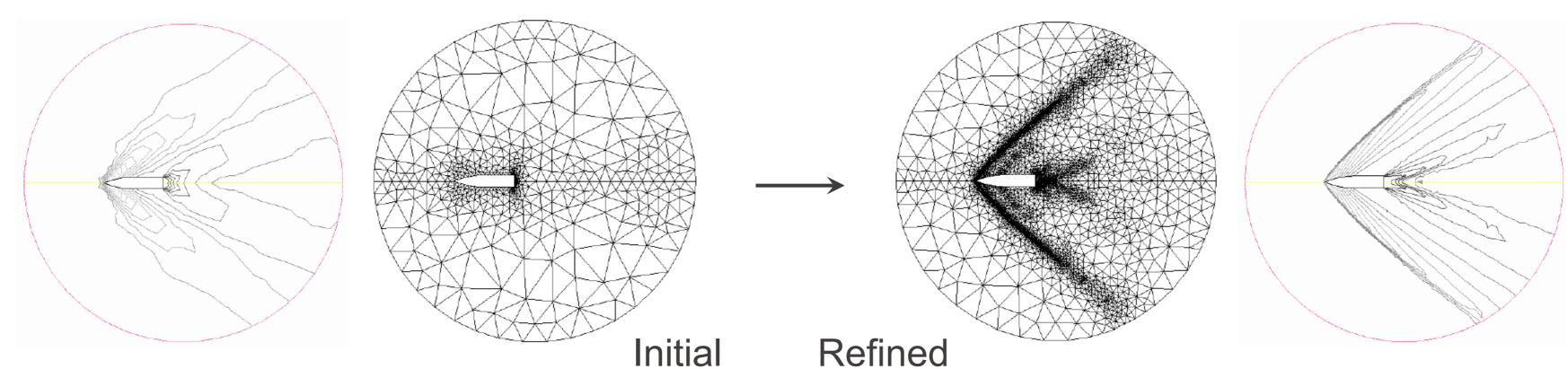
- Refinement need not be uniform. Local refinement in well-chosen regions (e.g. regions of
- large gradients) can help reach desired level of convergence with less mesh elements. Example: strain rate $(2S_{ij}S_{ij})^{1/2}$, where $S_{ij}=\frac{1}{2}\left(\frac{\partial u_i}{\partial x_i}+\frac{\partial u_j}{\partial x_i}\right)$: Example: strain rate $(2S_{ij}S_{ij})^{1/2}$, where $S_{ij}=\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j}+\right)^{1/2}$



 But be careful to retain a good mesh quality. For instance, should avoid sudden variations in element size.

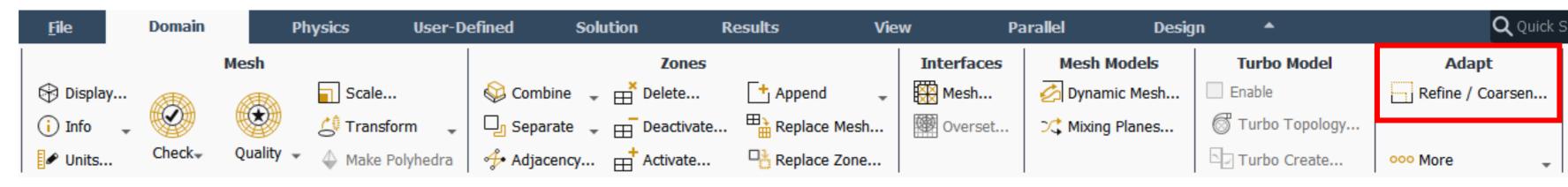
Adaptive mesh refinement

- Mesh adaption adds more cells where needed to better resolve the flow field.
- Cells to be adapted are listed in a register, based on a variety of criteria:
 - Gradient (velocity for shear layers, pressure for shocks...)
 - Iso-value (high-velocity jets, low-pressure wakes, reaction rate for combustion...)
 - Region
 - Element size or size change
 - Wall y⁺ or y* (turbulent flows)
 - Volume fraction (multiphase flows with Volume of Fluid method)
- Example: 2D supersonic flow around a projectile, 5 refinement cycles

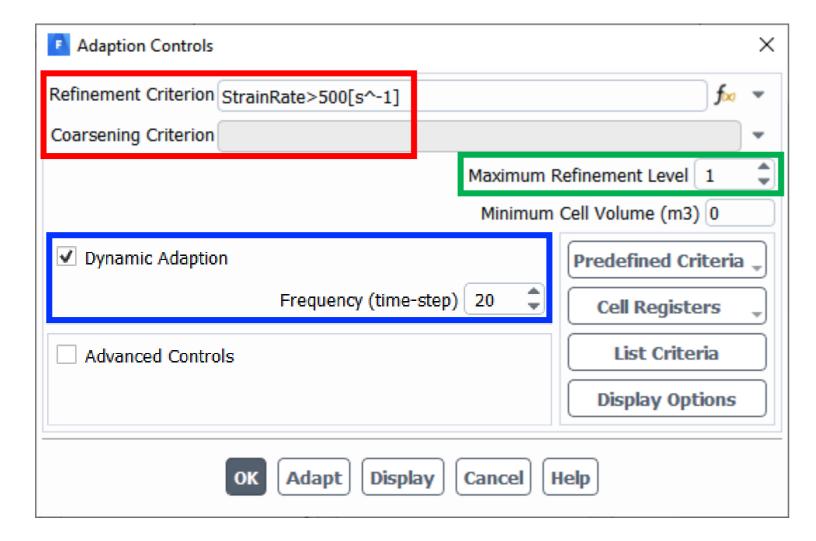


Adaptive mesh refinement

In Fluent:

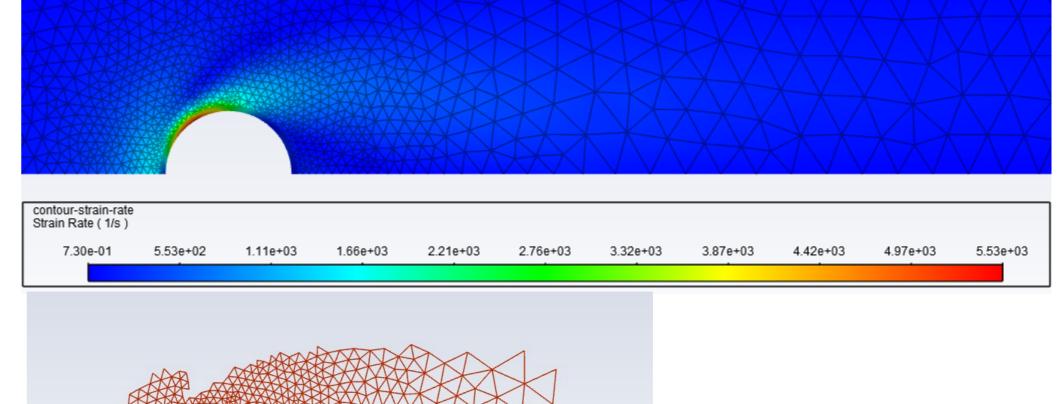


- Define refinement and/or coarsening criteria with an expression or with a "cell register".
- Choose the maximum number of refinements (mesh size divided by 2, 2², 2³ etc.).
- For unsteady problems: set the dynamic adaption frequency (every n time steps).



"Display": visualize elements to be adapted.
 "Adapt": actually refine/coarsen.

Example: refine elements where strain rate is larger than 500 s⁻¹ (only once, steady problem).



19

Influence of domain size

For external flows, domain size (location of boundaries) is also important:

Domain	1	2	3	4
Inlet x (D)	-3	-5	-7	-9
Top y (D)	3	5	7	9
Outlet x (D)	10	14	18	22

 Previous slides (cylinder flow): convergence study performed on domain 2, found well-converged C_d value of 1.8, but actual value close to 1.5. Domain 4 may still be too small.

Summary

- CFD results need to be checked for accuracy:
 - Verification: the eqs. are solved correctly (check against independent solutions).
 - Validation: the correct eqs. are solved (check against experimental measurements).

References

- General guidelines for best practices in CFD
 - AIAA: Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA Guide G-077-1998 (1998)
 - ERCOFTAC: Best Practice Guidelines, Version 1.0, M. Casey and T. Wintergerste (eds),
 ERCOFTAC Special Interest Group on Quality and Trust Industrial CFD (2000)
- Verification and validation
 - Quantification of Uncertainty in Computational Fluid Dynamics, P.J. Roache, Annual Review of Fluid Mechanics, 29 (1997)
 - Verification and Validation in Computational Fluid Dynamics, W.L. Oberkampf and T.G. Trucano, Progress in Aerospace Sciences, 38-3 (2002)